
Monitoring latency with OpenFlow
Kévin Phemius and Mathieu Bouet

Thales Communications & Security, Paris, France
{kevin.phemius, mathieu.bouet}@thalesgroup.com

Abstract—Software Defined Networking, especially through
protocols like OpenFlow, is becoming more and more present
in networks. It aims at separating the data plane from the
control plane for more network programmability, serviceability,
heterogeneity and maintainability. Even if mobile applications
and multimedia are often pointed at to show the demise of current
network architectures, there are currently no ways to efficiently
dynamically obtain the latency in an OpenFlow network to effi-
ciently apply QoS policies. In this paper, we propose a mechanism
to measure link latencies from an OpenFlow controller with high
accuracy and a low footprint. We implemented it and present the
performance evaluation. A monitoring packet consumes only 24
Bytes, which is 81% less than the ping utility, for an average
accuracy of 99.25% compared to the ping values.

I. INTRODUCTION

Latency is a crucial metric to consider in the day to day
operation of a network, especially if it is used to transit
data from applications sensitive to delay or jitter. A good
quality VoIP connection requires less than 50ms latency.
If the latency is slightly higher some dropped frames may
be acceptable while maintaining a usable connection. While
streaming general purpose video, some loss (less than 5%) is
admissible for most codecs. An average latency of ∼150ms
is adequate and as much as a 5 seconds delay might also be
acceptable if the frames are buffered. Interactive videos have
higher requirements and a greater susceptibility to lost frames.
Although some losses (less than 1%) are still acceptable, jitter
has much more impact.

OpenFlow [1] is more and more used in networking, espe-
cially for cloud and enterprise infrastructures, and envisioned
for mesh [3] and potentially, deployed networks. Accurate
delay measurements are needed to make correct routing de-
cisions. However, even the latest specification of OpenFlow
(1.3.1) [2] has no latency monitoring.

Using the ping utility or a similar application like we can
do with routers isn’t possible with switches, possessing no
IP address in the forwarding plane. Using ping would mean
having additional hardware like Virtual Machines (VMs) or
probes, to send/receive the ICMP messages and a way to
gather the statistics and convey them to the controller. Other
methods such as sFlow [4] and NetFlow [6] that use passive
monitoring, still use additional hardware and are not accurate
nor flexible enough to have a reactive network.

We thus propose a mechanism to enhance an SDN controller
on the form of a monitoring application that enables it to
determine an estimation of the delay on each and every link
of the topology, reliably and efficiently, with a very limited
network footprint. We implemented our mechanism on an

OpenFlow testbed and evaluated its accuracy through several
experiments.

We will review related works in Section II, explain the
mechanism that we propose in Section III and present our
experimental results in Section IV.

II. RELATED WORK

OpenFlow aims to replace, or at least extend current net-
work equipment elements by a new type of “dumb switches”
where the decision making is entirely assumed to be handled
by entities called controller(s), giving the switches only a
basic set of instructions: Forward a packet, Drop it, Send it to
the controller (after encapsulation) and Overwrite part of its
header. OpenFlow switches only need to look at their Flow
Table(s) which contains the action(s) associated to a flow. To
identify a flow, a switch can rely on a function which can
match any field in the packet’s header, from L2 to L4.

The communication between a switch and its controller
is formalized by the OpenFlow protocol. To register to a
controller, an OpenFlow switch goes through a procedure
called a Handshake: the two parties gather information about
one another, such as the Data-path ID to uniquely identify the
switch or the maximum capacity of its buffer. The OpenFlow
controller can gather statistics on the switches (packets for-
warded, dropped, . . .) through dedicated messages. We aimed
to use OpenFlow as a mean to collect latency statistics in the
network in the same way.

A NetFlow [7] enabled equipment periodically sends in-
formation to a NetFlow Collector, a server which can be
queried to access these information. Additionally, standalone
NetFlow probes can be deployed into the network to collect
information by tapping into a link. NetFlow mainly focuses
on layer 3 network connections; because we primarily use
layer 2 switches, it is not directly applicable for the intended
scenario. Additionally, the NetFlow architecture puts the com-
plexity onto the switches (and their NetFlow agents) and
configuration can quickly become complicated, limiting the
scalability. Deploying probes can raise its own issues such as
where to place them and how many are necessary to cover
the network. sFlow [5] works similarly and has the advantage
to let the agents “push” their counters. This means that fewer
packets are needed to obtain the relevant data as there is no
request. An sFlow traffic analyser is still needed to collect
the data and an agent must be put in every switch. There is
also the lack of versatility provided by our solution and the
fact that sFlow uses packet sampling (one in every 200 to
2000 packets is analysed). While it is useful in a network

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper122

management context, it is not catering to our needs for a
reactive network. Other initiatives such as OpenSAFE [8]
use traffic duplication to monitor the network adding a very
high overhead while FlowSense [9] use a push mechanism to
analyse link utilization passively; it is an efficient method but
not to determine latency.

