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Abstract—YouTube is the most popular service in today’s
Internet. Google relies on its massive Content Delivery Network
(CDN) to push YouTube videos as close as possible to the
end-users to improve their Quality of Experience (QoE), using
dynamic server selection strategies. Such traffic delivery policies
can have a relevant impact on the traffic routed through the
Internet Service Providers (ISPs) providing the access, but most
importantly, they can have negative effects on the end-user
QoE. In this paper we shed light on the problem of diagnosing
QoE-based performance degradation events in YouTube’s traffic.
Through the analysis of one month of YouTube flow traces
collected at the network of a large European ISP, we particularly
identify and drill down a Google’s CDN server selection policy
negatively impacting the watching experience of YouTube users
during several days at peak-load times. The analysis combines
both the user-side perspective and the CDN perspective of the
end-to-end YouTube delivery service to diagnose the problem.
The main contributions of the paper are threefold: firstly, we
provide a large-scale characterization of the YouTube service in
terms of traffic characteristics and provisioning behavior of the

Google CDN servers. Secondly, we introduce simple yet effective
QoE-based KPIs to monitor YouTube videos from the end-user
perspective. Finally and most important, we analyze and provide
evidence of the occurrence of QoE-based YouTube anomalies
induced by CDN server selection policies, which are somehow
normally hidden from the common knowledge of the end-user.
This is a main issue for ISPs, who see their reputation degrade
when such events occur, even if Google is the culprit.

Keywords—YouTube; Content Delivery Networks; Performance
Degradation; Quality of Experience; Empirical Entropy; Cluster-
ing.

I. INTRODUCTION

YouTube is the most popular video streaming service in
today’s Internet, and is responsible for more than 30% of the
overall Internet traffic [1], [2]. Every minute, 100 hours of
video content are uploaded, and more than one billion users
visit YouTube each month1. This enormous popularity poses
complex challenges to network operators, who need to design
their systems properly to cope with the high volume of traffic
and the large number of users. The provisioning of YouTube
through the massive Google Content Delivery Network (CDN)
[9] makes the overall picture even more complicated for ISPs,

The research leading to these results has received funding from the European
Union under the FP7 Grant Agreement n. 318627, “mPlane”. The research
leading to these results has been partially performed within the framework of
the projects Darwin 4 and N-0 at the Telecommunications Research Center
Vienna (FTW), and has been partially funded by the Austrian Government
and the City of Vienna through the program COMET.

1http://www.youtube.com/yt/press/statistics.html

as the video requests are served from different servers at
different times.

CDNs are a vital part of current Internet, as they host
a large share of today’s Internet traffic [1], [2]. Massively
distributed server infrastructures are deployed to replicate con-
tent and make it accessible from different Internet locations.
For example, Google operates tens of data-centers and server
clusters worldwide [9], and deploys thousands of servers inside
ISPs, through their Google Global Cache approach2.

The intrinsic distributed nature of CDNs allows to better
cope with the ever-increasing users’ content demand. Popular
applications such as YouTube are pushed as close as possible
to end-users to reduce latency and improve their Quality of
Experience (QoE). Load balancing policies are commonly
used to limit server load, handle internal outages, help during
service migration, etc. Unfortunately, all these control policies
are typically very dynamic and the details of their internal
mechanisms are not publicly available. The highly distributed
server deployment and adaptive behavior of Google’s CDN al-
low for achieving high availability and performance; however,
these pose important challenges to the ISPs. The traffic served
by CDNs can shift from one cache location to another in just
minutes, causing large fluctuations on the traffic volume carried
through different ISP network paths. As a result, the traffic
engineering policies deployed by ISPs might be overruled by
the CDN caching selection policies, potentially resulting in sub
optimal end-users’ QoE.

Google has recently acknowledged the need of monitoring
the content delivery network performance by launching the
Video Quality Report (VQR) initiative3. Through this service,
users can compare statistics related to the perceived quality
when accessing YouTube from different ISPs. Interestingly,
the only root cause highlighted by such reports is related to
limited ISPs bandwidth provisioning. While it is clear that the
video service quality is correlated to the available bandwidth,
ISPs are not always the only responsible in case of problems.
In particular, in this paper we report a case study occurred at
the network of a major European ISP, in which sub-optimal
server selection strategies adopted by the Google CDN resulted
in sharp users’ experience degradation4. This event shows
that actually Google itself might be responsible for YouTube
service degradation.

