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Abstract—In recent years, companies such as eBay, Facebook,
Google, Microsoft, and Yahoo! have made large investments
in massive data centers supporting cloud services. These data
centers are becoming the hosting platform for a wide spectrum
of composite applications with an increasing trend towards more
communication intensive applications. As a result, the bandwidth
requirements within and between data centers is rapidly growing,
and the efficient management of these networking resources is
becoming a key ingredient in the ability to offer cost effective
cloud services.

Replica placement is a specific aspect of cloud management
where the goal is to optimally place the applications and their
related data over the available cloud infrastructure. The problem
is inherently complex since data is continuously updated, and the
cost associated with this update increases with the number of data
replica and the network distance between them. We model this
problem as a soft-capacitated connected facility location problem,
which is NP-Hard in the general case. We present the first
deterministic constant approximation algorithm for this problem
and show, using extensive simulations and realistic data center
and network topology, that our algorithm provides practically
good placement decisions.

I. INTRODUCTION

Data centers and cloud services are continuing to grow
rapidly, with ever more functionality and ever more users
around the globe [1]. Because of this growth, major cloud
service providers now use tens of geographically dispersed
data centers, and they keep on building more. These data
centers are becoming the hosting platform for a wide spectrum
of composite applications. Companies such as eBay, Facebook,
Google, Microsoft, and Yahoo! are reported to have made large
investments in building massive data centers supporting cloud
services. In particular, there is an increasing trend towards
more communication intensive applications in data centers,
and thus bandwidth usage is rapidly growing both inside and
between data centers [2].

Replica placement across data centers is a very common ap-
proach for improving performance and availability of content
services. Content replication algorithms deploy a set of servers,
distributed throughout the data center’s network, and replicate
the relevant data across these servers. Both the time required
to access the data and the traffic in the network are reduced
by redirecting the application’s requests to a nearby replica.
The deployment of multiple replica servers also achieves
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content servers’ redundancy and improves the availability of
the system. In the past, replica placement algorithms were
mainly considered in the context of web pages and CDNs
(Content Distribution Networks) [20], [21], [3].

One can divide the research problems associated with
replica placement across data centers into the how, what and
where aspects. How to direct the client’s requests to the proper
replica server having the desired content (the request routing
system), what content should be distributed to the replica
servers across the network (the content selection aspect) and
where to place the replica servers throughout the network
while keeping them up to date.

In this work, we consider the problem of placing replicas
of an object at multiple locations in the network. Consider
an email application which depends on an authentication
service. We focus on the problem of placing replicas of an
object (e.g., the authentication service) at multiple locations.
Replica placement deals with the actual number and network
location of the replicas. Clearly, we would like to minimize
the network distance between an email application and the
closest replica containing the desired content (in this example
the authentication server) and thus having more replicas helps.
On the other hand, having more replicas is more expensive so
we need to model the cost and the benefit in a way that can
allow to make the appropriate decisions regarding the number
and the network locations of the replicas. This problem is
strongly related to a family of optimization problems generally
referred to as facility location problems [14].

Most of the existing algorithms neglect the cost of keeping
the replicas across the network up to date, and in cases
where this cost is non-neglectable this may lead to suboptimal
realistic solutions. A replica must be synchronized with the
original content server in order to supply reliable and precise
service to the client requests. The amount of synchronization
traffic across the network depends on the number of replicas
deployed in the network, the topology of the distributed update
and the rate of updates in the content of the server.

Our work considers a network design problem that com-
bines a facility location and connectivity problem. In a vig-
orous content world of dynamic and interactive services, the
replica’s content must be synchronized and up to date, and
the update process of the replica hosting servers may be a
significant factor of the network traffic load. We assume that
the hosting servers are updated simultaneously using multicast
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over a minimal Steiner tree, in such a case the update cost is
the update rate multiply by the tree cost. The problem is to
choose the best locations for the replicas (or hosting servers)
among the potential sites. We model the scenario above as a
Soft-Capacitated Connected Facility Location Problem which
is NP-Hard in the general case. We assume that each client
uses a single replica (of course, multiple clients can use
the same replica). In other words, a client gets all of its
content from the same replica. In this paper, we present a
deterministic constant approximation algorithm to the soft
capacitated connected facility location problem. To the best of
our knowledge, this work is the first to present a deterministic
constant approximation algorithm for this problem.

