
Towards a Virtualization-based
Control Language for SDN Platforms

Messaoud Aouadj, Emmanuel Lavinal, Thierry Desprats, Michelle Sibilla
University of Toulouse, IRIT

118 Route de Narbonne, F-31062 Toulouse, France
Email: {aouadj, lavinal, desprats, sibilla}@irit.fr

Abstract—Software defined networking (SDN) approaches rely
on control languages to programmatically express the desired
network behavior. Several SDN control languages use network
virtualization to abstract the complex and dynamic nature of the
physical infrastructure. However, almost all these languages use
the same network abstraction model, which we believe is not the
most appropriate one for expressing flexible and reusable network
control policies. This paper presents work in progress towards
a new high-level virtualization-based control language for SDN
platforms. The main novelty of this language is to integrate a
network abstraction model that explicitly identifies two kinds of
virtual units: i) Fabrics to abstract packet transport functions and
ii) Edges to abstract richer networking functions. We believe that
this approach will allow network administrators to easily express
modular and reusable network control policies independently of
the underlying infrastructure.

I. INTRODUCTION

Networks have become increasingly complex and hard to
control due to major evolutions in computing environments,
such as desktop and server virtualization, the wide adoption of
cloud computing or the advent of “Big Data”. Administrators
are therefore looking for more flexible networks that can
quickly adapt to the evolving needs of today’s enterprises,
carriers, and end users. Software Defined Networking (SDN)
is the latest attempt in order to respond to this lack of
flexibility of current network architectures. In order to do so,
SDN decouples the control plane from the data plane, and
centralizes it in a logical and programmable entity called the
controller [1]. Thus, network administrators can quickly define
and change control policies by simply (re)programming the
controller using standard programming interfaces.

Unfortunately, current SDN controllers provide low-level
programming interfaces that have several limits (e.g., to com-
pose existing control modules, it is necessary to manually
combine their logic in a new program instead of just reusing
them, as is the case in most high-level languages), thus making
network control programs complicated, error-prone and diffi-
cult to maintain and reuse. Early works have addressed these
deficiencies by proposing higher-level languages that include
modern features, such as a declarative design [2], composi-
tion operators [3], embedded verification tools [4] and, more
especially, the possibility to perform network virtualization
[4, 5, 6], which is the main issue of this article.

There are many reasons why we need to virtualize networks
(e.g., isolation, customized network services), but probably
the most important one is to ease their management [7].
Indeed, virtualization exposes logical abstractions (i.e, virtual

networks) that are decoupled from the physical infrastructure.
These abstractions provide just enough information to specify
high-level goals, thus making control policies both easier to
write, since only the desired behavior is expressed, and modu-
lar (subsequently reusable), since they are no more attached to
a particular infrastructure. However, virtualization presents two
major design challenges: the choice of the network abstraction
model that will be used to abstract physical infrastructures (i.e.,
the forwarding plane), and the technology needed to map the
logical state onto the underlying physical infrastructure [8].

In this paper, we mainly address issues related to the first
challenge by presenting work in progress towards the definition
of a new high-level control language for SDN platforms. We
put network virtualization at the very heart of our language,
and, unlike existing works, we rely on a new abstraction model
that we think is more appropriate for our language design
requirements, which are: i) expressiveness: the language must
be human-friendly and not attached to a specific platform ii)
modularity: administrators must be able to write and compose
independent control modules iii) flexibility: the language must
cover most of current network functionalities (e.g., access
control, routing, load balancing), and should not impose too
strong restriction in order to be able to meet, as far as possible,
future requirements as they raise.

The remainder of this paper is organized as follows: in
section II, we discuss network abstraction models that are
currently used by existing control languages, then we present
our new approach. Section III gives an overview of our
language’s key elements. An illustration program is exposed
through a toy example in section IV. Finally, we conclude and
briefly present ongoing work.

II. CHOOSING THE RIGHT ABSTRACTION MODEL

A. Background

One of the major challenges of virtualizing software-
defined networks is the choice of the network abstraction
model that will be used to abstract the physical infrastructure.
There are currently two main approaches : i) the overlay
network model and ii) the single router abstraction model.

To the best of our knowledge, most network control
languages use the overlay network model which consists in
overlaying a virtual network of multiple switches on top of a
shared physical infrastructure [8]. Virtual switches are very
similar to standard switches in the physical infrastructure:
they include lookup tables, ports and expose a set of basic
forwarding actions. Virtual switches can also map to one or

more physical switches, and are connected to each other within
a logical topology via virtual links.