2https://peering.google.com/about/ggc.html
3http://www.google.com/get/videoqualityreport/
4Conversations with the ISP confirmed that the effect was indeed negatively

perceived by the customers.
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The most notable recent work related to the understanding
of performance degradation events in video distribution from
the end user side is [14], where authors conduct a taxonomy
of video quality problems using a large-scale dataset of client-
side measurements. In this paper we consider the problem
of diagnosing QoE-based performance degradation events in
YouTube’s traffic, using exclusively ISP-based measurements.
Through the analysis of one month of YouTube flow traces
collected at the network of a large European ISP, we drill down
a Google’s CDN server selection policy negatively impacting
the watching experience of YouTube users during several days
at peak-load times. In our study we develop a very simple
QoE-based KPI to monitor YouTube videos from the end-user
perspective, and use it to identify the aforementioned event. We
expect that by explicitly showing that events in which Google
server selection policies result in poor end-user experience
actually occur, third-party based monitoring initiatives such as
the Google VQR would start additionally reporting their own
performance.

The insights of our analysis are particularly useful for
the ISP, who usually has a hard time in figuring out where
are the problems of the service delivery when their cus-
tomers experience poor performance with YouTube. In the
EU project mPlane5 we are developing a global Internet-
scale measurement platform to better understand and diagnose
performance degradation events in large-scale services such as
YouTube, and this study provides rich input to better develop
the measurement and analysis processes.

This paper focuses exclusively on the diagnosis of the
aforementioned performance degradation event, and not on its
mitigation. The counteractions the ISP and/or the CDN might
take upon detection of such events are out of the scope of our
study.

The remainder of this paper is organized as follows: Section
II provides a brief overview on the papers characterizing
YouTube, and those focusing on analyzing performance degra-
dation issues. In Section III we describe the dataset used in
the study, and present additional details on the data analysis
approach we use, consisting of time-series analysis, entropy-
based analysis, statistical distribution-based analysis, and clus-
tering. Section IV presents a characterization of the end-to-
end YouTube service as observed from the collected traces,
and introduces the QoE-based KPIs for YouTube monitoring.
The analysis and diagnosis of the performance degradation
in YouTube is performed in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

The study of the Internet traffic and applications delivered
by CDNs has gained important momentum in the last few years
[1], [2]. In particular, several studies characterize CDNs archi-
tectures and focus on the optimization of their performance,
servers location, throughput and latencies [9]–[11]. When it
comes to YouTube, its overwhelming popularity and traffic
volume have motivated a large research effort on understanding
how the service works and performs [3]–[5], covering aspects
such as content delivery mechanisms, video popularity, caching
strategies, and CDN server selection policies among others.

5http://www.ict-mplane.eu/

Some very recent papers tackle the problem of CDN
monitoring and detection of performance degradation events in
the provisioned services [14]–[16]. In our recent work [15] we
have started to study the problem of detecting network traffic
anomalies in Internet-scale services provided by major CDNs
such as Akamai and Google CDN. In [16], authors present
a framework to diagnose large latency changes in CDNs’
delivered traffic, and find out that nearly 1% of the daily
latency changes observed between users and Google CDN
servers increase delay by more than 100 msec. From those
latency changes, more than 40% correspond to interdomain
routing changes, and more than one-third involve a shift in
traffic to different CDN servers. Finally, authors in [14] present
a taxonomy of video quality problems using a large-scale
dataset of client-side measurements. Among their findings is
the observation that about 50% of the observed performance
degradation events persist for at least 2 hours, and that between
30-60% are related to the content provider, the CDN, or the
client ISP.

III. DATASET AND ANALYSIS APPROACH

The dataset used for the analysis corresponds to one month
of YouTube flows, collected at a link of a European fixed-line
ISP aggregating 20,000 residential customers who access the
Internet through ADSL connections. The complete data spans
more than 10M YouTube video flows, served from more than
3,600 Google servers. To identify and diagnose performance
issues, we rely on the analysis of the empirical probability
distributions of several features describing the YouTube traffic
delivery and its performance, such as download throughput,
traffic volume served per each observed Google server, etc.. To
process the information carried on the probability distributions,
we employ entropy as a summarization tool of the empirical
PDFs, as well as their inter-distance through an extension of
the well know Kullback-Leibler (KL) divergence [12]. In all
cases, the study is based on the analysis of the resulting time-
series, when considering the temporal evolution of the different
features. Finally, we additionally employ unsupervised analysis
techniques based on clustering to provide first steps in the
unsupervised characterization of the detected problems.