We evaluate the performance of our proposed algorithm
through extensive simulation experiments using a realistic data
center network topology. We compare our scheme to existing
alternatives (a greedy algorithm and a local-search facility
location algorithm), on publicly available data regarding the
Google data center network. The results indicate that our
new algorithm preforms better than the currently available
algorithms, and this improvement can be significant at certain
settings.

The rest of the paper is organized as follows: In Section 2
we survey previous work. In Section 3 we present the problem
formulation and the necessary definitions and notations. In
Section 4 we present our deterministic constant approximation
algorithm for the soft capacitated connected facility location
problem and in Section 5 we evaluate the performance of
this algorithm through extensive simulation experiments on
realistic scenarios.

II. RELATED WORK

One of the most popular services that can be offered through
the Cloud is Software as a Service or SaaS [10]. A SaaS de-
ployed in a Cloud is usually composed of several components,
where each of the components represents a business function
of the SaaS that is being delivered [11]. The problem of
placing the components of a SaaS and their related data in the
Cloud is referred to as SaaS Placement Problem (SPP). Kwok
and Mohindra [12] consider a placement problem for SaaS
components in a multi-tenant architecture. The placement of
the components is made within a set of available servers, and
the main objective is to optimize the resource usage in each
server. Although concerned with SaaS placement, that work
is more focused on the multi-tenant resource model and does
not take into consideration the SaaS’s data placement in the
network. Yusoh and Maolin [13] investigate the placement of
applications and their related data within cloud environments.
A penalty based genetic algorithm is proposed as a solution
to the placement problem. The solution aims at placing the
processing algorithm on a compute node that has a better
bandwidth value with respect to the storage node.

In this work we consider a network design problem that
combines both facility location and connectivity problems.
The Connected Facility Location Problem has a wide range of
applications and has recently received considerable attention

both in the theoretical computer science literature and in the
operations research literature.

Karger and Minkoff [5] introduced the so-called maybecast
problem which is a probabilistic version of the Steiner tree
problem. The name connected facility location has been in-
troduced by Gupta et al. [7] in their work on virtual private
networks. They prooved ConFL is NP-hard and improved the
previous result by introducing a 10.66 factor approximation
algorithm. Their algorithm was based on a linear programming
(LP) rounding technique. Since then several authors proposed
approximation algorithms for diverse variants of ConFL. Re-
cently, Eisenbrand et al. [8] combined approximation algo-
rithms for the basic facility location problem and the connec-
tivity problem of the opened facilities by running a randomized
approximation algorithm with an expected approximation ratio
of 4 for ConFL.

The capacitated facility location problem and variations of it
have been well-studied in the literature [14] [15] [16]. Leitner
and Raidl [17] introduced the first variant of capacitated
connected facility location problem. The authors considered a
connected facility location problem where only clients which
are reasonable from an economic point of view need to be
served (prize collecting variant) with capacity constraints on
possible facilities (PCConFL). They presented two Variable
Neighborhood Search (VNS) approaches for a variant of PC-
ConFL without assignment and opening costs. Subsequently,
the same authors [18] [19] proposed a Lagrangian relaxation
based approach which has been hybridized with local search
and very large scale neighborhood search as well as two mixed
integer programming models based on multi-commodity flows.

Recently, Eisenbrand et al. [9] presented the connected soft-
capacitated facility location problem (soft-ConFL). Using the
same techniques as in [8], the authors gave a randomized
approximation algorithm with an expected approximation ratio
of 6.27. In this paper we provide a deterministic algorithm
for this problem with a guaranteed approximation ratio, to the
best of our knowledge, this work is the first such deterministic
algorithm for this problem. Moreover, we show that unlike the
somewhat complex theoretical nature of [9], our approach is
very practical and can be easily implemented on realistic data.

III. PROBLEM MODEL

In this section we describe the Soft-Capacitated Connected
Facility Location Problem, introduce several notations and
definitions that are useful for the analysis of our problem, and
define the r-gathering problem which will be used to prove
our main result.

