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Abstract—A Service Level Agreement (SLA) is a contract
between a customer and a Network Service Provider (NSP)
defining services to one or more destinations at a given Quality of
Service (QoS). Once committed, the SLA can be violated without
the customer being able to predict that.

We focus on offer selection mechanisms according to QoS
and taking into account past SLAs’ violations. We propose an
algorithm, using a minimizing-regret technique, which provides
an estimation of the reliability of given NSPs to the customer.
Our approach only requires an end-to-end monitoring tool for
used paths and depends on the customer’s history.

I. INTRODUCTION

In the Internet network, more and more applications and
services require some level of Quality of Service (QoS). We
focus on a customer requiring access to a destination prefix
with QoS guarantees. The customer has to choose among
several contract offers proposed by his neighboring Network
Service Providers (NSPs). The Service Level Agreement (SLA)
is a contract which specifies the required QoS guarantees and
charging conditions between a provider and a customer. The
customer is not necessarily an end-user and may be an Internet
Access, a provider, an NSP, an enterprise etc. Once the customer
has selected an offer, an SLA is established between the chosen
NSP and the customer.

We focus on the customer’s offer selection according to
QoS and taking into account the violation of the constraints
encountered in the past with an NSP. The objective of the
customer is to learn the reliability of given NSPs in order to
establish an SLA having a low probability of being violated.
Whoever the customer is (an end-user, a provider, an NSP,
an enterprise etc.), this objective still holds. For instance, the
endusers’ satisfaction strongly relates to destination availability;
the interest of a provider is to ensure the reliability of the path
he will propose in his own offers.

The customer has to choose an offer having satisfying QoS as
well as a competitive price. If the offered QoS and the price are
the only parameters affecting the customer’s payoff, this choice
is simple and corresponds to the offer maximizing a trade-off
QoS/price. However, the customer’s payoff does not depend
only on these two parameters. Indeed, once the customer has
chosen an NSP’s offer and established an SLA with him, the
latter could be violated and the customer unsatisfied. In this
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context, the choice is more complex than one may think. In
order to make a good choice, the customer must be able to
estimate the reliability of NSPs. For that purpose, the customer
learns from past SLAs’ failures using a learning algorithm.

Nevertheless NSPs are competing with each other; their
common goal is to be selected by the customer. The complexity
of the NSP’s choice lies in the fact that the NSP has to make
an offer which is competitive with those of the other NSPs
without any knowledge of the said offers. Otherwise the NSP is
not selected and does not gain anything. Furthermore, the NSP
needs to manage its remaining capacity because it affects its
failure rate. The NSPs’ behavior generated by this competition
has an impact on the customer’s behavior.

The SLA negotiation problem is described in Section II.
The next section details the Multi-Armed Bandit problem and
the algorithm used by the customer. Section IV presents the
NSPs’ selection algorithms for the offers. Finally, in Section V,
the results of simulation performed on a network example are
discussed.

II. SLA FAILURE DETECTION MODEL

In the model described below, we focus on one customer
connected to the Internet through n Network Service Providers.
This system is illustrated by Figure 1, the customer is linked
to three NSPs, NSP 1, NSP 2 and NSP 3.

The customer request is defined by QoS requirements, a
duration and a destination prefix. The customer makes such
a request to his neighboring NSPs. In return, the NSPs make
their own QoS offers with a price depending on their current
states (i.e. of their resources, of their targeted market, etc. any
indicator qualifying the request value). Note that, we do not
address the bandwidth reservation problem [1], [2], we consider
that each NSP has a fixed initial capacity which decreases
during the establishment of an SLA. Hence, in our modeling,
the state of an NSP is based on its remaining capacity, such as
defined in [3].

Each of those NSPs has one or more disjointed path to the
destination which may have different specifications such as QoS
and violation rates. Furthermore, each NSP has a set of internal
paths that meet QoS capabilities vectors. The offer made to the
customer is the combination of the set of paths and all internal
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available QoS capabilities. NSPs are allowed not making any
offer because they cannot reach the prefix through their own
connection, or not at the requested QoS. We assume that they
do not motivate their absence of offer proposal.

The customer’s goal is to select an offer, and so an NSP, with
a good trade-off QoS/price defined as his payoff. The customer
chooses an offer among the ones proposed by his neighboring
NSPs granting him a good payoff and establishes an SLA for
the requested duration.