A. YouTube Dataset

Flows were collected from April the 15th till May the 15th
2013. Flows are captured using the Tstat passive monitoring
system [18]. Tstat is an Open Source packet analyzer capable
of monitoring links up to several Gb/s speed using commodity
hardware. Using Tstat filtering and classification modules, we
only keep those flows carrying YouTube videos. The complete
dataset is imported and analyzed through the DBStream large-
scale data analysis system [19]. Finally, using the server IP
addresses of the flows, the complete dataset is complemented
with the name of the ASes hosting the content, extracted from
the MaxMind GeoCity databases6.

B. Entropy-based Analysis

The sample entropy has been proposed for traffic analysis
in multiple contexts, we particularly follow the approach
presented in [17]. In a nutshell, given an empirical distribution

6MaxMind GeoIP Databases, http://www.maxmind.com.



of a certain variable, its sample entropy captures in a single
value a measure of its “shape”. More precisely, the entropy
of a random variable X is H(X) = −

∑n

i=1
p(xi)log(p(xi)),

where x1, . . . , xn is the range of values forX , and p(xi) is the
probability that X takes the value xi. The values of p(xi) are
computed from the empirical probability distributions. Similar
to [17], we normalize the sample entropy (between 0 and 1)
to the factor log(n0), where n0 is the number of distinct xi

values present in a given measurement slot.

C. Temporal-similarity Analysis

Another approach to summarize changes in the distribution
of a certain variable is by computing the KL divergence. Given
two probability distributions p and q defined over a common
discrete probability space, the KL divergence provides a non-
negative measure of the statistical similarity between p and
q. To visualize and quantify the degree of (dis)similarity of
a large number of distributions over days and even weeks,
we use an ad-hoc graphical tool proposed in [12], referred to
as Temporal Similarity Plot (TSP). The TSP allows pointing
out the presence of temporal patterns and (ir)regularities in
distribution time series, by simple graphical inspection. The
TSP is a symmetrical checker-board heat-map like plot, where
each point {i, j} represents the degree of similarity between
the distributions at time bins ti and tj . In the following
analysis, we use the TSP to better depict changes in the sever
selection policies used by Google to serve YouTube videos.

D. Unsupervised Analysis through Clustering

The final analysis technique we employ in the analysis is
clustering. The objective of clustering is to partition a set
of unlabeled patterns into homogeneous groups of similar
characteristics, based on some measure of similarity. Our goal
is to verify how feasible it is to identify the occurrence of the
analyzed performance degradation event in an unsupervised
manner. In particular, we aggregate traffic per server IP on a
temporal basis, and define a set of traffic descriptors charac-
terizing the behavior of each server. By using the well known
DBSCAN clustering approach [20], we show that it is possible
to identify the presence of the QoE-based degradation event
in the set of server IPs providing the videos. DBSCAN is
a powerful density-based clustering algorithm that discovers
clusters of arbitrary shapes and sizes, and it perfectly fits
our unsupervised traffic analysis, because it is not necessary
to specify a-priori difficult to set parameters such as the
number of clusters to identify. We use a simple auto-calibration
approach to define the required inputs used by DBSCAN,
similar to [21].

IV. QUALITY OF EXPERIENCE AND TRAFFIC
CHARACTERIZATION

Even if the download throughput has a direct impact on
the performance of YouTube provisioning [6], our previous
studies [7], [8] have shown that the main impairment affecting
the QoE of the end-users watching HTTP video-streaming
videos are playback stallings, i.e., the events when the player
stops the playback. One or two stalling events are enough to
heavily impact the experience of the end user. Given that the
analyzed measurements report the average per flow download
throughput as one of the monitoring KPIs, we rely on our
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(a) YouTube overall QoE vs. downlink rate. (b) YouTube acceptability vs. downlink rate.

Figure 1. YouTube overall QoE and acceptability in terms of average
downlink rate. The curves correspond to a best-case scenario, in which only
360p videos were considered. In a more general case with higher resolution
videos (e.g., 1080p HD), the downlink rate has an even stronger effect on the
user experience. The Figs. are taken from the study performed at [7].

previous results to better understand how download throughput
relates to QoE and stallings in YouTube.

