Integrating VM Selection Criteria in Distributed
Dynamic VM Consolidation Using Fuzzy
Q-Learning

Seyed Saeid Masoumzadeh
Research Group Entertainment Computing
University of Vienna
Vienna, Austria
Email: Masoumzadeh@gmail.com

Abstract—Distributed dynamic VM consolidation can be an
effective strategy to improve energy efficiency in cloud environ-
ments. In general, this strategy can be decomposed into four
decision-making tasks: (1) Host overloading detection, (2) VM
selection, (3) Host underloading detection, and (4) VM placement.
The goal is to consolidate virtual machines dynamically in a
way that optimizes the energy-performance tradeoff online. In
fact, this goal is achieved when each of the aforementioned
decisions are made in an optimized fashion. In this paper we
concentrate on the VM selection task and propose a Fuzzy Q-
Learning (FQL) technique so as to make optimal decisions to
select virtual machines for migration. We validate our approach
with the CloudSim toolkit using real world PlanetLab workload.
Experimental results show that using FQL yields far better
results w.r.t. the energy-performance trade-off in cloud data
centers in comparison to state of the art algorithms.

Index Terms—Energy Efficient Cloud Data Center, Dynamic
VM Consolidation, VM Selection, Fuzzy Q-Learning.

I. INTRODUCTION

In the ICT world, data centers have a high proportion of
the total energy consumption [1]. One of the ways to reduce
energy consumption in data centers is to apply virtualization.
The basic effect of virtualization is the ability to run fewer
physical servers with higher per-server utilization as virtual
machines (VMs), thus reducing the amount of the hardware
in use. This is “server consolidation” has led to increased flex-
ibility and availability of resources, while reducing hardware
costs as well as energy consumption. Cloud computing is a
new computing model based on data centers that leverages
virtualization technology and provides on-demand resource
provisioning over the Internet on a pay as you go basis. It
is essential for cloud providers to offer Quality of Service
(QoS) to their customers, being negotiated in terms of Service
Level Agreements (SLA).

Unfortunately, server consolidation enabled by virtualiza-
tion introduces a new problem to the cloud environment.
Since the size of Virtual Machines (VMs) inside a physical
server might change due to dynamic workloads, resource
underutilization or overutilization might occur, causing ei-
ther inefficient energy consumption or unwanted performance
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degradation. Consequently, the cloud managing system needs
live migration of VMs to achieve server consolidation and
maximized per-server utilization while attaining the promised
non-functional qualities of the service guaranteed in the Ser-
vice Level Agreements (SLA).

Distributed dynamic VM consolidation [2] can be an ef-
fective strategy to tackle this problem. The procedure of this
strategy can be decomposed into four decision-making tasks:
(1) Host overloading detection, here deciding when a host
must be considered as overloaded. In this situation, one or
more VMs must be migrated away from this host. (2) Host
underloading detection, here deciding when a host must be
considered to be underloaded. In this situation, the host is
ready to switch to sleep mode and all VMs must be migrated
away from this host. (3) VM selection, here deciding, which
VMs should be migrated away from overloaded hosts, and
(4) VM placement, here deciding about which host must
be selected to receive migrating VMs. Indeed, the energy-
performance trade-off optimization is achieved when each
of aforementioned decisions are made dynamically in an
optimized fashion.

Clouds are inherently dynamic due to their workload vari-
ability, and thus management decisions must be done dy-
namically too. So far, the research on dynamic VM consol-
idation procedure has focused mainly on host overloading
detection [2] [3] [4]. VM selection, on the other hand, has
been somehow neglected in the past, often using fixed criteria
instead of dynamic ones. In this paper we consider the VM
selection task as a Dynamic Decision-Making (DDM) task and
model it using Fuzzy Q-Learning (FQL). We show how FQL
can be used to dynamically choose VM selection strategies
from a set of possible strategies in order to achieve better
results than each of the individual strategies achieves when
used alone.

The rest of the paper is organized as follows. In Section II
we address the related work. In Section III we discuss our
proposed approach. Section IV introduces Fuzzy Q-learning.
In Section V we propose our system model. In Section VI
we show how the VM selection task is formulated using FQL
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theory. In Sections VII and VIII we present the experimental
setup and the results respectively.