‘491‘ a1 1)
Targeted
Prefix

= 83‘% kl

Fig. 1. Example: A customer network is connected to 3 NSPs. Each NSP
4 has a defined set of QoS offers, Q, and a set of disjointed paths to reach
a targeted prefix, T1(%), When the customer sends a request denoted g., each
NSP k might make an offer proposal g at a price gg(.).

A. The SLA negotiation scenario

a) The customer request: The QoS request g, of customer
¢ is a triplet ¢. = (b, d., l.) which components are bandwidth
(be), delay (d.) and loss-rate (I.) required guarantees. Moreover,
request ¢, has a requested duration A, and a destination prefix.
The parameter A, corresponds to the duration of the SLA once
established.

Without a loss of generality, we consider that a customer is
linked to a unique type of request, different QoS values leading
to different customers. Thus a customer is characterized by his
QoS attributes.

b) NSPs answer: Each NSP k chooses an internal path
and a QoS capability from its set of QoS capabilities Q.
Furthermore, NSP k£ make an offer to the customer by choosing
QoS capability in a set @}, C Qj which satisfy the customer’s
requested QoS guarantees. Section IV discusses the algorithms
to determine such policies.
An offer is composed by a supported QoS capability g €
Q> G = (bi, dg, i) for NSP k and a price gx(gx,?).
The equation (1) is an example of a cost function for the
NSP’s offer price. As with all cost functions used in this

model, the price of the QoS offer is calculated from the ratio
bandwidth

delay x loss-rate
applying it. With the bandwidth being a capacity per time,
the delay a time unit, and the loss-rate without unit, this ratio
provides an estimate of the capacity needed. The cost function
of the customer, the NSPs and also the NSPs’ external paths
are made from this function model.

multiplied by the price bound of the one

The price gi(qx,%) calculated from the QoS capability g
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and the path ¢ associated with this QoS capability.

+ 9 (ar) (1)

9k (qr,1) = pr X

k
l - dy
where py, is the NSP margin and g; (g ) the cost function of path
1 for QoS gi. The offered price depends on the cost function
of path ¢ which is g;(qx) = p; X lki’“dk with p; being the cost
of the path. This takes into account the price that the NSP has
to pay in order to reserve path ¢ for requested QoS gy.

If the customer accepts the NSP’s offer then path ¢ is
reserved and the capacity of the NSP is decremented by b,
the bandwidth offered. Every time a customer sends a request,
each neighboring NSP could make him an offer according to the
algorithm mentioned above. In case the QoS bandwidth asked
by the customer exceeds the NSP’s capacity, it does not make
an offer. This assumption implies that the NPSs cannot cheat
and propose an offer they are not able to satisfy.

c) The customer choice: If the NSPs do not make offers
that do not support the QoS required by the customer, in the
same way the customer does not accept an offer whose price
is higher than his budget. The budget is computed using the
customer c¢ price bound p. and the cost function g. applied to
the asked QoS ¢g.. An offer having a price higher than g.(q.)
is rejected. Considering the payoff of the customer for such an
offer it is equal to 0.

The customer chooses between the remaining offers and
perceive a reward. We define the customer’s reward as being
The customer’s reward measures his satisfaction and is defined
by :

1— 115 (BPek + Qck)
_ 453 c, e
rewe(k, gx) = { 0 in case of failure 2)
with PC = glgc(ql;c,z) for the pI‘lCG Qc = 1 (bk + lk + dk)

for the QoS and g € 0,1 the price sen51b1hty in the reward

The reward takes into account the ratio between the price of
the selected offer and the price the customer could afford to pay
for the QoS he asked represented by P, j, hence 0 < P, < 1.
The higher the price of the offer is, the more the ratio is close
to zero. On the contrary, the more the price is close to the price
bound of the customer, the more the ratio tends to 1. This ratio
P, is preceded by a factor 8 that gives more impact to the
QoS than the price in the reward.
The second ratio ). is a normalization of the sum of each
component, in the requested QoS and the offered QoS, ratios.
Each term ll:k’ L and d" equals 1 when the QoS offered is
the same than the QoS asked and is close to O when the QoS
offered is higher. Therefore 0 < Q. < 1, it tends to 0 when
the QoS offered is better than the asked one and to 1 in the
opposite case. This formula does not take only one aspect of
the offer into account, either a cheap price or a better QoS, but
a combination of both. Indeed a small price indicates a QoS
offer close to the request and vice versa, this reward provides
a balance between these two parameters.