A. QoE-based YouTube Monitoring

Fig. 1 reports the overall QoE and the acceptance rate as
declared by users watching YouTube videos during a field trial
test conducted and reported in [7], both as a function of the
average download rate. During this one-month long field trial
test, about 40 users regularly reported their experience on surf-
ing their preferred YouTube videos under changing network
conditions, artificially modified through traffic shaping at the
core of the network. Fig. 1(a) shows the overall QoE as a
function of the average download rate, using a 5-points MOS
scale, where 1 corresponds to very bad QoE and 5 to optimal.
The figure clearly shows that the overall QoE drops from a
MOS score close to 4 at 800 kbps to a MOS score below
3 at 470 kbps. A MOS score of 4 corresponds to good QoE,
whereas a MOS score below 3 already represents poor quality.
The same happens with the service acceptance rate, as reported
in Fig. 1(b). In the analysis, we shall consider the thresholds
Th1

= 400 kbps and Th2
= 800 kbps as the throughput values

splitting by bad, fair, and good QoE. Both curves correspond to
a best-case scenario, in which only 360p videos were watched
by the users. As we see next, both 360p videos and videos
with higher resolutions are present in the dataset, thus QoE
degradations are potentially worse than those reported.

In addition, we introduce a simple yet effective QoE-based
KPI to monitor the QoE of YouTube videos from network
measurements. In [8] we have already devised an approach
to estimate stallings in YouTube from passive measurements
at the core network, but the used techniques can not be
applied when YouTube flows are carried over HTTPS, as it is
currently happening. Therefore, using the same measurements
of the field trial, we introduce a new approach. Intuitively,
when the average download throughput (ADT) is lower than
the corresponding video bit rate (VBR), the player buffer
becomes gradually empty, ultimately leading to the stalling of
the playback. We define β = ADT/VBR as a metric reflecting
QoE. Fig. 2 reports (a) the measured number of stallings events
and (b) the QoE user feedbacks as a function of β. In particular,
no stallings are observed for β > 1.25, and user experience
is rather optimal (MOS > 4). As a direct application of these
results, if we consider standard 360p YouTube videos, which
have an average VBR = 600 kbps [5], an ADT = 750 kbps
would result in a rather high user QoE, which is the value
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Figure 2. β = ADT/VBR as a metric reflecting user experience and engagement. Users have a much better experience and watch videos for longer time when
β > 1.25, corresponding to ADT = 750 kbps in 360p videos.

AS # IPs #/24 #/16 % bytes % flows

All server IPs 3646 97 22 100 100

15169 (Google) 2272 60 2 80.8 77.3

43515 (YouTube) 1222 12 1 19.1 22.5

36040 (YouTube) 43 2 2 < 0.1 < 0.2

Table I. NUMBER OF IPS HOSTING YOUTUBE, AND SHARES OF FLOWS

AND BYTES PER AS.

recommended by video providers in case of 360p videos. Fig.
2(c) additionally shows how the fraction λ = VPT/VD (video
played time and duration) of the video time actually viewed
by the end users actually increases when β increases, specially
above the β = 1.25 threshold.

B. Understanding the YouTube Traffic

Before reporting the results of the YouTube performance
degradation analysis, and in order to improve the understand-
ing of the diagnosis process, we provide next an extensive
characterization of the behavior of YouTube as observed in
the first 4 days of the dataset. During these days we do not
observe an important performance degradation, so therefore
take the analysis as a reference of normal operation. The
analysis considers the complete end-to-end service, describing
(i) the hosting infrastructure, (ii) the traffic characteristics, and
(iii) the performance of video delivery in terms of download
flow throughput.

YouTube Hosting Infrastructure: Table I reports the
number of unique server IPs serving YouTube, as well as the
ASes holding the major shares of servers. To understand how
these IPs are grouped, the table additionally shows the number
of IPs per different network prefix. Two Google ASes hold the
majority of the IPs (i.e., AS 15169 and AS 43515), grouped
in a small number of /16 subnets. About 80% of the YouTube
volume and number of flows are served by the AS 15169,
whereas servers in AS 43515 are used for complementing the
videos delivery to the customers of the monitored network.

To appreciate which of the aforementioned IP blocks
host the majority of the YouTube flows, Fig. 3(a) depicts
the distribution of the IP ranges and the flows per server
IP. The majority of the YouTube flows are served by three
well separated /16 blocks. Fig. 3(b) additionally depicts the
number of flows served per server IP. Separated steps on
the distributions evidences the presence of preferred IPs or
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Figure 3. IP ranges and flows per server IP hosting YouTube. The majority
of the YouTube flows are server by very localized IP blocks.
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Figure 4. IPs and flows per hour. As much as 700 different IPs actively serve
YouTube flows during peak-load hours.

caches serving a big number of flows, which are most probably
selected by their low latency towards the end customers.