As an alternative to the overlay network model, Keller and
Rexford proposed the Platform as a Service model [9]. This
model abstracts the network view in a single logical router
in order to enable network administrators to focus solely on
their in-network functions (i.e., any functionality that benefits
from being inside the network) rather then worrying about
managing the virtual network. The single router includes three
main processing components : 1) a routing component that
provides the ability to customize path selection 2) a data
plane component that exposes some basic functionalities like
forwarding and 3) a general-purpose processing component
that exposes in-network functions like firewall, load balancing
or access control.

The question, then, is which model to choose for our
network control language, taking into account that the abstract
model must ensure the expressiveness, the modularity and the
evolutivity of the language.

B. Models discussion

As mentioned earlier, the biggest advantage of using the
Platform as a Service model is that it allows network ad-
ministrators to focus only on the expression of in-network
functions that they plan to install on their network. However,
we think that, from a network programming language point
of view, this model suffers from a big disadvantage: it forces
network administrators to put different in-network functions
within the same router, thereby reducing significantly the reuse
of this component. Moreover, the resulting application will be a
monolithic program in which the logic of different in-network
functions are inexorably intertwined, making it difficult to test,
debug, maintain and reuse.

On the other hand, the overlay network is a more modular
approach, since the model allows network administrators to
define multiple logical switches, on which they can install in-
network functions. These switches can be afterwards reused
to, easily and quickly, construct sophisticated network control
applications. However, we think that this model suffers from
one major shortcoming, that is, unlike the platform as a service
model, there is no distinction between in-network functions
and packet transport functions, despite the fact that these two
auxiliary policies solve two different problems. Indeed, this
shortcoming makes the definition of in-network functions more
difficult, since their specification must also consider issues
related to packet transport across the virtual network (e.g.,
selecting the appropriate virtual path among several available).

C. Edge and Fabric: lifting up the modularity at the language
level

In order to overcome the limitations of both models, we
relied on a well-known idea within the network designer
community, which is making an explicit distinction between
the network edge and network core devices, as it is the case
with MPLS networks.

Explicitly distinguishing between edge and core functions
was also used by Casado et al. in a proposal for extending
current SDN infrastructures [10]. We propose to integrate this

concept in our network abstraction model, thereby lifting it up
at the language level. Network administrators will thus build
their virtual networks using two types of virtual devices:

• Edges which are general-purpose processing devices
used to support the execution of in-network functions.

• Fabrics which are more restricted processing devices
used to deal with packet transport issues.

Considering the above discussion, using edges and fabrics
will allow us to take advantage of both previous models. In-
deed, using fabrics enables network administrators to abstract
packet transport issues, thereby allowing them to focus solely
on the definition of complex in-network functions. On the other
hand, the possibility to use multiple edges allows to decouple
and distinguish in-network functions, thus facilitating their test,
debug and, more especially, their reuse. Moreover, we believe
that our approach will enable network administrators to write
control programs which are much easier to understand, reason
about and maintain.

III. LANGUAGE OVERVIEW

Virtualization plays a central role in our language, and
hence every control program will be composed of two main
parts (and some initialization routines): the first part deals with
the design of the virtual network, and the second part contains
control policies that will be applied over the virtual network. In
the following, we describe in more detail each of these parts.
Figure 1 summarizes the key elements of the language.

A. Virtual network design

In order to allow network administrators to easily and
clearly design their virtual networks, we chose a fully declara-
tive approach. Thus, building a virtual network would only
imply describing virtual devices and the connections (i.e.,
virtual links) that exist between them.

Virtual Network Design:
addHost (name)
addNetwork (name)
addEdge (name , ports)
addFabric (name , ports)
addLink((name , port) , (name , port))

Edge Primitives:
Filters : match(h=v) | all packets | no packets
Actions : forward(destination) | modify(h=v) | tag(label) | drop
Queries : packet(limit) | byte count(every) | packet count(every)

Fabric Primitives:
catch(flow)
carry(destination, requirements=None)

Fig. 1. Summary of the language’s key elements

We distinguish three types of components, depending on
their role in the virtual network.

The first type of components are hosts and networks that
are used to represent sources and destinations of data flows.
A host can represent a single end system (e.g., end host,
application-level gateway or proprietary hardware appliance),
while a network can represent a range of end systems. The use
of these two components both discharges administrators from

relying on specific addresses and makes control policies easier
to read and write.

