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Abstract—With the massive adoption of cloud-based ser-
vices, high energy consumption and carbon footprint of
cloud infrastructures have become a major concern in IT
industry. Consequently, many governments and IT advisory
organizations have urged IT stakeholders (i.e., cloud provider
and cloud customers) to embrace green IT and regularly
monitor and report their carbon emissions and put in place
efficient strategies and techniques to control the environmental
impact of their infrastructures and/or applications.

Motivated by this growing trend, we investigate, in this
paper, how cloud providers can meet Service Level Agree-
ments (SLAs) with green requirements. In such SLAs, a
cloud customer requires from cloud providers that carbon
emissions generated by the leased resources should not exceed
a fixed bound. We hence propose a resource management
framework allowing cloud providers to provision resources in
the form of Virtual Data Centers (VDCs) (i.e., a set of virtual
machines and virtual links with guaranteed bandwidth) across
a geo-distributed infrastructure with the aim of reducing
operational costs and green SLA violation penalties. Extensive
simulations show that the proposed solution maximizes the
cloud provider’s profit and minimizes the violation of green
SLAs.

I. INTRODUCTION

With the rapid development of cloud computing tech-
nologies, data centers have become a popular platform
for delivering large-scale online services such as content
delivery, social networking and e-commerce. However, the
rapid expansion of cloud infrastructures in recent years
have also raised serious concerns regarding their energy
consumption and environmental impact. Recent reports [1]
have revealed that the Information and Communication
Technologies (ICT) account for 3% of the world’s carbon
emissions. Data centers by themselves accounts for about
10% of the ICT emissions worldwide.

Motivated by these observations, the ICT sector is wit-
nessing an upward move towards greening cloud infrastruc-
tures and services driven by several governmental regula-
tions and marketing considerations. For instance, a recent
study [2] showed that the firms’ value would decrease
significantly if it has high carbon footprint or even if it
withholds information about its carbon emission rates. As
a result, many IT companies are voluntarily disclosing
their carbon emissions and regularly reporting their efforts
towards deploying environmental-friendly solutions and
services [3]. At the same time, governments are imposing
taxes on carbon emissions in the hopes of pushing further

this shift towards the adoption of green sources of energy
and the reduction of carbon footprint [4].

In current cloud environments, there are mainly two
stakeholders: (1) cloud providers (CPs) that typically own
distributed infrastructures and lease their resources in an
on-demand manner to different Service Providers (SPs); (2)
SPs use these resources to deploy their services and offer
them to Internet end-users. Recent research proposals and
cloud offerings [5] are advocating to offer these resources
in the form of Virtual Data Centers (VDCs), i.e., a set of
VMs and virtual links with guaranteed bandwidth.

Typically, CPs are responsible for allocating resources
for VDCs across their distributed clouds with the goal
of minimizing operational costs and maximizing the in-
frastructure environmental friendliness by increasing the
usage of green energy [6]. However, recently, SPs were
also required to take into account environmental objectives
and ensure that their services are produced with the smallest
carbon footprint. Many advisory boards and commissions
(e.g., Open Data Center Alliance [7] and SLA Expert
Subgroup of the Cloud Selected Industry Group of the
European Commission [8]) are pushing towards defining
green SLAs in which SPs require their CPs to limit the
carbon emissions generated on their behalf. Recently, some
research works advocated providing Green SLAs in the
context of HPC clouds [9]–[13].

Typically, the green SLA terms require either to limit
the carbon emissions generated by SPs services [9]–[12]
or to set a minimum amount of renewable power to be
consumed by the resources allocated to SPs [13]. However,
these proposals do not consider the allocation of network
resources (virtual links) and aim only to allocate VMs
within a single data center.

In this paper, we investigate how a CP can meet an
SLA with green requirements. In particular, we consider
SLAs that specify a limit on the carbon emission gener-
ated by each service provider’s VDC. We, hence, propose
Greenslater, a holistic framework that orchestrates the pro-
visioning and the resource optimization for the multiple
VDCs deployed across a distributed infrastructure. From
the CP’s point of view, the objective is to maximize revenue
while minimizing operational costs and the potential green
SLA violation penalties. Greenslater takes advantage of the
variability in space and time of the available renewables
and electricity prices in different data centers to reduce



the carbon footprint and costs. It provisions VDCs and
dynamically optimize resource allocation over time while
fulfilling the green SLA terms. Through extensive simula-
tions, we show that the proposed framework maximizes the
CP’s profit and also the usage of renewable power while
minimizing SLA violation penalty.

The remainder of this paper is organized as follows. Sec-
tion II surveys the related works. Section III defines green
SLAs and presents the proposed management framework.
The mathematical formulation of the VDC embedding
problem across distributed infrastructures that considers
green SLAs is then presented in Section IV. Section V
gives a detailed description of the proposed algorithms for
VDC admission control and dynamic resource allocation
and optimization. Section VI discusses simulation setup and
results. Finally, we conclude the paper in Section VII.