We normalize the sum fSP., + Q. and obtain
ﬁ (BPek +Qcr) = 1 when the SLA offer is exactly
the same as the request and tend to O if better.
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B. The SLA failure

Our model focuses on the SLA error detection. The failure
of an SLA comes from either the NSP, based on its remaining
capacity, or the path selected. Failure based on path does not
depend on the NSP and has a fixed probability of failure. For
the failure rate based on remaining capacity, the failure rate
increases gradually as the NSP’s remaining capacity decreases.
This is due both by an overload on the equipments and by the
fact that in case of failure on an equipment less alternative paths
are available. We borrow from [3] a failure function, denoted
f(.), which depends on the NSP current capacity :

e 0% of the capacity : f =1

e 0% to 5% of the capacity : f = 0.95

e 5% to 10% of the capacity : f = 0.8

e 10% to 20% of the capacity : f = 0.6

e 20% to 30% of the capacity : f = 0.2

« more than 40% of the capacity: f = 0.01

We consider both cases, capacity and path violation or path
violation only. The customer’s goal is to maximize his average
payoff and learn the reliability of his NSPs in order to establish
an SLA having a low probability of being violated. For that
purpose we explore a minimizing regret algorithm.

III. CUSTOMER’S OFFER SELECTION ALGORITHM USING
PAST SLAS FAILURES

The Multi-Armed Bandit problem: The customer’s selection
problem could be seen as a Multi-Armed Bandit (MAB) prob-
lem. In a multi-armed bandit problem, at each decision epoch, a
player chooses one action (or arm), and receives a reward from
it. The reward is drawn from a fixed probability distribution
given the arm. We consider that an arm corresponds to one
NSP. Other approaches may be considered, such as an arm for
each offer of an NSP, nevertheless it would imply to know
each NSP’s set of offers. Therefore, we establish that an NSP
proposes only one offer to the customer at each time and this
NSP corresponds to one arm in the MAB problem.

We will make an assumption that the reward (payoff) cor-
responding to all SLAs of the NSP is drawn from a fixed
probability distribution. This assumption seems to be verified
by simulation results.

A. The Multi-Armed Bandit problem

In the MAB problem, a player faces K independent gambling
machines with an unknown stationary probability distribution
for reward. At each round, the player chooses one action, and
receives a reward from it. There are K arms and each arm ¢
has a probability distribution P; with the expected value p;. For
t=1,...,T, at round ¢, the player chooses an arm among the
set of arms {1, ..., K} from the past (actions and observations).
At the end of the T rounds, the player is evaluated in terms
of the difference between the mean reward of the optimal arm
and the mean reward. Precisely, this loss is due to the fact that
at each round the policy does not always select the optimal
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machine. The regret after 7" steps on K machines is :

K
Rr=p* xT = p; xT; 3)

j=1

where ;1* is the expected mean of the optimal machine, p; the
expectation of machine j and T} the number of times machine
j was played. The regret for a fixed policy is the expected loss
after a fixed number of rounds 7.

This type of problem symbolizes the dilemma between
exploration and exploitation. The player’s objective is to obtain
a maximum average cumulative gain. However, the player does
not know the probability distribution of machines, he estimates
their average reward. For this, the player needs to explore the
rewards of each machine to improve his estimation and select
the one that offers him a better average gain. The more the
phase of exploration is important, the more the regret of the
player increases. Furthermore, a bad estimation and thus the
choice of a bad machine to exploit leads to an increase of the
regret.

The so-called Upper Confidence Bound (UCB) policies were
shown to be asymptotically optimal. In particular, it is proven
in Lai and Robbins [4] that such a policy incurs a regret of
order O(logT), where T is the length of the time horizon.
For that purpose, UCB policies estimate the expectation of
each arm in a similar way to upper confidence bound, and the
exploration expands further the sequences with highest UCB
(See Algorithm 1).