III. MONITORING MECHANISM

Monitor

Switch 2

__
__

Link
Latency

Switch
Latency

__
__

OpenFlow
Protocol

Network

Controller

Application(s)

Switch 1

Fig. 1. Functional architecture of the latency monitoring application.

Our solution to perform latency monitoring is to use a
controller to pilot a network of OpenFlow switches. By using
some of the OpenFlow protocol messages described in the
OpenFlow specification [2] we managed to achieve our goal
with great simplicity. The four types of messages used by our
solution are :

• STATISTICS REQUEST : Message sent from the con-
troller to a switch requesting its current set of statistics
(flows, ports, . . .).

• STATISTICS REPLY : Message sent from a switch to
the controller; reply to the previous message.

• PACKET OUT : Message sent from the controller to a
switch containing a data packet to be forwarded through
one or more ports (or an ID if the packer was buffered).

• PACKET IN : Message sent from a switch to the con-
troller when encountering an unknown packet (i.e there
is no corresponding entry in the switch’s flow table).

The solution is based on sending a specially crafted packet
through a link from the controller and back while measuring
the amount of time it took to do so (see bold arrows in Fig. 1).
To achieve that, we first created a basic Ethernet frame using
the broadcast address as a destination and the hardware address
of the port which will be used to send the packet as a source.
For the Ethernet-type, we used an arbitrary value (0x07c3)
and the payload is composed of the port number and a Time-
stamp of the packet’s creation. The controller will then request
a switch s1 to send this packet through a particular port via
a PACKET OUT message; the switch s2 on the other end of
the link will not find an entry for this Ethernet-type and send
it back to the controller with a PACKET IN. By allowing our
monitoring application to supersede the controller’s forwarding
application (which would by default flood that unknown packet
to all the switch’s ports) we can retrieve the packet and deduce

from the received time and the Time-stamp how long it took
for the packet to complete its journey.

We then need to subtract the time the packet spent on
the up and downlinks, to and from the switches. We achieve
this by measuring the Round Trip Time (RTT) between the
STATISTICS REQUEST and STATISTICS REPLY messages
the application sends to the switches for another purpose
(rightmost arrows in Fig. 1). We thus have these three values:

• Ttotal the total time
• Ts1 the RTT between the controller and s1
• Ts2 the RTT between the controller and s2

The link’s latency will be:

Latency(s1, s2) = Ttotal −
Ts1

2 −
Ts2

2 - C

The C variable in the above equation corresponds to the
calibration value of the controller, a small offset introduced,
among other things, by the controller’s limitations. The cali-
bration process is described more thoroughly in section IV-B.

We assume here that the delay on the control channel is
symmetrical by using half of the RTT as the one-way latency.
In reality, a slight error equal to half the difference between
each one-way delay will occur. In addition, the processing
time at the switch level will increase the total time, especially
under high load. This would increase the determined latency
of the link.

An additional optional field can be used to store the down-
link RTT in case the monitoring packet is retrieved by another
controller, which would not have this information available.

Destination
MAC

Source
MAC

Type
Source
Port

Timestamp RTT

6 Bytes 6 Bytes
2

 Bytes
2

 Bytes 8 Bytes 8 Bytes

Fig. 2. Ethernet frame sent to determine the latency.

The network footprint of our method is quite low. Indeed,
the Ethernet frame uses 24 Byte packets to determine the link
latency instead of ICMP’s 196 Bytes1. It thus uses 81% less
bandwidth. We evaluate its accuracy and compare it to the
ping utility in the next section.

IV. EXPERIMENTATION RESULTS

In this section, we present the performance evaluation of
our mechanism. First, we detail our implementation on an
OpenFlow testbed. Then, we show how we calibrate the
implemented controller and finally we evaluate its accuracy
with deterministic and random latencies.