II. RELATED WORK

In the last few years, a large body of work has addressed
the problem of reducing energy consumption and carbon
footprint in cloud environments. In the following, we first
survey the literature on green management in the cloud and
then we focus on the proposals that advocated implement-
ing green SLAs between cloud and service providers.

A. Green management in the cloud

Recently, several systems have been proposed to map
VDCs onto a single data center with the goal of reducing
energy consumption. For instance, Zhani et al. [14] pro-
posed VDC Planner, a resource management framework
that leverages dynamic VM migration to increase CP’s rev-
enue while minimizing energy consumption. Unfortunately,
these solutions are designed to manage a single data center
and hence do not consider the variability over time and
between different locations of the electricity prices and the
availability of green sources of energy.

A plethora of techniques have been also proposed to
allocate resources across geographically distributed data
centers in order to reduce energy costs [15]–[17], minimize
the infrastructure’s carbon footprint [18], [19] or achieve
both objectives [6], [20], [21]. For instance, Xin et al. [22]
proposed an algorithm that uses minimum k-cut to split a
VDC request into partitions before assigning them to differ-
ent locations so as to balance the load among different data
centers. In [6], we proposed Greenhead, a framework for
VDC embedding across distributed infrastructures that aims
at maximizing cloud providers’ revenue while cutting down
the carbon footprint of the infrastructure. Unfortunately, the
solutions above use static mapping and do not perform any
dynamic resource optimization over time. They also do not
consider green SLAs and hence do not guarantee any limit
on carbon emissions of the resources leased by each SP.

B. Green SLA in the cloud

Green SLAs stipulate that SPs are able to require their
cloud providers to guarantee that the leased resources are
environmental friendly. In other words, SPs can explicitly

Fig. 1: Proposed framework

specify green constraints like, for instance, an upper limit
on carbon emissions produced by the resources they lease.

Providing green SLAs has been originally proposed back
in 2010 by Laszewski et al. [9] and then quickly adopted
and supported in several research works [11], [13], [23]. For
instance, Haque et al. [13] considered an SLA that specifies
the proportion of green power that the HPC provider should
use to run the job (e.g., x% of the job should run on green
power). The HPC provider has to pay a penalty to SPs if
the green terms of the SLA are not satisfied. Similarly,
Wang et al. [23] proposed an approach where SPs can
define in the SLA constraints for their submitted tasks that
limit the carbon emissions and consumed power. From the
CP perspective, the goal of this framework is to schedule
parallel tasks such that the green SLAs are satisfied.

However, the solutions above do not consider bandwidth
requirements between VMs and are designed to manage
resources within a single data center. Our work consider
a more general scenario with multiple data centers and
where the network requirements are explicitly specified in
the VDC request.

III. SYSTEM ARCHITECTURE

In this section, we present the design architecture of
the proposed solution and we discuss the definition of the
Green SLA terms and how to enforce them in a distributed
environments.

A. Architecture Overview

As shown in Fig. 1, we consider a distributed infrastruc-
ture consisting of multiple data centers located in different
regions and interconnected through a backbone network.
The entire infrastructure (including the backbone network)
is assumed to be owned and managed by the same CP.

SPs send VDC request specifications to the CP, which
has the responsibility of allocating the required resources.



Naturally, the CP will make use of its distributed in-
frastructure with the objective of maximizing its revenue
and minimizing energy costs and carbon footprint; this is
where our proposed management framework, Greenslater,
comes into play. Greenslater is composed of two types of
management entities: i) a Central Controller that manages
the entire infrastructure and ii) a Local Controller deployed
in each data center to manage the data center’s internal
resources (i.e., resource allocation for VMs and virtual links
inside the data center).

The central controller consists of a number of compo-
nents. The Partitioning Module is in charge of dividing a
VDC request into partitions such that inter-partition band-
width is minimized. The Partition Allocation Module is
then responsible for running an admission control algorithm
for every received VDC request, and assigns the partitions,
in case of accepted requests, to data centers based on run-
time statistics collected by the monitoring module and the
estimation of available renewable power. The Inter-data
center Allocation Module allocates resources for the virtual
links spanning the backbone network. Finally, the Migra-
tion Module dynamically relocates VDC partitions in such
a way to follow renewables and reduce the carbon footprint.
The Monitoring Module monitors and collects information
about the status of physical and virtual infrastructures and
stores them into VDC Information Base.

B. Green SLA Definition

As stated earlier, SPs have not only to specify resource
requirements but also constraints on the carbon emissions
generated by the CPs while hosting their VDC. Specifically,
green terms in the SLA specify the limit on carbon emis-
sions that the CP is allowed to generate to accommodate the
VDC request during a period of time called hereafter the
reporting period. The reporting period can be for instance
the a billing period [7].