Note that UCB policies are adapted for different types of
application. For example, solving distributed constraint opti-
mization problems using UCBs has been considered previously
in Ottens et al. [5] (the so-called DUCT). In Kocsis and
Szepesvari [6], where the resulting algorithm, UCT (UCB
applied to Trees), has been successfully applied to the large
scale tree search problem of computer-go, see Gelly et al. [7].

Algorithm 1 UCB
Require: K the number of machines , #; the average reward
of machine j, T} the number of time machine j was selected
Initialization: Explore each machine j and set 7
while ¢ <T do
for each machine j do

Set index; = < + le?t
end for
Select machine j that maximizes index;
end while
Theorem 3.1: [8] For all K > 1, if UCB is run on K

machines having arbitrary reward distributions P, ..., Px with
support in [0, 1], then its expected regret after any number T
of plays is at most

Y IZF

T <p*

7T2 K
+ (1 + 3> DA )
j=1
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where p1, ..., ux are the expected values of Py, ..., Px and

Aj=p" —
B. Adaptation to SLA failure detection model

In a MAB model of the problem, the customer is the player
and he faces the NSPs representing the machines. The NSPs
have a fixed number of offers with a fixed reward. However,
when establishing an SLA between the customer and an NSP
this one has a chance to fail. The failure modifying the reward
received by the customer, each NSP has an associated unknown
reward distribution. Moreover, when the customer chooses an
NSP, the remaining capacity of this NSP decreases and on the
contrary his failure rate grows. Then an NSP could have no
more sufficient remaining capacity to propose an offersatisfying
the customer. Hence, a notable difference with the assumptions
MAB algorithms rely on lies in the fact that, in our problem,
at each round, one or more machines may not be available. To
take into account this peculiarity, we first focused on the UCB
algorithm following the path of other authors [6], who used
to consider first UCB as a candidate algorithm for modifying
rather than more complex MAB algorithms.

We propose an adaptation of the definition of the regret to
this context. At each round ¢, j € X (¢) if machine j is available
otherwise j ¢ X (t). The regret after T' steps on K machines
is :

T K
Rp =Y max{u;:j€X(t)} =Y pu;xT Q)

t=1 j=1

The first proposed variation of the UCB algorithm is to sim-
ply select the first machine j such that j = argmax{index; :
1 < j < K} even if j is not available. We called this
algorithm the UCB-Adapted algorithm. Unfortunately, with this
adaptation of the algorithm, the UCB theorem on expected
regret is no longer appropriate.

In order to preserve the minimizing regret property we
modify the algorithm as follows (see Algorithm 2 for a formal
description). At round ¢, all machines in X (¢) are available. As
an UCB algorithm, the index of a machine j is calculated from
the estimated average reward of the machine, which is not time
dependent, and an exploration factor. This exploration factor
depends on the number of times the machine j was played
(T;) and the number of rounds when all machines in X (¢)
were played. By using } .. x Li instead of 7' for the actual
number of rounds, the index calculated is the same as if the
player was facing the X (¢) configuration of machines from the
beginning to the time T'x (1) = >_;c x(4) 13- Therefore, for each
subset X of [1, K], we are able to bound the expected regret
using the UCB theorem.

| X|
lnTX ’/T2
8‘2 A +<1+3> ZAj (6)
Ly <p* JjeX

where A; = max{p;:j € X} —p,; forall i e X.
Remark: To apply a MAB algorithm such as the UCB, the
NSPs must have arbitrary reward distributions with a support in
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Algorithm 2 UCB-Modified

Initialization: Explore each machine and observe the reward
while ¢ <T' do
for each machine j such that j € X (t) do

set index; = 2 + hn2iexwT Z}?J,X“)Ti

end for

select j s. t. j = argmax{index; : 1 < j < K} and
observe the reward

end while

[0, 1]. Since the NSPs’ offers received by the customer always
fits the required QoS but may have different prices or QoS
guarantees, the reward obtained by the customer needs to take
both of them into account. We normalize the sum 5P, + Q. «
in order to obtain the following property 0 < rew.(k,q;) < 1.

IV. NSP’s QOS OFFER ALGORITHM

We are interested in the behavior of the customer and in the
maximization of his accumulated gain. Nevertheless the way an
NSP selects an offer, to be proposed to the customer, among
its whole set of offer affects this one. We tested the behavior
of the customer when the NSPs use three different types of
algorithms. These types of algorithms are a naive heuristic, a
random selection and a learning algorithm.