We are given an undirected graph G = (V,E) with non-
negative symmetric costs ci,j (i, j ∈ V ) on the edges. Let
F ⊆ V be a set of locations where facilities may be placed
and C ⊆ V be a set of demand nodes or clients that must
be assigned to an open facility. Client j ∈ C requires a non
negative dj units of demand, and facility i ∈ F has a non
negative opening cost fi and can serve at most ui units of
demand. We focus on the soft capacitated problem in which
multiple facilities can be built at a single location. The goal is
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to find a set S ⊆ F of open facilities, a feasible assignment σ :
C → S of clients in C to open facilities in S and a connected
subgraph R = (VR, ER) spanning S, so as to minimize the
total cost:

Cost (S, σ, R) = M · ST (R) + T (σ) + Cf (S)

where:
1) M is a rate update parameter,
2) ST (R) =

∑
i,j∈ER

ci,j is the edge cost of the graph R1,

3) T (σ) =
∑

j∈C

dj · cj,σ(j) is the cost of serving each client

j from its assigned open facility i ∈ S, and
4) Cf (S) =

∑
i∈S

yi · fi is the opening cost of the facilities,

where yi the number of facilities opened at location i ∈
S.

The capacity constraint implies that
∑

j∈C|σ(j)=i

dj ≤ ui · yi

for each i. Note that in the text we abuse notations and use
the term facility fi to describe the set of facilities opened in
location i.

Informally, we aims at reducing the total cost which contains
the update cost, the cost of opening facilities, and the cost of
serving data from the open facilities. Note that like in real
life, the model allow each facility (server) to serve only a
fixed number ui of clients.

We start with introducing several notations and definitions
that are useful for the analysis. Given a set S ⊆ F of open
facilities and an assignment σ:

• Li(σ) is the set of clients assigned to facility i ∈ S under
assignment σ:

Li(σ) = {j ∈ C|σ(j) = i}.
• Di(σ) is the total amount of demand assigned to facility

i ∈ S under assignment σ:
Di(σ) =

∑
j∈Li(σ)

dj .

• D is the total demand of clients in the network:
D =

∑
j∈C

dj .

We say that σ is λ-loaded if it satisfies:

Di(σ) ≥ λ for all i ∈ S.

The λ-loaded facility location problem is a special type of
the demand-weighted facility location problems in which we
require that each facility will be assigned at least λ units of
demand. This variant captures the idea that opening a facility
is economically justified only when it serves at least a certain
amount of demand (and this constraint may even be more
natural than facility costs in some settings). This problem was
introduced simultaneously by Karger and Minkoff [5] and by
Guha et al. [4]. Both papers presented a ( 1+α

1−αβ, α) bicriteria
approximation, for any α < 1, where β is the approximation-
ratio of the metric facility location problem. Throughout the
analysis of our problem, we use their bicriteria approximation.

1The minimum cost connected subgraph spanning S is a minimum Steiner
tree.

Note that despite using this bicriteria approximation algorithm,
we present a deterministic constant approximation to the
problem.

IV. A CONSTANT APPROXIMATION ALGORITHM

In this section we present our deterministic constant approx-
imation algorithm for the soft capacitated connected facility
location problem. Basically, it is an algorithm with a guaran-
teed performance which is not too far from the best possible
solution for the problem. In the next section we show that
the actual performance of this algorithm over realistic data is
indeed better that existing algorithms.

Throughout this section we assume that the total demand of
clients is larger than the update rate parameter:

M ≤ D.

If this is not the case, the optimal solution is trivial: Open only
one facility (with minimum cost for satisfying total clients
demands). It is straight forward to show that this yields a 2
approximation algorithm.

A. Soft-ConFL Algorithm

In this section, we present the Soft-ConFL algorithm. Given
any ρ-approximation algorithm for the uncapacitated facility
location problem and any ϕ-approximation algorithm for the
minimum Steiner tree problem, our Soft-ConFL algorithm
yields a (24ρ + 2ϕ + 48ρϕ)-approximation algorithm for the
soft capacitated connected facility location problem.