Fig. 4 shows the dynamics of the traffic provisioning
from the aforementioned IPs and ASes. Fig. 4(a) depicts the
number of active IPs and Fig. 4(b) the flow counts per hour
(normalized) for multiple consecutive days. As much as 700
different IPs actively serve YouTube flows during peak-load
hours. Active IPs from either AS 43515 or AS 15169 show
an abrupt increase at specific times of the day; for example,
about 200 IPs from AS 43515 become active daily at about
10:00. In terms of flow counts, Fig. 4(b) evidences a very spiky
behavior in the flows served from AS 43515, and some of
the load balancing policies followed by Google, e.g., a drastic
switch from AS 15169 to AS 43515 of the flows served at
about 18:00.

How Far are YouTube Videos?: Google redirects user
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Figure 5. min RTT to servers in different ASes. The server selection strategies
performed by Google are not only based on closest servers.

requests to the closest server hosting the content in terms of
latency [9]. Similar to [13], we investigate now the latency and
the location of the previously identified servers, considering
the distance to the vantage point in terms of Round Trip Time
(RTT). The RTT to any specific IP address consists of both the
propagation delay and the processing delay, both at destination
as well as at every intermediate node. Given a large number of
RTT samples to a specific IP address, the minimum RTT values
are an approximated measure of the propagation delay, which
is directly related to the location of the underlying server. It
follows immediately that IPs exposing similar min RTT are
likely to be located at a similar distance from the vantage
point, whereas IPs with very different min RTTs are located in
different locations. RTT measurements are passively performed
on top of the YouTube flows.

Fig. 5 shows the distribution of the min RTT values for
the flows observed in the analyzed 4 days. Steps in the CDF
suggest the presence of different data-centers or clusters of co-
located servers. Fig. 5(a) shows that about 65% of the flows
come from servers most probably located in the same country
of the ISP, as min RTT < 5 ms. This is coherent with the
fact that Google selects the servers with lower latency to the
clients. A further differentiation by AS reveals that the most
used servers in AS 15169 are located much closer than the
most used servers in AS 43515. Fig. 5(b) depicts the dynamic
behavior of the servers’ selection and load balancing strategies
used by Google to choose the servers. In particular, the figure
reports the variation of the distribution of min RTT measured
on the YouTube flows for a complete day, considering con-
tiguous time bins of 3 hours length. Correlating these results
with those in Fig. 4 permits to better understand the daily
variations. Whereas the majority of the flows are served from
very close servers until mid-day, mainly corresponding to AS
15169, servers in farther locations are additionally selected
from 14:00 on, corresponding to the increase in the number of
flows served from AS 43515.

YouTube Traffic and Performance: We study now the
characteristics of the YouTube flows, as well as the perfor-
mance achieved in terms of download throughput. Flows and
video sizes, durations, and formats actually determine to a
large extent the impact of the download throughput on the user
experience, thus the interest of this analysis. Fig. 6 depicts the
distribution of flow size for the different hosting ASes. Fig.
6(a) shows that about 20% of the flows are smaller than 1
MB. The CDF reveals a set of marked steps at specific flow
sizes, for example at 1.8 MB and 2.5 MB. YouTube currently
delivers 240p and 360p videos in chunks of exactly these

sizes, explaining such steps. A similar behavior is observed for
chunks of bigger sizes. About 75% of the flows are smaller
than 4 MB, 90% of the flows are smaller than 10 MB, and
a very small fraction of flows are elephant flows, with sizes
higher than 100 MB. Fig. 6(b) depicts the distribution of
the flows duration, in minutes. The flow duration is below
3 minutes for about 95% of the total flows. The abrupt step
in the CDF at about 30 seconds is most probably linked to
the aforementioned video chunk sizes, but we were not able
to verify this observation. About 85% of the flows are shorter
than 90 seconds. Fig. 6(c) shows the distribution of the video
bitrate values. Almost 97% of the observed videos have a
video bitrate smaller than 1Mbps, and the steps in the CDF
at around 300kbps, 550kbps, and 800kbps correspond to the
most preferred YouTube video formats present in our traces. To
complement this picture, Fig. 6(d) shows the distribution of the
video format, in terms of the YouTube itag values. The itag is
an undocumented code used internally by YouTube to identify
video formats (i.e., type and resolution). The largest majority
of videos have itag codes 18, 22, and 34, corresponding to MP4
360p, MP4 720p, and FLV 360p video formats respectively.