To enforce green SLAs, the CP should compute the
carbon footprint of each VDC request. To do so, we
use two metrics: (1) carbon emission per unit of band-
width (tonCO2/Mbps) and (2) carbon emission per core
(tonCO2/Core). These metrics are chosen because the band-
width and the CPU are the major factors that determine the
power consumption in data centers and they are already
considered in industry. For instance, Akamai reports annu-
ally its carbon emission in CO2 per gigabyte of data deliv-
ered (tonCO2/Gbps), Verizon reports its carbon emissions
per terabyte of transported data across its network.

As the carbon footprint is computed for each VDC, the
SLA is enforced at the end of each reporting period. In case
of violation of the green terms (i.e., the carbon footprint for
the VDC is higher than the limit specified in the SLA), the
CP is required to pay a penalty (a.k.a. credit). The penalty
can a percentage of the SP’s bill that can go up to 100%
for some providers such as Rackspace [24]. It becomes then
critical to design effective VDC embedding algorithms that
minimize this penalty.

IV. PROBLEM FORMULATION

In this section, we formally define the VDC embedding
problem across multiple data centers as an Integer Linear
Program (ILP). We assume that time is divided into slots.
The metrics characterizing each data center (e.g., Power
Usage Effectiveness (PUE), electricity price, availability
of renewable power) are measured at the beginning of
each time slot and are considered constant during the
corresponding time slot. Moreover, we assume that the
CP reports its carbon emissions periodically and every
reporting period is T time slots. We denote by T k = [tkb , t

k
e ]

the kth reporting period, where tkb and tke are its beginning
and end time slots, respectively.

The physical infrastructure is represented by a graph
G(V ∪W,E), where V denotes the set of data centers and
W the set of nodes of the backbone network. The set of
edges E represents the physical links in the backbone net-
work. Each link is characterized by its bandwidth capacity
bw(e) and propagation delay d(e).

A VDC request j is represented by a graph Gj(V j , Ej),
its arrival time denote by tj , and its lifetime T j . Each vertex
v ∈ V j corresponds to a VM, characterized by its CPU,
memory and disk requirements. Each edge e ∈ Ej is a
virtual link that connects a pair of VMs, which is char-
acterized by its bandwidth demand bw(e) and propagation
delay d(e). We assume the revenue generated by VDC j,
denoted by Rj , to be proportional to the amount of CPU
and bandwidth required by its VMs and links. The revenue
generated by VDC j per time slot can be written as follows:

Rj = (
∑
v∈V j

(Ccpu(v)×σcpu)+
∑

e′∈Ej

bw(e′)×σb) (1)

where Ccpu(v) is the CPU demand of VM v belonging to
the VDC j, and σcpu and σb are unit price of CPU and
bandwidth, respectively. Moreover, each VDC j may have
a constraint on carbon emissions per reporting period T ,
which is defined by the variable cj .

Furthermore, a VM v ∈ V j may have a location
constraint. That is, it can only be embedded in a particular
set of data centers. To model this constraint, we define a
binary variable zjik, indicating whether or not a VM k of
VDC j can be embedded in a data center i.

The problem of embedding VDC requests in a distributed
infrastructure of data centers should be solved dynamically
over time. In fact, the decision of embedding VMs in differ-
ent data centers is modified at the beginning of every time
slot in such a way to follow the renewables. Thus, for each
VDC request j, and during each time slot t ∈ [tj , tj +T j ],
the central controller should:
• Assign each VM k ∈ V j to a data center. Hence, we

define the decision variable xj,tik as:

xj,tik =

 1 If the VM k of the VDC j is assigned
to data center i during slot t

0 Otherwise.



• Embed every virtual link either in the backbone net-
work if it connects two VMs assigned to different data
centers or within the same data center, otherwise. To
do so, we define the virtual link allocation variable
f te,e′ as:

f te,e′ =

 1 If the link e ∈ E is used to embed
the virtual link e′ ∈ Ej during slot t

0 Otherwise.

As an CP can reject a request due to shortage in
resources or too tight constraints (delay, location). As
such, we define a binary variable Xj , which indicates
whether the VDC request j is accepted for embedding (i.e.,∑

t∈Tk

∑
i∈V

∑
k∈V j x

j,t
ik ≥ 1) or not.