We have, for NSP k, @, the set of QoS capabilities and Q;C,
such as Q;C C Qy, the set of QoS capabilities which satisfy
the customer’s requested QoS guarantees. When the customer
selects the offer k with path ¢ proposed by NSP k, this one
gets the reward

9r(qr, 1) — 9i(qr)
maxrGainy

rewy =

where maxGaing is the higher price of QoS capabilities in
Q. This reward function permits 0 < rewy < 1 which is
needed for the learning algorithms described above. If the NSP
is not selected by the customer or if there is a fail when the
SLA is established then its reward is rewy = 0

Naive heuristic : the ”Discounter”: The NSP computes the
price of all QoS capabilities in (). At each round he provides
the customer with the offer of cheaper price.

Random selection: The NSP selects an offer uniformly at
random in the set of QoS capabilities (J;. This set of QoS
capabilities contains all the QoS offers, including the ones who
do not satisfy the customer’s requested QoS.

Learning algorithms: The objective is to learn a selection
policy according to the previous noticed failures or successes.
We opt for two different learning algorithms : Linear Reward
Inaction (LRI) [9] and Upper Confidence Bound (UCB).

For UCB, the algorithm is used with no modification. The
behavior is the same as described in Section III.

Here the player is the NSP and the gambling machines are
the offers of the set of QoS capabilities Q. When choosing a
machine corresponding to offer & with path ¢ the NSP gets the
reward rewy, with 0 < rewy < 1. Since the reward depends on

280



the offer and the failure each machine has an unknown reward
distribution.

The LRI algorithm uses a probability vector for the selection
of the next action. Each action is associated with a choice
probability. Initially, this probability is the same for all the
actions. According to the reward obtained at each round, the
probability vector is updated depending on a factor b € [0, 1].
Depending on the value of the b factor, the algorithm converges
more or less slowly to a solution. This factor permits an increase
of the probability of selected actions where higher rewards have
been observed.

The actions are the offers of the set of QoS capabilities Qx
of NSP k. Let Py (t) be the probability vector at time ¢ and
thus P; ;(¢) the probability of action i to be selected.

For any offer i € Qy, :
+b.rewy (t) (P x(t)) if ¢ selected
Pig(t+1) = Pik(t) —b.rew(t)(P; k(t)) otherwise

)
The algorithm used for each NSP £ is described by Algorithm 3.

Algorithm 3 Linear Reward Inaction Algorithm

1

Initialization: for all offers i € Qy, set P; 1 (0) = Or]

while ¢ <T' do
Select offer according to P; ;(t) and observe the reward
for each offer i € Q). do
update the probability vector using eq. (7)
end for
end while

V. EXPERIMENTS

The simulations were performed on the network example
presented in Figure 1. At each decision epoch, customer ¢ sends
a request g. = (250Mbps, 20ms, 0.5%) with duration A, = 10.
The reward function used by the customer is the one described
by eq. (2) with 3 = 0.5. With these parameters, the price bound
computed for the required QoS is g.(g.) = 2439.02. Each QoS
offer with a price higher than 2439.02 is rejected.

The NSPs (NSP1, NSP2 and NSP3 in Figure 1) have a fixed
capacity of 3000 Mbps. Each NSP has two disjointed paths, one
with a price bound of 1 (type 1) and the other of 5 (type 2).
Those two paths have the same capacity as the NSPs and both
have the same failure rate : 0.1 for NSP1, 0.3 for NSP2 and
0.6 for NSP3. As explained at the end of Section II, the NSP
has two different types of failure and this is the failure rate for
the NPS’s external path to the destination which have a fixed
one. In the following we consider experiments with failure on
paths only (with a fixed probability of failure on each path) and
with both capacity and path failure. Table I details the offers
of each NSP.