II. RELATED WORK

In this section we discuss prior approaches about VM selec-
tion in distributed dynamic VM consolidation. It is important
to note that in previous works, the dynamic VM consolidation
procedure has sometimes been called with other names such
as dynamic resource allocation, or dynamic VM management.
But the VM selection has always been part of the decision-
making tasks in these procedures. Khanna et al. [5] defined
a VM selection criterion based on CPU utilization of VMs.
In fact, the VMs with the lowest CPU utilization are selected.
Further, they proved that selecting VMs based on this criterion
can result in minimized migration cost. Beloglazov et al. in [6]
presented a criterion based on CPU capacity of VMs defined
by VM parameters. According to this criterion, the selected
VM has the lowest CPU capacity. They believe that decision-
making based on this criterion can minimize the potential
increase of the host’s utilization and prevent SLA violations.
Beloglazov et al. [2] also introduced three different criteria.
The first one is based on migration time. A VM is selected if it
requires the minimum time to complete a migration relatively
to the other VMs allocated to the host. The migration time is
estimated as the amount of RAM utilized by the VM, divided
by the spare network bandwidth available to the host. The
second criterion is based on CPU utilization and a selected
VM has the highest correlation of the CPU utilization with
other VMs. The idea of this criterion is that the higher the
correlation between the resource usage by applications running
on an oversubscribed server, the higher the probability of
server overloading. All aforementioned approaches employ a
fixed criterion for decision-making and as mentioned before
are not suitable for decision-making in dynamic environments.

III. INTEGRATING VM SELECTION CRITERIA

When a host is overloaded, the dynamic VM consolidation
procedure calls the VM selection task in order to remedy
this situation by migrating VMs. The VM selection task must
choose VMs to migrate in a way that decreases performance
degradation due to both overutilization in one hand and also
migration on the other hand. Table I shows the result of
dynamic VM consolidation procedure in simulation three days
of cloud center management, and when using two different
VM selection criteria. As shown the VM selection task that
uses the maximum utilization (MAXU) criterion for select-
ing VM achieves a better result in SLA violations due to
overutilization (SLAVO, less is better, see Section VI) than the
minimum utilization (MINU) criterion. In fact, the maximum
utilization criterion always chooses the VMs with the highest
utilization. Consequently it can remedy performance degrada-
tion due to overutilization in less time. However, it decreases
the number of migrations in comparison with the minimum
utilization criterion, and in contrast, increases SLA violations
due to migration (SLAVM, less is better, see Section VI),
as the performance degradation due to migration depends on

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

TABLE I
COMPARISION BETWEEN TWO DIFFERENT CRITERIA

Criterion SLAVM SLAVO EC (kWh) Num. Migrations
MINU 1.26 4.22 257.49 94669
MAXU 1.31 3.92 265.87 29939

the CPU utilization of the VMs [5]. Apart from it, some
aggressive behaviors of maximum utilization criterion might
cause an underutilized situation and consequently more energy
consumption (EC). This experiment shows the result of VM
selection task is highly depended on the workload behavior
and the state of the physical host. However, using one fixed
criterion for selecting VMs might some times lead to satisfac-
tory results, but in other situations to poor results. Therefore,
in this situation an adaptive and predictive mechanism can be
efficient to make decisions about which criterion can achieve
the best result in the current state. In this paper we propose the
FQL theory as an effective approach to create an adaptive and
predictive VM selection during dynamic VM consolidation in
cloud environments. In the following, we focus on modeling
the VM selection task as a dynamic decision making task using
FQL. We show how FQL as an intelligent decision maker
can learn, how to use multiple criteria for selecting VMs in
different states in order to optimize the energy-performance
tradeoff dynamically.

IV. Fuzzy Q-LEARNING

In standard reinforcement learning (RL) [7], at each time-
step t, the agent as a learner interacts with the environment,
observes the current state s; of the environment, and selects
an action a; from the set of possible actions corresponding to
the state. One time-step later, as a consequence of the chosen
action, the agent receives a numerical reward r;,1, and finds
itself in a new state s; ;. In a trial and error interaction, agents
finally learn how to map states to actions, in order to maximize
the discounted sum of rewards obtained, which is given by

o
k
Z Y Tt+k41-
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Here + is a discount factor. This mapping denoted by 7 and is
called agent control policy. The problem can be modeled by a
Markov Decision Process (MDP) and solved using Dynamic
Programming (DP). DP provides algorithms to find an optimal
policy 7* with corresponding optimal state value function V*
as a perfect model of the MDP.