To conclude the characterization, Fig. 7 reports the dis-
tribution of the average download throughput. The figure
consider only flows bigger than 1 MB, to provide more reliable
and stable results (i.e., avoid spurious variations due to the
TCP protocol start-up). More than 30% of the flows achieve
a download throughput higher than 1 Mbps, whereas more
than 15% of the flows achieve a throughput above 2 Mbps.
Comparing figs. 7 and 6(c) it is rather difficult to understand
whether the users are experiencing a proper QoE. Our manual
inspection of the traces suggest that no major impairments
were observed during this 4 day period. In the next section,
we shall additionally show the analysis of the QoE-based KPI
β to further understand how good is the QoE of the YouTube
users in this network.

V. YOUTUBE ANOMALY ANALYSIS

In this section we focus on the detection and diagnosis of
the Google’s CDN server selection policy negatively impacting
the watching experience of YouTube users during several days
at peak-load times. Conversations with the ISP confirmed that
the effect was indeed negatively perceived by the customers,
which triggered a complete Root Cause Analysis (RCA) pro-
cedure to identify the origins of the problem. As the issue
was caused by an unexpected cache selection done by Google
(at least according to our diagnosis analysis), ISP’s internal
RCA did not identify any problems inside its boundaries. As
reported by the ISP operations team, the anomaly occurs on
Wednesday the 8th of May. We therefore focus the analysis
on the week spanning the anomaly, from Monday the 6th till
Sunday the 12th. In the following analysis, we generally use
50% percentile values instead of averages, to filter out outlying
values.

A. Detecting the QoE-based Anomaly

Fig. 8 plots the time series of three different performance
indicators related to the YouTube download performance and
to the end-user QoE. Fig. 8(a) depicts the median across all
YouTube flows of the download flow throughput during the
complete week. There is a normal reduction of the throughput
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(c) YouTube video bitrate.
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Figure 6. YouTube flows and video characteristics. Steps in the CDF in Fig.(a) at flow sizes 1.8 MB, 2.5 MB, 3.7 MB, etc. correspond to fixed chunk-sizes
used by YouTube to deliver different video resolutions and bitrates. The largest majority of videos correspond to MP4 360p, MP4 720p, and FLV 360p formats.
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Figure 7. Average YouTube flow downlink throughput. More than 30% of
the flows achieve a download throughput higher than 1 Mbps. The observed
video bitrates suggest that the throughput is partially governed by the specific
video bitrate and not exclusively by the network.

on Monday and Tuesday at peak-load time, between 20hs and
23hs. However, from Wednesday on, this drop is significantly
higher, and drops way below the bad QoE threshold Th1

= 400
kbps, flagging a potential QoE impact to the users. Fig. 8(b)
plots the entropy of the QoE classes built from thresholds
Th1

= 400 kbps and Th2
= 800 kbps, consisting of bad

QoE for flows with average download throughput below Th1
,

fair QoE for flows with average download throughput between
Th1

and Th2
, and good QoE for flows with average download

throughput above Th2
. Recall that these thresholds correspond

to the QoE mappings presented in Fig. 1, which only cover
360p videos. Still, as depicted in Fig.6(d), the largest ma-
jority of the videos observed in the dataset corresponds to
360p videos and higher bitrate videos, thus Th1

and Th2
are

somehow conservative thresholds, and QoE impairments might
be even higher under the proposed QoE classes. The drop in
the throughput combined with the marked drop in the time
series of the QoE classes entropy actually reveals that a major
share of the YouTube videos are falling into the bad QoE class.
Finally, Fig. 8(c) actually confirms that these drops are heavily
affecting the user experience, as the time series of the KPI β
falls well into the video stallings region, depicted in Fig. 2.

B. Anomaly Diagnosis

The root causes of the detected anomalies can be multiple:
the Google CDN server selection strategies might be choosing
wrong servers, the YouTube servers might be overloaded, path
changes with much higher RTT from servers to the customers
might have occurred [16], paths might be congested, or there
might be problems at the access network. Diagnosing problems
at the access network is straightforward for the ISP, as this
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(a) 50%-p of the flow download throughput per hour for all YouTube flows.
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(b) Entropy of QoE classes per hour for all YouTube flows.
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Figure 8. Detecting the QoE-based anomaly. There is a clear drop in the
download flow throughput from Wednesday till Friday at peak-load hours,
between 20hs and 23hs. The combined drop in the entropy of the QoE classes
and in the KPI β reveal a significant QoE degradation.

network belongs to itself. However, diagnosing the problem
outside its boundaries is a much more complex task. As
we said before, the ISP internal RCA did not identify any
problems inside its boundaries, so we focus on the YouTube
servers and on the download paths.