Given an original soft capacitated connected facility location
problem, we construct a related facility location problem by
modifying both the opening cost of facilities and the distance
function. First, we add a cost λi to each facility i ∈ F . This
cost is defined as twice the minimum cost of satisfying M
units of demand from facility i. More formally, let j1, j2, · · · jn

be the clients, ordered in increasing distance from facility i.
Let k be the minimum number such that

dj1 + dj2 + · · ·+ djk
≥M .

For simplicity let us assume this sum is exactly equal to M
(we can always split client k into two smaller demands). The
opening cost of facility i is set to f ′i = fi + λi, where λi is
defined to be

λi = 2(cij1dj1 + cij2dj2 + · · ·+ cijk
djk

).

Second, We modify the distance function to be:

c′i,j = ci,j + max(
f ′i
ui

,
f ′j
uj

),

where for any i /∈ F , we set
fi

ui
to be 0.

Now we run any given ρ-approximation algorithm for the
uncapacitated facility location problem on the modified prob-
lem. We modify the output of this approximation algorithm
by closing any facility with Di(σ) ≤ M

2 and assigning every
client to the nearest open facility (this may require opening ad-
ditional copies in this site). We run any given ϕ-approximation
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algorithm for the minimum Steiner tree problem on the set of
opened facilities S, and this is the output of the Soft-ConFL
algorithm.

Our main result is the following theorem that states that
Soft-ConFL Algorithm indeed yields a constant approximation
solutions.

Theorem 1 Given a ρ-approximation algorithm for the un-
capacitated facility location problem and a ϕ-approximation
algorithm for the minimum Steiner tree problem, one can find
a solution to the soft capacitated connected facility location
problem, with a cost of at most (24ρ + 2ϕ + 48ρϕ) times the
optimum cost.

In order to prove the theorem we prove the following four
lemmas. The first lemma is a technical lemma stating that any
solution can be converted into an M-loaded solution without
increasing the cost too much.

Lemma 1 For any given feasible solution to the soft ca-
pacitated connected facility location problem with update
parameter M ≥ D SOL = (S, σ, R), one can find a feasible
M − loaded solution, SOL′ = (S′, σ′, R′), such that

Cost(SOL′) ≤ 4 · Cost(SOL).

Proof

We are given a feasible solution to the soft capacitated
connected facility location problem SOL = (S, σ, R) with
update parameter M ≥ D. We can assume that R = {VR, ER}
is a tree, otherwise one can find a lower cost sub-tree (with
no cycles) of R which spans VR. The following procedure
iteratively converts the solution SOL into an M − loaded
solution SOL′.

Throughout the execution of the procedure, we differentiate
between two types of facilities: M-loaded facilities which are
open and have at least M units of demand assigned to them,
and Unloaded facilities which are open but have less than M
units of demand assigned to them. SM−loaded will denote the
set of opened facilities which are M-loaded for the current
solution; that is,

SM−loaded = {i ∈ S;Di(σ) ≥M}.

We also differentiate between two types of clients: Co-op
clients which are assigned to M-loaded facilities and Free
clients which are assigned to Unloaded facilities. We define
TotalFree(n, σ) to be the total demand assigned to unloaded
facilities under assignment σ in sub-tree n; that is,

TotalFree(n, σ) =
∑

i∈n∩SM−loaded

Di.

Claim: Given a tree rooted at n with M ≤
TotalFree(n, σ), one can find a sub-tree n′ of n with
M ≤ TotalFree(n′, σ) ≤ 3M , such that n′ has no subtree
with M or more free demand.

The proof of the Claim is omitted due to lack of
space, it can be found in [22]. The main procedure,
FindMLoadedSolution(S, σ, R) is described below. It gets

as an input a feasible solution SOL = (S, σ, R) to the
soft capacitated connected facility and returns an M-loaded
solution. As mentioned before, we assume M ≤ D, otherwise
there exist no feasible M-loaded solution. The procedure first
convert R into a binary tree rooted at r (the general tree is
converted into a binary tree by introducing dummy nodes).
We set S′ to hold the set of opened M-loaded facilities.
Throughout the execution we add new M-loaded facilities to
S′. In each iteration of the algorithm we look for a sub-tree
with M ≤ TotalFree(n′, σ) ≤ 3M , according to our claim.