Finally, the ultimate objective of the CP when embedding
VDC requests during any reporting period T k is to maxi-
mize its profit defined as the difference between the revenue
(denoted by Rk) and the total embedding cost plus penalty
cost, which consists of the embedding cost in the data
centers (denoted by Dk), the migration cost (denoted by
Mk) the embedding cost in the backbone network Bk and
the penalty cost Pk. Hence, our problem can be formulated
as an ILP with the following objective function:

Maximize Rk − (Dk + Bk +Mk + Pk) (2)

Subject to:

xj,tik ≤ z
j
ik, ∀k ∈ V

j ,∀i ∈ V,∀t, (3)∑
i∈V

xj,tik = Xj , ∀k ∈ V j ,∀j ∈ Qt,∀t (4)

∑
e′∈Ej

f te,e′ × bw(e′) ≤ bw(e), ∀e ∈ E,∀t (5)

∑
e∈E

f te,e′ × d(e) ≤ d(e′), ∀e′ ∈ Ej ,∀t (6)

f te1,e′ − f
t
e2,e′ = xtdst(e1)dst(e′) − x

t
src(e2)src(e′)

,

∀e1, e2 ∈ E, dst(e1) = src(e2), ∀ e′ ∈ V j ,∀t (7)

where Qt is the set of VDC requests being embedded
during time slot t, src(e) and dst(e) denote the source and
destination of link e, respectively. Equation (3) guarantees
location constraint satisfaction. Equation (4) depicts that
a VM is assigned to at most one data center. Equation
(5) guarantees that link capacities are not exceeded in
the backbone network, whereas (6) guarantees that delay
requirements of virtual links are satisfied. Equation (7)
denotes the flow continuity constraint.

The revenue for a reporting period T k is given by:

Rk =
∑
t∈Tk

∑
j∈Qt

Rj ×Xj (8)

Let us now focus on the expression of the embedding
costs Dk, Bk,Mk and Pk in the data centers, the backbone
network and penalty, respectively. Recall that these costs
are part of the objective function.

- The cost of embedding in the data centers

In this work, we evaluate the request embedding cost in
the data centers in terms of energy costs.

The total amount of consumed power in data center i is
given by: P t

i = (P t
i,Net + P t

i,Serv)× PUEt
i (9)

where P t
i,Serv and P t

i,Net are the power consumed by
servers and network elements, respectively, and PUEt

i is
the power usage effectiveness of data center i during time
slot t, which is used to compute the power consumed
by supporting systems such as the cooling system. Note
that this power consumption depends mainly on the local
allocation scheme in each data center.

The mix of power used in data center i is given by:

P t
i = P t

i,L + P t
i,D (10)

where P t
i,L and P t

i,D denote, respectively, the consumed on-
site renewable power and the amount of purchased power
from the grid during time slot t. Note that P t

i,L should not
exceed the amount of produced power, which is captured
by P j,t

i,L ≤ RN t
i , where RN t

i is the amount of onsite
renewable power generated in data center i, during time
slot t, expressed in kW.

Hence, the total embedding cost in all data centers
(expressed in $) can be written as:

Dk =
∑
t∈Tk

∑
i∈V

P t
i,L × ηi + P t

i,D × ζti (11)

where ηi is the onsite renewable power cost in data center i
($/kWh), ζti is the electricity price in data center i ($/kWh).

- The cost of embedding in the backbone network
Virtual links between the VMs that have been assigned

to different data centers should be embedded in the back-
bone network. We assume that it is proportional to their
bandwidth requirements and the length of physical paths to
which they are mapped. It is given by:

Bk =
∑
t∈Tk

∑
e′∈Ej

∑
e∈E

f te,e′ × bw(e′)× σp (12)

where σp is the cost incurred by the CP per unit of
bandwidth allocated in the backbone network.

- The migration cost
Let’s denote by t− the previous time slot of time slot t.

The migration cost is given by:

Mk =
∑
t∈Tk

∑
j∈(Qt−∩Qt)

∑
k∈Vj

∑
i∈V

migtk,i,j ×mk,j (13)

where mk,j is the cost of migrating VM k of VDC j,
which corresponds to the disruption in service that might
occur when migrating the VM, and migtk,i,j is a binary
variable that determines whether VM k of VDC j have
been migrated to data center i from another data center at
the beginning of time slot t, and defined as:

migtk,i,j =

{
1 If xj,tik = 1 and xj,t−1ik = 0
0 Otherwise.

Note that we assume that there is no cost for link
migration as no transfer is needed.



- The penalty cost
The penalty is paid by the CP to the SP whenever

the specified green SLA is not met. At the end of every
reporting period T k, the CP reports the carbon emission
related to each VDC request j that has been embedded for
the whole time period T k or during a part of it. Since the
carbon emissions are due to the power consumption, we can
derive the carbon emission of every data center i during a
time slot t, denoted by Cti , as follows:

Cti = P t
i,D × Ci (14)

where P t
i,D denotes the amount of purchased power from

the grid by data center i during time slot t and Ci is
the carbon footprint per unit of power used from the grid
in data center i expressed in tons of carbon per kWh
(tonsCO2/kWh).