An optimal policy is the policy with the highest value
function for all states of the environment. Q-Learning [7] is
one of the most popular RL methods. It involves in finding
state-action qualities rather than just state value. Assume that
Q™ (s, at) be the expected discounted reward of taking action
a; in state s;, and then choosing actions optimally after-
ward. An estimation of optimal state-action value function,
Q*(st, at), denoted by Q(s¢, a;) and the Temporal-Difference
(TD) is used to update it:
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Here 0 < o < 1 is a learning rate.

Fuzzy Q-Learning (FQL) is the fuzzy extension of Q-
Learning. It is capable of handling continuity in the state
space. In addition, it is powerful enough to tackle the curse
of dimensionality and other ordinary RL issues rising in real
life and industrial problems. FQL, by the use of a Fuzzy
Inference System (FIS), partitions each continuous state space
variable and creates fuzzy rules. Each rule in the rule-base
has a set of discrete actions associated with it. Each action
in each rule has a quality factor (a weight), which will be
adjusted throughout the learning phase. Also each rule has a
weight vector based on its action qualities. Briefly speaking,
FIS estimates the Q-value function for the current state-action
pair. This Q-value function, along with the optimal Q-value of
the state, is calculated in the same way. They will be used to
compute the TD Error. Later on, based on both the TD Error
and the update rule of TD learning, the action weights will be
updated to gain more reinforcement. This procedure is similar
to Q-Learning. The agent then chooses actions based on the
quality values (weights) of the different actions available in the
action set of each rule, along with an exploration/exploitation
mechanism named double e-Greedy. You can see the FQL
structure in Figure 1 and find more details in [8] [9].

V. SYSTEM MODEL

Our target system is an laaS environment represented by
a large scale data center including N heterogeneous physical
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Fig. 2. System Model.

nodes, and is based on the CloudSim architecture [10]. Each
node is characterized by its CPU performance, disk storage,
amount of RAM and network bandwidth. The software layer
of the system is tiered, comprising local and global managers.
Local managers reside on each physical node as a module
of the VM monitor. They monitor the node CPU utilization,
resize VMs according to their resource needs and decide when
and which VMs have to be migrated from their host node.
The global manager resides on a master node and gathers
information from the local managers to manage the allocation
of VMs by issuing VM migration commands and changing
the power states of the nodes.

In our system model (see Figure 2), each physical node is
associated with an FQL agent. The agent by interaction with
dynamic characteristics of its corresponding host node learns,
which VM selection criterion must be chosen for optimizing
the energy-performance trade-off. Since our problem has a
large input space, FQL is likely to suffer from a low learning
convergence rate. In order to speed up convergence, we
introduce cooperative leaning by sharing the FQL’s quality
weight factors among all physical hosts inside the data center.

VI. FORMULATING THE FQL TASK

Before formulating the criterion selection as an FQL task we
address some metrics and definitions. To present a description
of the energy-performance tradeoff, we must present a defini-
tion for the energy consumption and the cloud performance
separately. In our system model the energy consumption
(EC) of a server is defined as a linear function of the CPU
utilization, and the cloud performance is defined as a function
that evaluates the Service Level Agreement (SLA) delivered
to any VM deployed in an IaaS. In our system model we
employed two metrics to measure the SLA violations in a data
center: SLA Violation due to Overutilization (SLAVO) and
SLA violation due to Migrations (SLAVM) [2]. These metrics
were defined with this assumption that the SLAs are delivered
when 100% of the performance requested by applications
inside a VM is provided at any time, bounded only by the
parameters of the VM. In fact, SLAVO is the percentage of
time, during which the active hosts have experienced a CPU
utilization of 100% and SLAVM is the SLA violation by VMs
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due to live migration:

1 ZM T,
M
1 Cy,
LAVM = — 2 3
SLAVM = — >a, 3)

Here N is the number of active hosts, T, is the total time
during which host 7 has experienced CPU utilization of 100%,
T,, is the total time during which host 7 is serving VMs, M
is the number of VMs, Cy, is an estimate of the performance
degradation of the VM j caused by migration (10% in our
experiments), and C;., is the total CPU capacity requested by
VM j during its life time. Therefore, a metric for describing
SLA violations can be denoted by the product of SLAVO and
SLAVM as follows:

SLAV = SLAVO x SLAVM 4

This metric can encompass both performance degradation due
to host overloading and VM migrations. Consequently, to
represent the energy-performance trade-off we use the product
combination of SLA Violation and Energy consumption (EC)
that the authors of [2] denoted as the total Energy SLA
violation (ESV):

ESV = SLAV x EC (5)