Algorithm IV.1: FINDMLOADEDSOLUTION(S, σ, R)

comment: Returns an M-loaded solution

T ← Binary spanning tree of R rooted at r
S′ ← SM−loaded

σ ← σ′

while FINDMINIMALFREETREE(r, σ′) 6= NULL

do



n← FINDMINIMALFREETREE(r, σ′)
l← the minimal cost facility in n which is not
Mloaded
S′ = S′ ∪ l
assign free demands to l
update σ′ with the new assignment

assign remaining free demands to the minimal cost
facility in S′

return (S′, σ′, R′)

The algorithm iteratively converts any given solution into
an M-loaded solution without increasing the total cost by
more than a factor of four. Throughout the execution of the
algorithm, it maintains a feasible solution where the demand
is assigned to open facilities. The following properties hold:

(P1) ST (R′) ≤ ST (R)
(P2) Cf (S′) ≤ Cf (S)
(P3) T (σ′) ≤ T (σ) + 3M · ST (R)
These properties certainly hold when the algorithm starts.

Furthermore, the fact that they hold when the algorithm stops,
proves Lemma 1. Property (P1) clearly holds since S′ ⊆ S.
Property (P2) is maintained by the algorithm in each iteration,
since we assign clients’ demand to the minimal cost facility in
each subtree. To show that property (P3) is maintained, first
observe that in each iterations any M-loaded subtree (with
no free demands) has no change in its facilities’ assignments.
Each iteration reassign free demand units to an open facility
which is not M-loaded or part of an M-loaded subtree. Thus,
the procedure will modify any subtree at most one time.
Second, in each iteration (including the final iteration) we
reassign maximum 3M demand units in subtree n therefore,
we increase the cost of assigning each client by at most 3M
times the cost of subtree n. Since we modify each subtree
only once, we increase the total assignment cost by at most
3M · ST (R). �

The second lemma is used to show that the Soft-ConFL
Algorithm yields a constant approximation M

2 -loaded solution
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using any ρ-approximation algorithm for the uncapacitated
facility location problem.

Lemma 2 Given a ρ-approximation algorithm for the unca-
pacitated facility location problem and and a parameter λ,

one can find a
λ

2
− loaded solution of cost at most 3ρ times

the optimum λ− loaded facility location cost.

The proof is omitted due to lack of space, it can be found
in [22]. The next lemma is used to show that the cost of
connecting a set of facilities which are M -loaded is bounded.

Lemma 3 Let SOL′ = (S′, σ′, R′) be any solution for the
soft capacitated connected facility location problem and let
SOL = (S, σ, R) be any λ− loaded solution, then

ST (R) ≤ 1
λ

(T (σ) + T (σ′)) + ST (R′).

Proof

The proof of this lemma is quite simple. We show that for
each facility i in S we can find a path of cost pi to a facility
in S′, such that: ∑

i∈S

pi ≤
1
λ

(T (σ) + T (σ′)).

We choose pi to be

pi = minj∈Li(σ)(ci,j + cj,σ′(j)).

By definition:

T (σ) =
∑
i∈S

∑
j∈Li(σ)

dj · ci,j

and

T (σ′) =
∑

j∈C

dj · cj,σ′(j) =
∑
i∈S

∑
j∈Li(σ)

dj · cj,σ′(j)

Therefore

T (σ) + T (σ′) =
∑
i∈S

∑
j∈Li(σ)

dj · (ci,j + cj,σ′(j)) ≥∑
i∈S

∑
j∈Li(σ)

dj · pi

since SOL is λ− loaded, we have

T (σ) + T (σ′) ≥
∑
i∈S

λ · pi

⇓∑
i∈S

pi ≤
1
λ

(T (σ) + T (σ′))

The union of the Steiner tree which spans S′ and all paths
between S to S′ spans S. Thus:

ST (R′) +
∑
i∈S

pi ≥ ST (R)

⇓
ST (R′) +

1
λ

(T (σ) + T (σ′)) ≥ ST (R)

�
The last lemma is used to show that Soft-ConFL Algorithm

yields a soft-capacitated solution with constant approximation.