We derive the carbon emissions, in the entire infrastruc-
ture, due to the servers (denoted by Cti,Serv) and the network
(denoted by CtNet), as follows:

CtServ =
1

|V |
∑
i∈V

Cti × P t
i,Serv

P t
i,Net + P t

i,Serv

(15)

CtNet =
1

|V |+ 1
× (
∑
i∈V

Cti × P t
i,Serv

P t
i,Net + P t

i,Serv

+ CtBckb) (16)

where CtBckb is the carbon emission due to embedding
virtual links in the backbone network. Without loss of
generality, we assume that the carbon footprint per unit
of bandwidth in the backbone network, denoted by Cb, is
known. As such, CtBckb is given by:

CtBckb =
∑

e′∈Ej

∑
e∈E

f te,e′ × bw(e′)× Cb (17)

In this case, the average carbon emission rate of the CP per
unit of VM during a reporting period T k is given by:

CkCPU =
1

tke − tkb
×

∑
t∈[tkb ,tke ]

CtServ∑
j∈Qt

∑
v∈V j Ccpu(v)

(18)

where Qt is the set of VDC requests being embedded
during time slot t and Ccpu(v) is the capacity of VM v
in terms of CPU units.

Similarly, the carbon emission rate per unit of bandwidth
during a period T k can be given as:

CkBW =
1

tke − tkb
×

∑
t∈[tkb ,tke ]

CtNet∑
j∈Qt

∑
e∈Ej bw(e)

(19)

As such, the carbon emission related to a VDC request
j during the period T k, denoted by Cjk, can be given by:

Cjk = T j
k×((

∑
v∈V j

Ccpu(v)×CkCPU )+(
∑
e∈Ej

bw(e)×CkBW ))

where T j
k is the number of time slots of the period T k

during which VDC j was embedded.
Finally, a penalty is paid by the CP for an SP j at the

end of the period T k if the carbon emission for VDC j is
above the limit specified in the SLA, i.e., Cjk > cj , where

cj is the amount of carbon emission allowed by the SP for
one reporting period T .

In the case where the CP has to pay a penalty, which is a
fraction of the total bill during that period of time. Finally,
the total penalty cost for a period T k is given by:

Pk =
∑

j∈(∪
t∈TkQt)

(Rj × T j
k )× p, if Cjk > cj (20)

where p ∈ [0, 1] is the proportion of the SP’s bill to be
refunded by the CP in case of SLA violation.

The problem described above can be seen as a combina-
tion of the bin-packing problem and the multi-commodity
flow problem, which are known to be NP-hard. Therefore,
we propose a simple yet efficient and scalable solution.

V. GREEN SLA OPTIMZER (GREENSLATER)
Since the problem presented in the previous section is

NP-hard, we propose a greedy three-step approach. At the
arrival a VDC request, the Central Controller first splits
it into partitions such that the intra-partition bandwidth is
maximized and the inter-partition bandwidth is minimized.
It then uses an admission control algorithm that rejects
VDCs with negative profit (i.e., the VDC cost is higher
than the generated revenue). If the VDC is accepted, its
partitions are embedded in different data centers. As the
availability of renewables and electricity prices are variable
over time, and the requests dynamically arrive and leave
the system, we propose a reconfiguration algorithm, which
migrates partitions from the data centers with no avail-
able renewables to those with available renewables. In the
following, we present in details the proposed algorithms.
Note that the partitioning aims at minimizing the backbone
networks cost, while the reconfiguration minimizes the
energy cost and limits the SLA violation by following the
renewables, while taking into account the migration costs
before migrating.

A. VDC Partitioning

Once received, the Central Controller divides the VDC
request into partitions where the intra-partition bandwidth is
maximized and the inter-partition bandwidth is minimized.
Hence, each entire partition is then embedded in the same
data center, which minimizes the inter-data center band-
width. As the partitioning problem is NP-hard [25], we
use the Location Aware Louvain Algorithm (LALA), the
partitioning algorithm used in [6]. LALA is a modified ver-
sion of the Louvain Algorithm [26] that considers location
constraints. The objective of the Louvain algorithm is to
maximize the modularity, defined as an index between −1
and 1 that measures intra-partition density (i.e., the sum
of the links’ weights inside partitions) compared to inter-
partition density (i.e., sum of the weights of links between
partitions). In fact, graphs with high modularity have dense
connections (i.e., high sum of weights) between the nodes
within partitions, but sparse connections across partitions.
Similar to the Louvain algorithm, the complexity of LALA
is O(n log n) [26].



Algorithm 1 Admission Control Algorithm

1: IN: predictionWdW // the prediction window
2: IN: reconfigInterval // the reconfiguration interval
3: IN: vdc // the VDC to embed
4: wdw ← min(predictionWdw, reconfigInterval)
5: possible← possibleToEmbed(vdc)
6: if possible then
7: carbonRate← getEstimationCarbonRate(wdw)
8: carbonLimitRate← vdc.carbonLimit/wdw
9: if carbonRate ≤ carbonLimitRate then

10: Accept vdc
11: else
12: //Verify if profit can be made
13: estimatedCost← estimatePowerCost(vdc)
14: if revenue(vdc) × (1 − refundFactor) −

estimatedCost > 0 then
15: Accept vdc
16: else
17: Reject vdc
18: end if
19: end if
20: else
21: Reject vdc
22: end if

B. Admission Control

When a VDC request is received, the Central Controller
checks if the request will generate profit, in which case
it is accepted, otherwise it is rejected. In some cases, a
request with tight carbon constraints might result in high
SLA violation penalties, which reduces the CP’s profit.
To address this issue, we propose an admission control
algorithm (Algorithm 1). The idea is to estimate the avail-
able renewable power in the next prediction window and
estimate carbon emission of the requested VDC. In this
paper, we consider solar panels to generate the renewable
power and we use a prediction model presented in [13].