Considering the aforementioned equations we can define
SLAVM and SLAVO as well as ESV for each host as follows:

SLAVO; = g} , 1<i<N (6)
K’.
1 < Cy..
SLAVM; = — SR 1<i<N 7
/ K j=1 C’“ji == @

SLAV; = SLAVO; x SLAV M;,
ESV; = SLAV; x EC;,

1<i<N (8
1<i<N 9)

Here K is the number of VMs that reside on host 7, Cdjl. is an
estimate of the performance degradation of the VM j caused
by migration from host ¢ (10% in our experiments), and C,.
is the total CPU capacity requested by VM j during its life
time inside host i. The goal of the integration of multiple
VM selection criteria is to optimize the energy-performance

tradeoff. Therefore, the FQL task is formulated as follows:

The Reward Function. The optimal long-term cumulative
reward is the target of the FQL. The reward is a performance
feedback on the resulted new VM selection criterion chosen
from the action set. Therefore, the reward function can be
defined as follows:

1

ESV;,..’

Tt41

Reward 1<i<N (10)

Tep1
The Input State. The FQL must be able to trace the physical

host’s behavior by merely observing the input states. Conse-
quently, dynamic characteristics of the host must be included
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into the input state, which have enough information about
the host’s behavior. In addition they must be able to make
inter-dependency between state and actions. In this paper the
host’s resources and the number of VMs residing on the host
were considered as the element of the input state. These are
time-varying factors caused by dynamic workloads and live
migration. Therefore, the input state is defined as follows:

(an

Here, CUy, is the CPU Utilization of the host ¢ in time-step
t, and NumV M, is the number of VMs residing on the host
1 in time-step t.

X, = {CU;,, NumV M, }, 1<i<N

The Action. Each element of the action set denotes a VM
selection criterion. Therefore, it can be defined as follows:

A(Xt) = {Criteriony, Criterions, ..., Criterion,} (12)

When the VM selection task is called for a host, the FQL
agent associated with this host observes the current state Sy,
and gathers information about the input state X;, (including
the current CPU utilization and the number of VMs) and
immediately choses a VM selection criterion as an action
from the action set A(Xt) in order to make a decision. One
time-step later, the FQL agent receives a numerical reward,
Reward;,, , and finds itself in a new state S; ;. In a trial and
error interaction, finally the FQL agent learns how to map
the states to the actions in order to maximize the discounted
sum of rewards. In other words, the FQL agent learns the best
sequence of VM selection criteria, corresponding to the states
observed during its lifetime.

VII. EXPERIMENTAL SETUP

In our experiments the CloudSim toolkit has been chosen as
simulation platform. Real life data on workload are provided
by the CoMon project, which monitors the infrastructure
of PlanetLab [11]. We simulated a data center comprising
800 heterogeneous physical nodes, half of which are HP
ProLiant ML110 G4, and the other half consisting of HP
ProLiant ML110 G5 servers. The power consumption of the
selected servers is different at each load level. The frequencies
of the servers’ CPUs are mapped onto MIPS rating. Each
server is modeled to have 1 GB/s network bandwidth and the
characteristics of the VMs types corresponding to Amazon’s
EC2 instance types including High-CPU Medium Instance,
Extra Large Instance, Small Instance and Micro Instance.
The Initialization of VMs is done according to the resource
requirements defined by the VM types. We used three different
workloads, which were collected in a timespan of three differ-
ent days. During the simulation each VM is randomly assigned
a workload trace from one of the VMs from the corresponding
day. In our dynamic VM consolidation procedure, for all of
the experiments we used a static threshold based algorithm [2]
to detect host overloading detection, Power Aware Best Fit
Decreasing (PABFD) algorithm [2] for the VM placement and
for host underloading detection we used a simple strategy that
selects the host with the minimum utilization compared to
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the other hosts. In the FQL setup, we used three fuzzy sets
in the FIS configuration with Gaussian membership functions
for each input set element. The elements of the action set are:

A(X) = {MINU,MAXU} (13)

MAXU (Maximum Utilization) means that the VM selection
task selects VMs having the highest utilization. MINU (Min-
imum Utilization) means that the VM selection task selects
VMs, having the lowest utilization. The learning rate of Q-
Leaning has been experimentally set to 0.1, and the quality
factors of actions (weights) were initialized randomly. The
FQL-iteration or time-step for perceiving next state and re-
ceiving the reward of the previous state has been set to 300
seconds.