The second type of components are edges which are
general processing devices placed at the border of the virtual
network in order to support in-network functions installation.
Thus, edges play the role of host-network interfaces by the
fact that ingress edges will receive incoming data flows, inspect
packet’s headers to identify which in-network function is to be
considered, and redirect flows to an egress edge for delivery to
the destination, or to an intermediate edge for potential further
treatment. In addition, it is important to stress that edges are
purely logical entities that can map to one or more switches
in the physical infrastructure.

The third and last type of components are fabrics which
represent the network’s raw forwarding capacities. The fabric’s
primary purpose is packet transport. It exposes only a minimal
set of forwarding primitives and uses a specific addressing
mechanism that is much simpler than the one used by edges
(i.e., using a unique label instead of several header fields). In
normal cases, all edges in the virtual network will be connected
to a unique fabric. However, in some specific cases, virtual
networks can include more than one fabric according to the
network administrator’s high level goals. Indeed, it is important
to note that two fabrics within the same model will map to
two separate collections of physical switches. This design
choice allows us to capture specific network policies such as
expressing an explicit physical backup path for critical data
flows.

Once network administrators have finished with the de-
scription of virtual devices, they will then just need to set-up
the different virtual links in order to connect hosts or networks
to edges, and edges to fabrics.

B. High-level policy functions

Using two types of virtual devices, namely edge and fabric,
implies having two distinct instruction sets. Indeed, this will
allow the two components to evolve separately, focusing on
their specific problems.

Fabrics expose two main primitives that are catch and
carry. The first primitive captures a specific flow, identified by
a label, entering any port of the fabric. The label identifying
the data flow has been inserted beforehand by an edge. The
second instruction carry transports a flow from an input port
to an output port, it also allows to specify some forwarding re-
quirements such as maximum delay to guarantee or minimum
bandwidth to offer.

Edges are more complex devices than fabrics, and hence
expose a richer set of instructions. Edge primitives are divided
into three main groups : Filters, Actions and Queries.

Filters are primitives that do not change the packet’s con-
tents. The language’s main filter is the match(h=v) primitive,
which, when installed on an edge, returns a set of packets that
have a field h in their header matching the value v.

Contrary to filters, actions are primitives that can change
packets value or location. They are applied on sets of packets
that are returned by installed filters. The simplest action is drop
which discards a packet received on one of the edge’s input

Fig. 2. Virtual network topology use case

port. The forward action allows to move, within the same edge,
a packet from an input port to an output port. The modify action
is used to update one or more of the packet’s header fields.
Lastly, the tag action allows to attach a label onto incoming
packets, considering that labels are the unique information that
a fabric will use to identify a packet.

The third and last group of edge primitives are queries.
Like actions, queries are applied on filters. We distinguish two
main kinds of queries depending on the type of information
they return. The first kind is composed of packet count and
byte count which, as their name suggests, allow to periodically
poll packet and byte counters that are associated to filters. The
second kind of query is packet which allows to poll entire raw
packets. In addition to providing the ability to conduct network
monitoring, queries enable network administrators to construct
dynamic policies by allowing them to associate queries to
callback functions that are executed each time a raw data is
collected or a timer has elapsed.

IV. TOY EXAMPLE

This section presents a simple use case in which we illus-
trate a preliminary version of our high-level network control
language. The overall management goal of this use case is to
configure an enterprise network in order to prevent external
access to sensitive resources. The policy is that any user who
is part of the enterprise’s internal network can have access to
all available resources (i.e., web server and computer cluster).
On the contrary, external users can only have access to web
resources and are not allowed to access the enterprise’s cluster.

As described previously, the first step consists in describing
a virtual network that matches our high-level goals, thus
abstracting all irrelevant information that are related to the
physical infrastructure. The following program is used to
describe the virtual network showed in figure 2 (notice that
not all links are represented in this extract):
Virtual network topology
topo.addEdge(name="ingress", ports=(1,2,3))
topo.addEdge(name="egress", ports=(1,2,3))
topo.addEdge(name="gateway", ports=(1))
topo.addFabric(name="fabric", ports(1,2,3))
topo.addNetwork(name="internal_users")
topo.addNetwork(name="Internet")
topo.addHost(name="web_server")
topo.addHost(name="computer_cluster")
topo.addLink(("ingress",3), ("fabric",1))
topo.addLink(("gateway",1), ("fabric",2))
topo.addLink(("egress",3), ("fabric",3))
...