First, the central controller checks whether it is possible
to embed the VDC given the available resources and
constraints of the VMs in the VDC. If the request is
embeddable, the central controller computes an estimation
for carbon emission for the request given the current power
consumption and the predicted availability of renewables
for the next prediction window. To do so, we propose to
use a simple estimation algorithm, which computes the
estimation of carbon emission per unit of VM and per unit
of bandwidth in the next prediction window, and by the
same derives the estimation of carbon emission of the given
VDC request. The estimated carbon of the VDC request is
then compared to the limit provided in the SLA of the VDC
request. In case of SLA violation, the Central Controller
checks whether profit can still be made even if there is a
penalty to pay. If the profit is positive, the VDC request is
accepted, otherwise it is rejected. It is worth noting that as
the prediction window is limited compared to the lifetime
of some of the VDCs (up to weeks for long lived VDCs),
the decision of accepting might be biased as the short term
forecasts can show high availability of renewables.

Algorithm 2 Greedy VDC Partitions Embedding Across Data Centers

1: IN: G(V ∪W,E), Gj
M (V j

M , Ej
M )

2: for all i ∈ V do
3: ToDC[i]← {}
4: end for
5: for all v ∈ V j

M do
6: Sv ← {i ∈ V / i satisfies the location constraint}
7: end for
8: for all v ∈ V j

M do
9: i ← s ∈ Sv with the smallest cost getCost(s, v), and

LinksEmbedPossible(s, v) = true
10: if no data center is found then
11: return FAIL
12: end if
13: ToDC[i]← ToDC[i] ∪ {v}
14: for all k ∈ N(v) do
15: if k ∈ ToDC[i] then
16: ToDC[i]← ToDC[i] ∪ {evk}
17: else
18: if ∃l 6= i ∈ V / k ∈ ToDC[l] then
19: Embed evk in G using the shortest path
20: end if
21: end if
22: end for
23: end for
24: return ToDC

C. Partitions Embedding

Once a request Gj(V j , Ej) is partitioned, the resulting
partitions that are connected through virtual links can be
seen as a multigraph Gj

M (V j
M , E

j
M ) where V j

M is the set
of nodes (partitions) and Ej

M is the set of virtual links
connecting them. This multigraph is then embedded into
the infrastructure, partition by partition, using Algorithm 2.
For each partition v ∈ V j

M , we first build the list of data
centers that satisfy the location constraints of its VMs. The
Central Controller queries the Local Controller of each data
center s from the list to get the embedding cost of v. The
cost is returned by the remote call getCost(s, v).

The data center offering the lowest cost (provided
by the procedure getCost(s, v)) and able to embed
virtual links between v and all previously embedded
partitions (denoted by N(v)) (verified by the function
LinksEmbedPossible(s, v)) is then selected to host the
partition. These virtual links are embedded in the backbone
network using the shortest path algorithm.

This procedure is repeated until all partitions and virtual
links that connect them are embedded into the distributed
infrastructure. The complexity of embedding the whole
multigraph is O(|V j

M | × |V |), where |V j
M | is the number

of partitions and |V | is the number of data centers.

D. Dynamic Partition Relocation

As the the electricity price and the availability of re-
newables are variable over time, we propose a dynamic
reconfiguration algorithm that optimizes VDC embedding
over-time. The aim of the algorithm is to migrate partitions
that have already been embedded in data centers which may
run out of renewables towards data centers with available
renewable power. The second criterion to perform a migra-
tion is to move partitions to locations where the electricity



Algorithm 3 Greedy Partition Migration Across Data Centers

1: IN: predictionWdW // the prediction window
2: IN: reconfigInterval // the reconfiguration interval
3: wdw ← min(predictionWdW, reconfigInterval)
4: for all i ∈ V do
5: Diff [i] ← EstimateRenewables(wdw, i) −

FutureConsumption(wdw, i)
6: if Diff [i] < 0 then
7: part[i]← list of partitions in i sorted by migration cost
8: end if
9: end for

10: for all i ∈ V,Diff [i] < 0 do
11: while 3 k ∈ V,Diff [k] > 0 do
12: p← part[i].first
13: D ← {k ∈ V,Diff [k] > 0}
14: done← false
15: while !done && D 6= φ do
16: //Take the data center with the minimum cost in the

backbone network after migration
17: dest← minBackboneCost(D)
18: Migrate(p, dest)
19: if successful migration then
20: done← true
21: Update Diff [dest] and Diff [i]
22: else
23: D ← D\{dest}
24: end if
25: end while
26: end while
27: end for

price is lower. We, hence, propose a migration algorithm
(Algorithm 3) executed every τ hours (i.e., reconfiguration
interval) by the central controller.