Lemma 4 Given a ρ-approximation algorithm for the λ −
loaded uncapacitated facility location problem, one can get a
2ρ-approximation for the λ− loaded soft capacitated facility
location version.

Proof

Given an instance I of the λ− loaded soft capacitated facility
location, we construct an instance I ′ of the λ − loaded
uncapacitated facility location with the following modified
distance function

c′i,j = ci,j + max(
fi

ui
,
fj

uj
),

where for any i /∈ F , we set
fi

ui
to be 0. It can be easily

verified that the modified distance function satisfy the metric
conditions. The facility costs and client demands in the new
instance are the same as the facility costs fi and client
demands dj in the soft capacitated instance.

First we show that given a solution SOL = (S, σ) to I with
assignment cost T (σ) and facility cost Cf (S), there exist a
solution for I ′ with an assignment cost of at most T (σ) +
Cf (S) and a facility cost of at most Cf (S). Let yi be the
number of facilities built at i in SOL. Let xi,j be an indicator
variable that is 1 iff client j is assigned to facility i under
assignment σ. T (σ) =

∑
i,j

xi,j ·ci,j ·dj and Cf (S) =
∑
i

yi ·fi.

The capacity constraint implies that
∑
j

xi,j · dj ≤ ui · yi. We

construct a feasible solution SOL′ = (S′, σ′) of I ′ as follows:
The assignments of nodes to facilities is the same as in σ
(which assures that it would satisfy the λ− loaded condition).
A facility is built at i iff at least one facility is built at i in
S. Clearly the opening cost of the facilities Cf (S′) is at most
Cf (S) and the assignment cost T (S′)∑

i,j

xi,jdjc
′
i,j =

∑
i,j

xi,jdj(ci,j +
fi

ui
) =

=
∑
i,j

xi,jdjci,j +
∑
i

fi

∑
j

xi,jdj

ui
≤

≤
∑
i,j

xi,jdjci,j +
∑
i

fiyi

= T (σ) + Cf (S).

Note that this implies that OPT (I ′) ≤ 2 ·OPT (I).
Second we show that given a feasible solution SOL′ =

(S′, σ′) to I ′, there exists a feasible solution SOL = (S, σ) to
I such that cost(SOL) ≤ cost(SOL′). Let Yi be an indicator
variable that is 1 iff a facility is built at i in SOL′. Let xi,j be
an indicator variable that is 1 iff client j is assigned to facility
i in SOL′. The solution SOL for instance I is obtained as
follows: The assignments of nodes to facilities is the same
as in σ′ (which assures that it would satisfy the λ − loaded
condition). The number of facilities built at i is

yi = d

∑
j

xi,j · dj

ui
e.
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Thus, yi ≤

∑
j

xi,j · dj

ui
+ Yi. The cost of SOL′ is

∑
i,j

xi,jdjc
′
i,j +

∑
i

fiYi =
∑
i,j

xi,jdj(ci,j +
fi

ui
) +

∑
i

fiYi

=
∑
i,j

xi,jdjci,j +
∑
i

fi(

∑
j

xi,j · dj

ui
+ Yi)

≥
∑
i,j

xi,jdjci,j +
∑
i

fiyi = cost(SOL).

Since we have a ρ approximation algorithm for the λ− loaded
uncapacitated facility location problem, we can obtain a so-
lution for I ′ with a cost of at most ρ · OPT (I ′), and since
we proved OPT (I ′) ≤ 2 · OPT (I) we get ρOPT (I ′) ≤
2ρOPT (I). Now, we can obtain a solution to I of cost at most
2ρOPT (I), yielding a 2ρ approximation for the λ − loaded
soft capacitated facility location problem. �

Proof of Theorem 1

Let SOL∗ = (S∗, σ∗, R∗) be the optimal solution of the
soft capacitated connected facility location problem. Lemma
1 implies that there exists a M -loaded solution SOL′ =
(S′, σ′, R′) such that:

Cost(SOL′) ≤ 4 · Cost(SOL∗).