VIII. EXPERIMENTAL RESULTS

In the first experiment we compare the results of the
dynamic VM consolidation procedure when its VM selection
task uses the FQL strategy with the same procedure when it
uses a random strategy. Both strategies integrate MAXU and
MINU criteria together with one fundamental difference, the
FQL strategy benefits from a learning procedure to choose
the criteria intelligently but the random strategy employs
them randomly without any knowledge. In this comparison
we have measured the total ESV value per iteration for the
random strategy and compared it to the FQL strategy. This
experiment has been evaluated with the same workload for
both procedures. In addition, the result of the procedure
with the random strategy is an average of five independent
simulations. Since host overloading and underloading, as well
as VM placement policies are the same in both procedures,
the curves depicted in Figure 3 show us the effect of the
two different strategies described above. As Figure 3 shows,
the FQL strategy in the preliminary iterations acted without
any learning knowledge. Therefore, it is natural that its result
is very close to the random strategy or even worse than
it. But after a while, the FQL strategy following a trial
and error interaction learns how to find a policy (mapping
states to actions), to maximize the discounted sum of rewards
obtained. Indeed, this policy is a sequence of criteria where
decision making for selecting VM based on them leads to the
maximization of the reciprocal of the Energy SLA Violation
(ESV) value discussed in Section VI.

In the next experiment we repeat the previous experiment,
with this difference that we compare the result of the FQL
strategy with fixed criterions (either MINU or MAXU) for
making decisions (see Figure 4). It shows how FQL learns the
appropriate policy to choose VM selection criteria, to utilize
the synergetic contributions of them to effectively decrease the
ESV value during the simulation.

In the third experiment we compared all metrics involved
to represent our energy-performance tradeoff when the VM
selection task uses the FQL strategy with ones uses minimum
utilization and maximum utilization as a fixed criterion. This
experiment was evaluated with three different workloads on

ISBN 978-3-901882-53-1, 9th CNSM 2013: Workshop SVM 2013

T T T T T T T T
50 - o
= Random
S 4t
3
S 30
< ! | | \ ll
> 2 L\ ‘ T t i Lk
7 R
10 1 i Ui Ll [} it
0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
30 T T T T T T T T
FQL (Smooth Acsplines)
> 25 Random (Smooth Acsplines) 4
(=}
(=}
S
S 20 + — B
® - —_—
> RN T ~
2 15k N 1
]0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Iteration
Fig. 3. Comparison between the FQL strategy and the random strategy
0 T T T T T T T T
FQL (Smooth Acsplines)
— 25 :\ MINU (Smooth Acsplines) —
(=}
<] \ MAXU (Smooth Acsplines)
< -
=]
(=}
>
>
%2}
m

Iteration

Fig. 4. Comparison between VM selection using the FQL strategy and VM
selection using fixed criteria

three different days. Figures 5 (a) and (b) show the total
value of the energy consumption and the total value of SLA
violations respectively, Figure 5 (c) illustrates ESV as a tread-
off value between energy and SLA violations. These figures
show that the FQL strategy has learned how to find a sequence
of applying MAXU and MINU criteria to select VMs during
dynamic VM consolidation procedure in order to keep balance
between energy consumption and SLA violation and thus
improves the ESV.

Figure 6 shows the SLA violation metrics (SLAVM and
SLAVO) and the number of migrations during simulation. It
is clear to see that how the FQL applies different criteria to
control the number of migrations and SLA violations.

IX. CONCLUSION

In this paper we propose a Fuzzy Q-Learning (FQL) ap-
proach as an online decision making strategy to enhance the
VM selection task in a dynamic VM consolidation procedure.
Our approach is able to integrate multiple VM selection
criteria to benefit from all advantages and possible synergetic
contributions of them in long-term learning. In fact, our
approach learns how to find an optimal strategy to apply-
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ing multiple criteria for selecting VMs during a dynamic
VM consolidation procedure towards improving the energy-
performance trade-off. As our system model has a multi-
agent system architecture, we employed a cooperative learning
strategy in order to speed up learning convergence rates and
consequently better decision making. Our results illustrate that
our proposed approach outperforms VM selection policies
using fixed criteria for decision making. As a part of our
future work, we aim at implementing this idea using more
VM selection criteria, which can for example be based on
bandwidth and memory utilization, etc. In addition we would
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like to implement this idea in a real-life cloud environment
with an open source cloud management framework such as
OpenStack Neat [12] and Snooze [13].
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