Data centers are first classified into two categories:
sources and destinations. A data center is considered as
a source if it has not enough renewable power to support
its workload and hence we will have to resort to power
from the grid. In this case, in a source data center, the
difference between the estimated available renewable power
and the estimated power consumption is negative (Line 5).
Conversely, if a data has renewable power that exceeds its
estimated power consumption, it is considered a destination
since there is no need to reduce its workload and migrate
VMs. In this case, a destination data center might be able
to host more partitions if it has enough renewable power.

The idea is that partitions from source data centers should
be migrated to destination data centers. To do so, the
list of partitions in each source data center are sorted in
increasing order of their migration cost (Line 7). For each
partition, one destination data center that have a positive
difference is chosen. The destination is chosen in a way
that minimizes the inter-data center virtual link embedding
cost after migration.

VI. PERFORMANCE EVALUATION

To evaluate the performance of Greenslater, we con-
ducted several simulations using a realistic topology and
real traces for electricity prices and renewable power avail-
ability. In the following, we first describe the simulation
setting and we then present the results.
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Fig. 2: Impact of variable arrival rate λ (Ploc = 0.05, T =
24 hours, τ = 4 hours)

A. Simulation Settings

For our simulations, we consider a physical infrastructure
of 4 data centers located at four different states: New
York, Illinois, California and Texas. The data centers are
connected through the NSFNet topology as a backbone
network, which includes 14 nodes. Each data center is
connected to the backbone network through the closest
node to its location. We assume all NSFNet links have
a capacity of 100Gbps. The traces of electricity prices
and availability of renewable energy are provided by the
US Energy Information Administration (EIA) [27]. The
weather forecast is taken from the National Renewable
Energy Laboratory [28] and the amount of power generated
per square meter of solar panel from [29]. The carbon
footprint per unit of power is provided by [30].
Similar to previous works [6], [14], VDCs are generated
randomly according to a Poisson process with arrival rate
λ and a lifetime following an exponential distribution with
mean 1/µ. The number of VMs per VDC is uniformly
distributed between 10 and 50. A pair of VMs belonging to
the same VDC are directly connected with a probability 0.5
with a bandwidth demand uniformly distributed between 10
and 50Mbps and a delay uniformly distributed between
10 and 100 milliseconds. Each VM has a number of cores
uniformly distributed between 1 and 4. Moreover, in each
VDC, a fraction of VMs, denoted by Ploc ∈ [0, 1], is
assumed to have location constraints and thus cannot be
migrated, i.e., it can only be embedded in a specific set
of data centers. Each VDC comes with a carbon limit
constraint specified in the Green SLA. This limit is assumed
to be uniformly distributed between 5 and 20 kgCO2 per
day. Finally, we fixed the reporting period T to 24 hours.
When the Green SLA is not satisfied, the CP refunds 50%
of the SP’s bill for that specific period of time. To assess the
effectiveness of our proposal, we compare Greenslater to
three solutions : (i) Greenhead [6], (ii) Greenhead with No
Partitioning (NP) (i.e., each VM is considered as a single
partition), and (iii) the load balancing approach for VDC
embedding [22]. We consider five metrics: (i) the profit
of the CP, which is the difference between revenue and
the sum of operational costs (i.e., power cost, backbone
network cost) and the Green SLA violation penalty, (ii) the
acceptance ratio (defined as the ratio of embedded requests
out of the total receive requests by the CP), (iii) the carbon
footprint generated by the whole infrastructure, (iv) the



0 0.05 0.1 0.15 0.2
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Location Probability

P
ro

fi
t 

(U
S

D
)

 

 

Greenslater

Greenhead

Greenhead NP

Load Balancing

(a) Cumulative profit

0 0.05 0.1 0.15 0.2
0.5

1

1.5

2
x 10

4

Location Probability

V
io

la
ti

o
n

 C
o

s
t 

(U
S

D
)

 

 

Greenslater

Greenhead

Greenhead NP

Load Balancing

(b) SLA violation cost

Fig. 3: Impact of variable location probability Ploc (λ = 4
requests/hour, T = 24 hours, τ = 4 hours)

green power utilization and (v) the SLA violation penalty.

B. Simulation Results

In our simulations, we first study the impact of the
different input parameters: the arrival rate λ, the fraction
of location constrained VMs Ploc and the reporting period
T on the system performance, using different values of the
reconfiguration interval τ .