Let ŜOL = (Ŝ, σ̂, R̂) be the optimal solution of the equiv-
alent M − loaded soft capacitated facility location problem
which minimizes the total assignment cost and opening cost
of facilities. Since ŜOL is optimal solution of all feasible
M − loaded solution (including SOL′) we get:

T (σ̂) + Cf (Ŝ) ≤ T (σ′) + Cf (S′) ≤ Cost(SOL′) ≤
4 · Cost(SOL∗).

By Lemma 2 and Lemma 4 we get that given a ρ −
approximation algorithm for the uncapacitated facility lo-

cation problem we can find a
M

2
− loaded solution SOL =

(S, σ, R) that satisfies:

T (σ) + Cf (S) ≤ 6ρ(T (σ̂) + Cf (Ŝ)) ≤ 24ρ(Cost(SOL∗)).

By Lemma 3 and since SOL is a
M

2
− loaded solution, we

get:

ST (R) ≤ 2
M

(T (σ) + T (sigma∗)) + ST (R∗)
⇓

M · ST (R) ≤ 2(T (σ) + T (σ∗)) + M · ST (R∗) ≤
2 · Cost(SOL∗) + 2 · T (σ) ≤ (2 + 48ρ)Cost(SOL∗)

Since the Minimum Steiner Tree Problem is APX-complete
(Bern and Plassmann [3]), we use a ϕ − approximation
algorithm (Robins and Zelikovsky [4]), thus:

M · ST (R) ≤ (2 + 48ρ)ϕ · Cost(S∗)

Combining the above, we obtain the following inequality:

Cost(SOL) = T (σ) + Cf (S) + M · ST (R) ≤
(24ρ + 2ϕ + 48ρϕ)Cost(SOL∗),

Fig. 1. Google data centers world wide

which proves Theorem 1. �

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our algo-
rithm through extensive simulation experiments on realistic
scenarios. Unless stated otherwise, we assume unified demand
for each node and unified cost for each data center. In our
simulations, we assume that the network distances between
the data centers are relative to the geographic distance between
them.

Google’s data infrastructure is massive and spread across the
world, according to Data Center Knowledge (DCK) in 2008,
there were 36 data centers all together2 (see Figure 1) - 19 in
the U.S., 12 in Europe, 3 in Asia, one in Russia, and one in
South America3. Not all of the locations are dedicated Google
data centers, since it is claimed that they sometimes lease space
in other companies’ data centers4. In our simulations we used
the map of locations which was constructed by Pingdom and
Data Center Knowledge.

In order to evaluate the performance of the Soft-ConFL Al-
gorithm we compared our results to two alternative algorithms:

• Greedy Algorithm: Iteratively the algorithm picks one
facility fi which minimizes the total cost and add it to
set S. During the iterations, the algorithm holds the set
with the minimum cost and returns it.

• Soft Capacitated Facility Location Algorithm (Soft-
FLP): A local search iterative heuristic which starts with
any feasible solution, and improves the quality of the
solution iteratively. At each step, it considers only local
operations to improve the cost of the solution. A solution
is called a local minima if there is no local operations
which improves the cost. The local search procedure that
we consider permits adding, dropping and swapping a
facility. Arya et al. [15] showed that such a procedure
gives a 3 approximation algorithm in the case where
update costs are not considered.

For a proper comparison of our algorithm performance, we
have used the same local search algorithm from [15] as the
uncapacitated facility location algorithm which is used in Soft-
ConFL.

2http://techcrunch.com/2008/04/11/where-are-all-the-google-data-centers/
3http://www.datacenterknowledge.com/archives/2008/03/27/google-data-

center-faq/
4http://royal.pingdom.com/2008/04/11/map-of-all-google-data-center-

locations/
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Fig. 2. Soft-ConFL algorithm vs. Greedy algorithm and Soft-FLP (facility
cost of 5,000)

Figure 2 depicts the results of the Soft-ConFL algorithm,
the Greedy algorithm and the Soft-FLP. We set a unified
cost of 5,000 units for each location. Note that our cost
function combines facility and network cost and the total cost
of the minimum spanning tree of the data centers network
is 22,000 units. We compared the algorithm performance at
different update rates. The update rate variable is presented
as percentage of the total demand5. One can observe that
the higher the update rate, the performance of the Soft-FLP
algorithm is worse, because it ignores the update cost of the
facilities. The greedy algorithm yields inferior results for low
update rates (< 6%) because it opens a large set of facilities.
However, for larger update rates (> 7%) where it opens a small
set of facilities it yields the same results as Soft-ConFL. Note
that update rate of 6.4% is a turning point where the three
algorithm yield similar results, the greedy and Soft-ConFL
unify, and Soft-FLP starts to yields significant inferior results.