We added 4 QoS capabilities not appearing in Table I with a
price higher than the customer maximum price for NSP2 and
NSP3. With these offers the maximum reward the customer can
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TABLE I
NSPS OFFERS

Path type 1 Path type 2

by di 3 96(qr) | rewe | gix(qr) | rewe

250 20 | 05 134.14 | 0.315 182.92 | 0.308

NSPI 500 20 | 05 268.29 | 0407 | 365.85 | 0.394
2000 | 20 0.5 1073.17 | 0.381 1463.41 | 0.327

3000 | 20 | 0.5 1609.75 | 0.317 | 2195.12 | 0.237

750 10 | 0.25 804.87 | 0.593 | 1097.56 | 0.553

NSP2 1000 | 10 | 0.25 | 1073.17 | 0.575 | 1463.41 | 0.522
2000 | 20 | 0.1 1094.52 | 0.555 | 1492.53 | 0.501

3000 | 20 | 0.01 | 1649.17 | 0.529 | 2248.87 | 0.447

250 5 0.01 54890 | 0.642 | 748.50 | 0.615

NSP3 | 500 20 | 0.01 274.86 | 0.624 | 374.81 0.611
750 10 | 0.01 824.17 | 0.697 | 1123.87 | 0.656

obtain by choosing NSP1 is 0.407, 0.593 for NSP2 and 0.697
for NSP3.

To compare the results of the algorithms, we used the three
variants of UCB described in Section III (UCB-Basic, UCB-
Adapted and UCB-Modified), the Best Response algorithm and
a utility based algorithm (this latter selects the offer having the
highest utility or randomly in case of equality). Formula (2) is
used as a utility except that this one is multiplied by the NSP
reputation factor defined by Lamali et al [3]. When using the
reputation algorithm, the customer takes into account his own
experience about past SLA failure in order to determine the
NSPs’ reputation. The reputation factor is computed at each
time ¢ and is defined as :

#faili(t)
#choicey(t)

for NSP k, where #faili(t) is the number of times the
customer has selected an offer of NSPk which has then been
violated, and #choiceg(t) is the number of times the offers of
NSPk were selected by the customer.

The UCB algorithm is also compared with the LRI described
in Section IV. The same changes to UCB were applied to the
LRI algorithm in order to capture the availability of NSPs.
There are three variants of the LRI algorithm, the LRI-Basic
(described in Section 1V), the LRI-Adapted (it selects an
offer according to the vector of probabilities, until finding
an available NSP) and the LRI-Modified (equivalent to the
LRI-Adapted with a normalized vector according to the NSP
availability).

All results were obtained for 100 simulations of 20,000
requests. Table II summarizes the various scenarios and the
used NSPs’ selection algorithms.

repp(t) =1—

TABLE I
NSPS SELECTION POLICY

NSP1 [ NSP2 [ NSP 3
Scenario 1 Random selection
Scenario 2 The Discounter
Scenario 3 Learning algorithm : LRI
Scenario 4 | Learning algorithm : UCB

Comparison of the UCB algorithms: Figure 2 represents the
customer’s mean cumulated reward over 100 simulations. The
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simulations correspond to scenario 1 of Table II and are run
for two types of SLA failure. Simulations “Path failure” on
Figure 2 use, for SLAs failure, only the path probability of
failure whereas simulations “Capacity failure” use both the
capacity function and the path probability of failure. Regardless

Customer's regret
Mean over 100 simulations - 20 000 rounds

7000

6000 |- N

5000 |-

4000

Regret

|

3000 |-
2000 |-

1000 -

"}

Capacity.and Path failures Path failure.only

mmm— UCB-Modified 1z LRI-Adapted
B:

£SS3 UCB
ezz2 UCB-Adapted & LRI-Basic — LRI-Modified

Fig. 2. Comparison of the UCB algorithms in scenario 1 - Customer’s regret

of studied case, the customer’s regret is better for the variations
of UCB than for the seminal algorithm. This is due to the
fact that the seminal algorithm can select “dummy” offers (for
instance when an NSP has no more capacity and does not
make an offer). For both versions of UCB, UCB-Adapted and
UCB-Modified, the regret as well as the reward is similar.
Nevertheless, recall from eq. (5) that the UCB-Adapted version
does not allow predicting this behavior.

Learning algorithms modified and the utility based algo-
rithms: Given the results of Figure 2, we realized further
simulations only on the UCB-Modified and LRI-Modified al-
gorithms. In Figures 3(a) and 3(b) the histograms are the mean
cumulated regret of the customer.

Whether it is with or without the failure according to the
remaining capacity of the NSP, for the four scenarios described
in Table II the UCB-Modified algorithm gives better results.
Simulation results on scenario 2 exhibit a better efficiency of the
UCB-Modified algorithm. Indeed the NSPs use the algorithm
“Discounter” and therefore each NSP always proposes the same
offer, the lowest price one. Therefore a customer’s decision
algorithm based on the utility always chooses the same NSP
and increases its failure rate, inducing a bad profit.