A. Testbed Description

1) OpenFlow controller: Floodlight: Floodlight 0.90 [11]
is a high performing OpenFlow controller able to handle a
large amount of equipment while maintaining a high level
of availability. It has a modular architecture where we can
easily add our own modules and fit them with the others.
The default applications of Floodlight did not provide enough

1ICMP only work in echo/reply mode, thus having two 98 Byte packets for
every link and no means to discriminate between the one-way trips values.
ARP may also be used beforehand which can cause an additional overhead.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper123

functionality to apply our solution. Indeed, Floodlight does not
have any monitoring module so we needed to write our own
application to monitor the latency in the network. Floodlight
was loaded with our monitoring application and retrieved the
latency measurements which were stored in a separate file or
accessed via a REST API.

2) Testbed Topology: The network topology is simulated
with mininet [12] [13], a powerful network simulator based
on Open vSwitch [14]. The topology used is linear with n
switches identified as sn. We changed the links’ latencies by
using Linux’s tc utility and set the step of the application
to 500ms; meaning that the latency measurements would be
updated every 500ms. The experiment runs for 40s divided
in four consecutive phases during which the latency varies in
shifts : 0ms, 10ms, 30ms and 20ms.

We initially assumed that our application would closely
follow the latency changes of the link but we saw that
the reported values were systematically slightly above the
supposed value as seen in Fig. 3. After investigation, it resulted
that this offset (or ∆) was mostly constant and mainly due to
the overhead added by the system while handling the packets.
Many reasons can be presented to explain this : data plane
to control plane encapsulation, processor interruptions, thread
priorities, hardware limitations, amount of switches, . . .

Because of this persistent effect, it became obvious that
some form of calibration was necessary to obtain more precise
values, to at least mitigate the factors we can control.

Fig. 3. Preliminary results showing the offset between the calculated (from
the monitor application) and the reported (from the ping utility) values.

B. Controller’s Calibration

The calibration is done by determining the latency on an
unused link (i.e the latency is supposed to be close to zero) and
averaging the deviation of the reported value. As we can see in
Fig. 4 by the average over time, the offset can be determined
after only a handful of seconds.

This experiment was repeated numerous times and the value
was on average constant. As we suspected that the deviation
might be partly caused by the platform on which the controller
runs, we repeated this calibration experiment on many different
systems. The results are visible in Table I; as we can see the
more “powerful” the workstation, the less offset is reported.
The machine hosting the switches stayed the same in all tests,
the offset is thus mainly related to the controller.

Fig. 4. Calibration of the controller.

Processor RAM Operating System Offset

QEMU Virtual CPU
@ 3.00 GHz Dual Core

4 GB
(1x4GB)

Ubuntu 10.04.4
2.6.32-44 generic 1.041ms

Intel Core 2 Duo E8400
@ 3.00GHz Dual Core

2 GB
(2x1GB)

Ubuntu 12.10
3.5.0-23-generic 1.363ms

Intel Xeon W3520
@ 2.67GHz Quad Core

4 GB
(4x1GB)

Ubuntu 12.04.1
3.2.0-35-generic 0.829ms

Intel Core 2 Duo T7700
@ 2.40GHz Dual Core

4 GB
(2x2GB)

Ubuntu 10.04.3
2.6.32-36-generic 1.821ms

2 x Intel Xeon E5640
@ 2.67GHz Quad Core

24 GB
(6x4GB)

Ubuntu 10.04.4
2.6.32-38-generic 0.595ms

TABLE I
OFFSET VARIATION w.r.t THE CONTROLLER’S WORKSTATION.

Because the latency monitoring application gathers data on a
unidirectional, per-link basis, computing the latency on a path
accumulates the error of every link crossed. To ensure that our
hypothesis was correct, we reiterated the experiment on a 20
switches linear topology and got the latency on multiple paths,
from 1 to 19 hops. Fig. 5 shows the results; we can see the
reported latency offset values increasing with the number of
hops. The second line represents the ∆ value of the controller
multiplied by the hop count. We can see that the curve is
linear so knowing the offset of the controller and the hop
count is enough to determinate the value to subtract to the
reported latency of the path. Factoring this new information,
the corrected latency value on a path with n hops will be :

Lat(s1, sn) = Lat(s1, s2) + ... + Lat(sn−1, sn)− (∆× n)

This can also be used to determine the round trip delay
between a pair of switches by adding Lat(sa,sb) and
Lat(sb,sa). Now that we can calibrate our system, we can
start over with the tests more thoroughly.

C. Latency Measurements

1) Deterministic Latency: The monitored link in this exper-
iment is the one between s1 and s2. As with the preliminary
experiment, the link’s latency will be fixed by tc in shifts. We
did a calibration on the controller and ran the experiment; the
final figures are the average of a hundred tests. The results
can be seen in Fig. 6(a). We can see that during a “nominal
phase” (that is when the latency is constant), no matter what
the step of the application is, the reported values are on par
with the link’s latency (cf. Fig. 6(b)). The most interesting

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper124

(a) Latency variation during the experiment. (b) Closeup on a “nominal phase”. (c) Closeup on a “shift phase”.
Fig. 6. Latency reported during the experiment on a calibrated controller.