Figure 3 is similar to Figure 2 but the unified facility cost
was set to a lower value of 3,000. As in the previous case, the
local search algorithm (dashed line), which neglects the cost of
keeping the replicas across the network up to date, yields sub-
optimal results. We can see that the algorithms that considers
this factor (the greedy algorithm and Soft-ConFL) can lead to
better solutions. Note that for low update rates (< 3.5%) both
the greedy algorithm and Soft-ConFL yield the same results,
for a certain range of update rates (3.5% < M < 7.5%) the
Soft-ConFL yields better results and for higher update rates
the graphs of both algorithm reunites.

The Soft-FLP algorithm yields suboptimal results for high
update rates, thus in Figure 4 we focus on comparing the
greedy algorithm and Soft-ConFL. We present two experi-
ments with different facility costs (5,000 and 10,000). Note
that in both cases we get almost identical pattern where the
Soft-ConFL yields better results for lower update rates and for
higher update rates they yield identical result. Interestingly
Soft-ConFL yields better results for 9% < M < 12% and
facility cost of 5,000.

To get a better understanding of the impact of the facility
opening cost, we evaluated the performance of the algorithm

5Note that the demand in our problem is in fact demand per time unit, and
the ratio is a dimensionless quantity.

Fig. 3. Soft-ConFL algorithm vs. Greedy algorithm and Soft-FLP (facility
cost of 3,000)

Fig. 4. Soft-ConFL algorithm vs. Greedy algorithm (facility cost of 5,000
and 10,000)

with different facility opening costs (1,000-25,000 units of cost
per facility). Figure 5 depicts the total cost of the Soft-ConFL
algorithm and the Greedy algorithm as a function of facility
opening cost. We compared the algorithm performance at dif-
ferent update rate variables which are presented as percentage
of the total demand (1%− 4%). The greedy algorithm yields
inferior results which cost up to 7% more than the Soft-ConFL
Algorithm for all range of facility opening cost.

In Figure 6, we study in more details the results of Soft-
ConFL for different update rates. As expected, the higher
the cost to update the facilities the less facilities have been
chosen (Starting with 10 facilities for 2.8% and ending with
3 facilities for 13.9%). Note that the decrease in the set of

Fig. 5. Total Cost as a function of Facility Opening Cost
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Fig. 6. Soft-ConFL results for different update rates (facility cost of 1,000)

opened facilities was not done by picking a subset of an
existing set, but the algorithm introduced new facilities and
closed existing facilities. Some interesting facilities are: the
Mountain View facility that was chosen in any iteration, the
Lenoir facility that was chosen at the first iteration (2.8%), was
not chosen in the second iteration but was re-chosen again in
the other iterations and the Frankfurt facility that was added
to the open facility sets only from the third (8.3%) iteration.

VI. CONCLUSION

In this paper we studied optimal placement of of ap-
plications and their data over available cloud infrastructure
where the data update cost is also considered. This is an
important aspect of cloud management and one of the enabling
factors that allows providing global service at a low cost.
We presented the first deterministic constant approximation
algorithm for the problem, and showed that in addition to
a guarantee bound on the worst case performance of the
algorithm, it also performs better than any exiting algorithm
over a large set of realistic cloud data. Our new algorithm is
robust and performs well in various scenarios. The main reason
behind this is that unlike the Greedy approach, our algorithm
can select completely different locations for the data when the
parameters (for example the update rate) change.

Future research in this field may consider hard capacity
constraints where a facility can be opened at most once in
each location.Another important aspect is the online version
in which data can be moved and the number of replicas can
be dynamically adjusted according to the actual update rate or
changes in the demand for the service.
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