Fig. 9 depicts the time series of the per hour users and bytes
down normalized counts during the analyzed week. While
there is a drop in the number of bytes down from Wednesday
afternoon on, there are no significant variations on the number
of users during the working week (i.e., Monday till Friday), so
we can be sure that the throughput and QoE strong variations
observed in Fig. 8 are not tied to statistical variations of the
sample size. Using the results in Fig.2(c), we can say that the
drop in the bytes down suggests that the bad QoE affected the
users engagement with the video playing, resulting in users
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(a) Users count (normalized).
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(b) Bytes down count (normalized).

Figure 9. Users and bytes down during the week of the anomaly. There are
no significant changes during the specific times of the flagged anomaly.

dropping the watched videos when multiple stallings occur
(i.e., when β < 1.25).

We study now the YouTube server selection strategy and
the servers providing the videos. Fig. 10(a) depicts the number
of server IPs providing YouTube flows per hour, similar to
Fig.4(a). The first interesting observation is that the server
selection policy used in the first 4 days of the dataset (15.04
- 18.04) and during the first 2 days of the week under study
(06.05 - 07.05) is markedly different, specially in terms of
servers selected from AS 43515. As depicted in Fig. 10(b),
where the entropy of the AS number of the monitored server
IPs is presented, there is a sharp shift of servers from AS 15169
to AS 43515 around peak-loud hours. In addition, there is an
important reduction on the number of servers selected from
AS 43515 on the days of the anomaly. This suggests that a
different server selection policy is set up exactly on the same
days when the anomalies occur.

To further investigate this CDN server selection policy
change, Fig. 11(a) shows the TSP of the video volume served
by the different IPs in the dataset per hour, aggregated in /24
subnetworks, for 11 consecutive days. Recall that in the TSP,
each point {i, j} represents the degree of similarity between
the distributions at hours ti and tj . The blue palette represents
low similarity values, while reddish colors correspond to high
similarity values. The TSP is symmetric around the 45◦ diago-
nal, thus the plot can be read either by column or by row. For a
generic value of the ordinate at tj , the points on the left (right)
of the diagonal represent the degree of similarity between the
past (future) distributions w.r.t. the reference distribution at tj .
Note the regular “tile-wise” texture within a period of 24 hours,
due to a clear daily periodicity behavior in the selected servers.
Specifically, there are two subnet sets periodically re-used in
the first and second half of the day. The TSP clearly reveals that
a different subnet set is used during the second half of the day
from the 8th of May on, revealing a different cache selection
policy. This change is also visible in the CDFs of the per
subnet volume depicted in Fig. 11(b). Indeed, we can see that
the same set of subnets is used between 00:00 and 15:00 before
and after the anomaly, whereas the set used between 15:00 and
00:00 changes after the 8th, when the anomaly occurs.
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(b) Entropy of the AS numbers time-series.

Figure 10. IPs hosting YouTube during the week of the anomaly.
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Figure 11. Traffic volume distributions per CDN /24 subnets. There is a clear
shift on the selected caches serving YouTube before and after the reported
anomaly on Wednesday the 8th of May, specifically in the afternoon, between
15:00 and 00:00.

Given this change in the server selection policy, we try to
find out if the problem arises from the newly selected servers,
or if the problem is located in the path connecting these servers
to the users. Fig. 12 studies the latency from users to servers
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(a) 50%-p of min RTT per hour for all YouTube flows.
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(b) 50%-p of HTTP elaboration time per hour for all YouTube flows.
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(c) 50%-p of avg RTT - min RTT per hour for all YouTube flows.

Figure 12. The servers selected during the anomaly are much farther than
those used before. While there is a marked increase in the server elaboration
time, the difference between avg. and min. RTT remains bounded during the
anomaly, so we discard the hypothesis of path congestion.

during the complete week. Fig. 12(a) depicts the median of the
min RTT per hour as measured on top of all the YouTube flows.
The marked increase in the RTT evidences that the servers
selected during the anomaly are much farther than those used
before the anomaly. This increase impacts directly on the
HTTP elaboration time (i.e., time between HTTP request and
reply), as depicted in Fig. 12(b). To understand if these latency
increases are additionally caused by path congestion, Fig. 12(c)
plots the time series of the difference between the min RTT and
the average RTT values; in a nutshell, in case of strong path
congestion, the average RTT shall increase (queuing delay),
whereas the min RTT normally keeps constant, as it is directly
mapped to the geo-propagation delay. The differences before
and during the anomalies do not present significant changes,
suggesting that the paths between servers and clients are
not suffering from congestion. This is also confirmed by the
analysis of the packet retransmissions, which do not present
significant variations.