1) Impact of the Arrival Rate λ
Fig. 2 shows the impact of the arrival rate λ on both the

achieved profit and SLA violation penalty, when Ploc =
0.05 (i.e., low constrained locations), T = 24 hours,
and τ = 2 hours. From this figure, we can notice that
Greenslater outperforms other solutions, especially at high
arrival rates (i.e., λ ≥ 3). For small arrival rates (i.e.,
λ ≤ 2), no considerable gain is observed as the number of
requests being embedded is small. We can also observe that
both the profit and SLA violation increase as the number
of accepted requests increases. This is due to the fact that
renewables are not enough to accommodate large numbers
of VDCs, which leads to more power drawn from the
electricity grid.

2) Impact of location probability constraint Ploc

Let us now study how location-constrained VMs may
impact the results. To do so, we have varied Ploc between
0 and 0.2, and fixed the values of λ = 4 requests/hour,
T = 24 hours and τ = 4 hours. We can see in Fig. 3
that Greenslater outperforms the other solutions for all the
values of Ploc. However, as Ploc increases, the profit drops
for all approaches since more VMs must be located in
specific data centers. This limits the possibility of migrating
the partitions, which may run using power from the grid. It
is clear that the gain achieved by Greenslater is higher when
less location constraints are considered (i.e., low Ploc).

3) Impact of reporting period T
Fig. 4 shows the impact of reporting period T on both the

achieved profit and the SLA violation cost. In this scenario,
we vary T in {1, 6, 12, 24, 48} hours, for fixed values of
λ = 4 requests/hour, Ploc = 0.05 and τ = 4 hours. Note
that, in this case, the carbon constraint limit specified in
the Green SLA is assumed to be uniformly distributed
between 5 and 20 kgCO2 per day, and is scaled down
to the match the reporting period T . Again, Greenslater
outperforms the baselines as it achieves higher profit and
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Fig. 4: Impact of variable reporting period T (λ = 4
requests/hour, Ploc = 0.05, τ = 4 hours)
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Fig. 5: Impact of variable reconfiguration interval τ (λ = 4
requests/hour, Ploc = 0.05, T = 24 hours)

reduces the SLA violations costs. However, one can note
that the profit is higher for long reporting periods (i.e., 24
and 48 hours) compared to short ones (i.e., 1,6 and 12
hours). The rational behind this is that for long reporting
periods T , the CP has more time and more flexibility. In
fact, the carbon footprint is computed as an average value
over the whole period T . For small values of T , the CP does
not have enough leverage since, in some data centers, VMs
cannot be migrated even though renewables are available.
This results in more frequent violation of the Green SLAs,
which results in higher violations costs, as shown in Fig.
4(b), and thus lower profit (see Fig. 4(a)).

4) Impact of reconfiguration interval τ
We also study the impact of the reconfiguration interval

τ on the profit and SLA violation penalty. We varied τ
between 1 and 12 hours and fixed other variables (λ = 4
requests/hour, Ploc = 0.05 and T = 24 hours). The results
are shown in Fig. 5. From this figure, we can see that the
profit for Greenslater is a concave function of τ , where the
maximum profit is obtained for τopt = 6 hours in our case.
In addition, the SLA violation penalty increases with τ , but
remains low compared to the other solutions. In particular,
for high values of τ , Greenslater gains decrease, since in
this range of τ , the system configuration is not reoptimized
to follow the renewables. Note that the variation of τ does
not affect the performance of the other schemes, since they
do not perform any migrations.

5) Summary of the results
To highlight the benefits of Greenslater over existing

solutions, we plotted all the studied performance metrics
(acceptance ratio, cumulative profit, utilization of renewable
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Fig. 6: Comparison of the cumulative values of the different
metrics (λ = 4 requests/hour, Ploc = 0.05, T = 24 hours,
τ = 4 hours)
energy, carbon footprint and SLA violation cost) in Fig. 6.
It is clear that Greenslater always achieves higher profit,
ensures higher utilization of renewables and lower carbon
footprint with minimum SLA violation. For instance, the
gain in terms of profit provided by Greenslater is respec-
tively around 33%, 53% and 120% compared to Greenhead,
Greenhead NP and the Load Balancing approach.

VII. CONCLUSION

As the environmental impact of cloud infrastructures
and services has become increasingly significant, govern-
ments and environmental organizations are urging SPs to
require guarantees from their CPs that the carbon emission
generated by the leased resources is limited. Hence, in
this paper, we addressed the problem of including green
constraints in the SLAs in order to cap the carbon emission
of the resources allocated to each SP. We proposed Greens-
later, a holistic framework that allows CPs to provision
VDCs across a geographically distributed infrastructure
with the goal of minimizing the operational costs and green
SLA violation penalties. Results showed that Greenslater
achieves high profit by minimizing operational costs and
SLA violation penalties, while maximizing the utilization
of the available renewable power.
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