Having described the virtual network, the next step is the
specification of the control policy. The following piece of code

represents the in-network function that will be installed on
the ingress edge. This function configures the edge so that it
classifies incoming internal flows as “trusted” and the external
ones as “unreliable”. Once the classification has been done, the
ingress edge will simply forward flows to the fabric in order
to be transported to their right destination.
ingress function
match(edge="ingress",source="internal_users") >>

tag("trusted_flow") >>
forward("fabric")

match(edge="ingress",source="Internet") >>
tag("unreliable_flow") >>
forward("fabric")

In the context of this example, the gateway is only designed
to analyze unreliable flows. We therefore use the following
transport function to configure the fabric so that unreliable
flows are transported to the gateway, while trusted ones are
directly transported to the egress edge.
fabric function
catch(fabric="fabric",flow="trusted_flow") >>

carry("egress")
catch(fabric="fabric",flow="unreliable_flow") >>

carry("gateway")

For the gateway’s configuration, we define the below in-
network function that performs two actions. The first one is
to discard all flows that want to reach the enterprise’s cluster,
since only unreliable flows are redirected to the gateway. The
second one is to reclassify all web flows as “trusted” flows,
since they are allowed to access the enterprise’s web server.
gateway function (for unreliable flows)
match(edge="gateway",destination="web_server") >>
tag("trusted_flow") >>
forward("fabric")

match(edge="gateway",destination="computer_cluster") >>
drop

Finally, the last in-network function simply configures the
egress edge in a manner that it forwards web requests to the
web server and forwards computation requests to the computer
cluster.
egress function
match(edge="egress",destination="web_server") >>

forward("web_server")
match(edge="egress",destination="computer_cluster") >>
forward("computer_cluster")

Due to space constraints, we did not detail the control
policy responsible for handling server and cluster responses.

It is important to stress that none of the previous in-
network functions consider packet transport issues. Indeed, all
focus only on their high-level goal (i.e., classifying in ingress,
analyzing in gateway and delivering in egress), and at the end,
functions just send data flows to the fabric which ensures the
transportation to the right destination.

V. CONCLUSION AND CURRENT WORK

This paper described the design of a new high-level lan-
guage for “programming” software-defined networks. We used
network virtualization as a main feature in order to spare ad-
ministrators the trouble of dealing with the myriad of irrelevant
information that are related to the physical infrastructure, thus
complying with the SDN promise to make network program-
ming easier. The novelty of this language lies in the use of a

new virtual model that we think is more appropriate for both
language design requirements (i.e., expressiveness, modularity
and flexibility) and network abstraction requirements (i.e.,
providing just enough information in order to express the
desired behavior).

Currently, we are working on the design and the technical
development of a network hypervisor that will support the
control language we presented. In addition to the main con-
trol module, which contains the virtual network and control
policies, the hypervisor will rely on a mapping module, which
mainly consists in associative arrays binding each virtual unit
to its respective physical counterpart of the underlying infras-
tructure. This mapping information will be reused afterwards
by the network hypervisor’s runtime to generate a policy for
the physical infrastructure that is semantically equivalent to
the one applied over the virtual network.

We have implemented our network control language as a
domain-specific language embedded in Python. To map the
logical state of the virtual network onto the physical infras-
tructure, the prototype relies on the POX controller, an open
source development platform for Python-based SDN control
applications. At present, we are working on the hypervisor’s
proactive part that compiles the language’s policies into Open-
Flow instructions. The immediate next steps include, first, the
development of the reactive part that allows to handle network
events coming from the infrastructure (e.g., link failures);
second, testing the prototype on more complex use cases.

REFERENCES

[1] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: Towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, 2008.

[2] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Notices, vol. 46, no. 9, 2011.

[3] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” SIGPLAN
Notices, vol. 47, no. 1, 2012.

[4] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proc. of the First
Workshop on Hot Topics in Software Defined Networks (HotSDN’12).
ACM, 2012.

[5] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in Proc. of the 9th USENIX Conference on Operating Systems Design
and Implementation (OSDI’10). USENIX Association, 2010.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software Defined Networks,” in 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). USENIX
Association, 2013.

[7] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, 2013.

[8] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the Network Forwarding Plane,” in Proc. of the Workshop on Pro-
grammable Routers for Extensible Services of Tomorrow (PRESTO’10).
ACM, 2010.

[9] E. Keller and J. Rexford, “The ”Platform As a Service” Model for
Networking,” in Proc. of the 2010 Internet Network Management
Workshop (INM/WREN’10). USENIX Association, 2010.

[10] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
Retrospective on Evolving SDN,” in Proc. of the First Workshop on
Hot Topics in Software Defined Networks (HotSDN’12). ACM, 2012.