The last part of the diagnosis focuses on the YouTube
servers. Fig. 13 depicts the average (a) min RTT and (b)
download flow throughput per server IP in a heatmap like
plot. Each row in the plots corresponds to a single server IP.
The previously flagged min RTT increase is clearly visible
for the new set of IPs which become active from 15:00 to
00:00 from Wednesday on. For those server IPs, Fig. 13(b)
shows the important throughput drop during peak-load hours.
Note however that large min RTT values do not necessary
result in lower throughputs, as many of the servers used
before and during the anomaly are far located but provide
high throughputs. Fig. 14 further studies this drop, comparing
the relation between min RTT and average download flow
throughput before and during the anomaly. The increase of
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Figure 13. There is a new set of server IPs providing YouTube videos from
Wednesday on from farther locations. As visible in (b), the average download
flow throughput for each of these new server IPs is much lower than the one
obtained from other servers.
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Figure 14. The increase of the min RTT is not the root cause of the anomaly,
as there are no major issues previous to the anomaly. However, there is a clear
cluster of servers offering low throughput during the peak-load hours on an
anomalous day.

the min RTT is not the root cause of the anomaly. However,
there is a clear cluster of low throughput flows coming from
far servers during the peak-load hours.

The conclusion we draw from the diagnosis analysis is that
the origin of the anomaly is the cache selection policy applied
by Google from Wednesday on, and more specifically, that the
additionally selected servers between 15:00 and 00:00 were not
correctly dimensioned to handle the traffic load during peak
hours, between 20:00 and 23:00. This shows that the dynamics
of Google’s server selection policies might result in poor end-
user experience, on the one hand by choosing servers which
might not be able to handle the load at specific times, or even
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Figure 15. Unsupervised detection of the anomaly through clustering. There is a clear shift in the cluster density during the hours of the anomaly.

by selecting servers without considering the underlying end-
to-end path performance.

C. Unsupervised Analysis

The last part of the paper briefly describes the unsupervised
analysis of this kind of anomalies. The idea is to detect
the occurrence of such events by tracking the evolution of
the structure of the traffic, constructed through the DBSCAN
clustering approach. In particular, we characterize each server
providing YouTube traffic by a set of features used in the
previous sections, including the number of flows, bytes, users,
median download throughput, entropy of the QoE classes,
fraction of flows in the lowest QoE class, and median of the
previously studied latencies (i.e., min RTT, average RTT, and
elaboration time), all of them computed in a temporal basis,
i.e., per hour.

Fig. 15(a) depicts the distribution of the density of the
clusters (measured in terms of fraction of server IPs contained
in the cluster) identified during the peak-load hours, on a day
previous to the anomaly and during the anomaly. There is
a clear shift in the cluster density during the hours of the
anomaly, revealing the appearance of a new cluster, containing
about 35% of the servers. As presented in Figs. 15(b) and
15(c), the newly observed cluster corresponds to a set of server
IPs providing a large share of YouTbe flows with low QoE,
impacting a potentially large number of users. The interesting
observation is that this set of server IPs can be identified
by clustering, making it possible to detect the studied low
performance events in an unsupervised manner.

VI. CONCLUDING REMARKS

In this paper, we have shown that the caching selection
policies employed by a major CDN such as Google some-
times have an important impact on the end-customers QoE.
Our results challenge OTT network performance evaluation
approaches such as the Google’s Video Quality Report, as
these only highlight ISPs bandwidth provisioning as the only
root cause of bad user experience. Through the analysis of
one month of YouTube flow traces collected at the network
of a large European ISP, we detected and drilled down a
Google’s CDN server selection policy negatively impacting
the watching experience of YouTube users during several
days at peak load times. We additionally presented different
approaches to support the diagnosis, relying on YouTube QoE-
based KPIs, time-series analysis, entropy-based approaches,

and clustering techniques. Our work also presented a large-
scale characterization of the YouTube service in terms of
traffic characteristics and provisioning behavior of the Google
CDN servers, useful to understand the normal and complex
operation of YouTube. In the light of the emergence of new
large-scale initiatives to measure the performance of ISPs
delivering CDNs-based traffic, such as the Google’s Video
Quality Report, this paper offers explicit evidence showing
that ISPs are not the only players responsible for poor end-
user experience in Internet-scale services like YouTube.
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