Fig. 5. Latency offset w.r.t the hop count.

aspect occurs during the “shift” phases as the one seen in
Fig. 6(c); depending on its step, the application will have
a more precise curve as the latency changes. It is a crucial
aspect with extremely time-sensitive flows. A shorter step
allows the controller to react faster when an event capable
of impacting the data flow occurs, like a sudden latency
change or a rapid jitter. Conversely, we could increase the
step during “uneventful” periods, when no data is transiting or
with a delay-agnostic data flow. Another point to add concern
the lower steps. During the 100ms tests and lower, we saw
that even if the controller was extremely reactive to events,
most of its activities were to dispatch, retrieve and handle the
monitoring application’s packets. There need to be a trade-
off between the monitoring and the reactivity or the former
will overtake the controller’s regular operation if the hardware
platform is not robust enough.

2) Random Latency: To confirm our results, we ran the tests
without pre-determined latency variations. Instead we let the
latency vary randomly during the experiment. The ping utility
and our monitoring application were launched simultaneously
while a third script changed one of the links’ latency on the
path from s1 to s4. Before using the raw data, the controller
removed 3 ×∆ ms because the route counts three hops. We
have the same results as ping; in fact, by halving the step
compared to the default ping value we can see the variations
of latency in greater details (see Fig. 7). On average after
calibration, the margin of error compared to ping is ∼0.88%

V. CONCLUSION

In this paper, we showed that it is possible to directly use
OpenFlow to efficiently and reliably monitor the latency in a
network. The mechanism we proposed and implemented can
be as precise as the current monitoring tools without requiring
additional specific hardware. In addition, it has a very low
network footprint: it uses 81% less bandwidth than a classic

Fig. 7. Latency variation in the random experiment on a calibrated controller.

ping utility while having an average accuracy after calibration
of more than 99%. Our mechanism works indifferently on
single links or full paths and can also determine a round
trip delay. Our implementation and evaluation showed that
the only hardware consideration concerned the controller’s
workstation, capable of mitigating the offset or allowing lower
update steps; the deviation from ping is in average less than
2.5% without calibration. Our future works involve improving
the mechanism by discriminating the monitoring period of the
links with respect to their criticality.

REFERENCES

[1] N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., Mar. 2008.

[2] O.N.F., “Openflow switch specification - version 1.3.0,” June 2012.
[3] P. Dely, A. Kassler,N. Bayer, “OpenFlow for Wireless Mesh Networks”

Computer Communications and Networks (ICCCN) 2011, Proceedings
of 20th International Conference on , 2011

[4] Wang, Mea, Baochun Li, and Zongpeng Li,“sFlow: Towards resource-
efficient and agile service federation in service overlay networks.”,
Distributed Computing Systems, 2004, 2004.

[5] P. Phaal and M. Lavine, “sFlow Version 5”
http://www.sflow.org/sflow version 5.txt

[6] Estan, Cristian, et al., “Building a better NetFlow.” ACM SIGCOMM
Computer Communication Review, Vol. 34. No. 4. ACM, 2004.

[7] RFC 3954, “Cisco Systems NetFlow Services Export Version 9”
http://tools.ietf.org/html/rfc3954.html

[8] Ballard, Jeffrey R., Ian Rae, and A. Akella, “Extensible and scalable
network monitoring using OpenSAFE.”, Proc. INM/WREN, 2010.

[9] Yu, Curtis, et al., “FlowSense: Monitoring Network Utilization with Zero
Measurement Cost.” Passive and Active Measurement, Springer Berlin
Heidelberg, 2013.

[10] M. Casado, et al., “Ethane: Taking control of the enterprise,” in Pro-
ceedings of ACM SIGCOMM 2007, august 2007.

[11] “Floodlight controller,” http://www.projectfloodlight.org/floodlight/.
[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible Network Experiments using Container-Based Emulation,”
CoNEXT 2012, December 10-13, 2012, Nice, France.

[13] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks” 9th ACM Workshop on Hot
Topics in Networks, October 20-21, 2010, Monterey, CA.

[14] “Open Virtual Switch,” http://openvswitch.org/.

ISBN 978-3-901882-53-1, 9th CNSM and Workshops ©2013 IFIP. CNSM Short Paper125