We can thus look at the capacity of the UCB-Modified
algorithm to detect the failure rate of the NSPs. For this we
observe the percentage of requests where the customer has
established an SLA which has suffered a failure. Figures 4(a)
and 4(b) show the percentage of failed requests. We notice that
for each type of SLA’s failure and scenario of Table II, the
algorithm UCB-Modified obtains a percentage of failure lower
than the two others.

The algorithm UCB-Modified is able to learn which NSP
offers the best reward with less probability to fail when estab-
lishing an SLA. The customer’s ability to learn the reliability
of NSPs could also be observed in Tables III and IV. Table III
contains the results of simulations with capacity and path
violation whereas Table IV contains the ones with path violation
only.
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Customer's reward
Mean over 100 simulations - 20 000 rounds - Path failure
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(a) With failure on paths only

Customer's reward
Mean over 100 simulations ~ 20 000 rounds ~ Capacity failure
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TABLE III

CUSTOMER’S CHOICES AND NSPS’ FAILS - SIMULATIONS WITH CAPACITY
AND PATH VIOLATION

Scenario 2
UCB-Mod. Best resp. Rep. LRI-Mod.
% Select | Fail | Select | Fail | Select | Fail | Select | Fail
NSP1 58 18 0 - 0 - 88 20
NSP2 30 59 1 29 1 33 10 34
NSP3 12 67 99 69 99 69 2 60
Scenario 3
UCB-Mod. Best resp. Rep. LRI-Mod.
% Select | Fail | Select | Fail | Select | Fail | Select | Fail
NSP1 56 19 1 17 1 17 96 24
NSP2 22 60 1 40 1 47 3 64
NSP3 22 63 98 67 98 66 1 60

These tables list the percentage of times each NSP has
been selected by the customer and the associated percentage of
failures when the customer uses the algorithms UCB-Modified,
Best Response, Reputation and LRI-Modified. For Table IV the
failure rate is not mentioned. Indeed, the violation is on paths
only and paths have a fixed failure rate : 0.1 for NSP1, 0.3 for
NSP2 and 0.6 for NSP3.

The results are given for both scenarios 2 and 3 due to the
non-random behavior of the NSPs in those. Indeed, in scenario
2 the NSPs use the “Discounter” algorithm which implies that
they always propose the same offer, the one with the cheapest
price. For scenario 3 the NSPs selection algorithm is LRI-
Modified and permit to converge to propose the best offer.

Remember that, according to Table I, the maximum reward
obtained by the customer when choosing NSP1 is 0.407, 0.593
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Scenario 2
UCB-Mod. | Best resp. Rep. LRI-Mod.
% Select Select Select Select
NSP1 34 0 0 88
NSP2 53 5 5 10
NSP3 12 95 95 2
Scenario 3
UCB-Mod. | Best resp. Rep. LRI-Mod.
% Select Select Select Select
NSP1 36 1 1 78
NSP2 46 7 7 12
NSP3 18 92 92 10

for the selection of NSP, based on previous reward until one
component reaches 1. On the contrary the UCB-Modified is
not permanently fixed on the choice of one NSP but uses all
the information about previous rewards to make its choice. It
obtains a compromise between the NSP2 which has a slightly
higher failure rate than the NSP1, but balanced by a more
attractive reward.

These results reinforce the belief that learning algorithms
enable the customer to estimate the reliability of NSPs.

VI. CONCLUSION

In this paper, we provided a model for the problem faced by a
customer when choosing a QoS-offer that can encounter failures
in a context where providers might change (due to capacity
or other constraints, they do not make offers). This problem
is equivalent to the one of a player having a variable utility
facing dynamic machines in a Multi-Armed Bandit problem.
We proposed an adaptation of the UCB and LRI algorithms to
address this problem.

Surprisingly, the simulation results exhibit that the NSPs be-
have as reward distribution machines. Our proposed algorithms
are adapted to such configuration (for instance it detects dis-
counting behaviors). In future work, we will consider adapting
some other well-known Multi-Armed Bandit algorithms to SLA
negotiation.
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