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Abstract—The content delivery market has mainly been dom-
inated by large Content Delivery Networks (CDNs) such as
Akamai and Limelight. However, CDN traffic exerts a lot of pres-
sure on Internet Service Provider (ISP) networks. Recently, ISPs
have begun deploying so-called Telco CDNs, which have many
advantages, such as reduced ISP network bandwidth utilization
and improved Quality of Service (QoS) by bringing content
closer to the end-user. Virtualization of storage and networking
resources can enable the ISP to simultaneously lease its Telco
CDN infrastructure to multiple third parties, opening up new
business models and revenue streams. In this paper, we propose
a proactive cache management system for ISP-operated multi-
tenant Telco CDNs. The associated algorithm optimizes content
placement and server selection across tenants and users, based
on predicted content popularity and the geographical distribution
of requests. Based on a Video-on-Demand (VoD) request trace of
a leading European telecom operator, the presented algorithm
is shown to reduce bandwidth usage by 17% compared to the
traditional Least Recently Used (LRU) caching strategy, both
inside the network and on the ingress links, while at the same
time offering enhanced load balancing capabilities. Increasing
the prediction accuracy is shown to have the potential to further
improve bandwidth efficiency by up to 79%.

I. INTRODUCTION

The rise of Internet-based over the top multimedia services
has put immense strain on the resources of Internet Service
Provider (ISP) networks. This has resulted in increasing oper-
ating costs but also in decreasing revenues of traditional traffic
forwarding services. As a consequence, ISPs have started
exploring alternative business models and service offerings.
This has lead to the deployment of Telco Content Delivery
Networks (CDNs), which allow content to be cached deep
inside the ISP network. For the operators, Telco CDNs re-
duce bandwidth demand on their backbone infrastructure and
open up new business models. For the end-users, Quality of
Service (QoS) can be significantly improved, as content is
stored nearby and the ISP has full control over the network
infrastructure.

Currently, the only way for traditional CDNs, such as
Akamai or Limelight, to bring their content to the edge of
the network and reduce delivery times, is to physically place
one of their servers inside the ISP network or connect it to a
nearby Internet exchange point, through manually-negotiated
contractual agreements. However, the advent of cloud com-
puting and software-defined networking (SDN) technologies
enable ISPs to virtualize their networks [1] and by extension,

their Telco CDN infrastructures. This opens up new business
models and allows ISPs to dynamically offer virtual storage
and content delivery services at the edge of the network, re-
deeming traditional CDN and content providers from installing
additional hardware.

Previous work in the literature has proposed ISP-operated
content delivery services [2], [3] and has also investigated
various content management strategies based on the deploy-
ment of distributed storage within an ISP network, e.g. [4].
Furthermore, the approach proposed by co-authors of this
paper in [5] involves operating a limited capacity CDN service
within ISP networks. Lightweight content placement strategies
were used to show that the proposed in-network caching
functionality can enable ISPs to have better control over the
utilization of their network resources. These solutions, how-
ever, assume that the Telco CDN infrastructure is only used by
a single entity, which poses significant limitations in a realistic
scenario. To address this important shortcoming, we propose a
management framework for an ISP-operated content delivery
infrastructure that supports multiple tenants simultaneously
leasing part of the available storage resources. The tenants
specify the amount of resources they want to lease, while
the management framework optimizes bandwidth utilization
by intelligently placing the content of each tenant based on
popularity and the geographical distribution of requests.

The main contributions of this paper are as follows. We
formally model the multi-tenant content placement and server
selection problems by means of an Integer Linear Program
(ILP) formulation. The developed algorithm based on this
model, determines where to store which content item of each
tenant (content placement) and from which location to satisfy
each request (server selection), with the objective of minimiz-
ing bandwidth consumption in the network while maximizing
the cache hit ratio. To compute a new configuration, the model
requires predicted values concerning content popularity and the
geographical distribution of requests, for which we employ a
prediction strategy. An extensive performance evaluation of the
proposed algorithm is presented, which is compared to that of
the traditional Least Recently Used (LRU) caching strategy.
The analysis of the influence of the practical prediction strategy
on the performance is also considered. In addition, given that
the proposed solution actively pushes content onto specific
servers, the trade-off between optimality and content migration
overhead is investigated. To the best of the authors’ knowledge,
this paper is the first to quantitatively evaluate the effects of
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Fig. 1. Overview of the proposed ISP-based multi-tenant caching infrastruc-
ture.

migration overhead on the network resources.

In previous work [6], an algorithm was presented to deter-
mine the theoretical optimum for the content placement and
server selection policy at every moment in time. This was
used to determine the maximum theoretical performance gain
achievable by a proactive approach. However, this theoretical
optimum is associated with a prohibitive migration overhead,
which makes the application of such an approach infeasible
in practice. The algorithm proposed here overcomes these
limitations. It reduces the migration overhead by executing
the reconfiguration less frequently (at fixed time intervals, e.g.
every 12 hours) and employs predictions to estimate content
popularity and the geographical distribution of requests for the
next provisioning period.

The remainder of this paper is structured as follows.
Section II describes the scenario under study and introduces the
proposed management architecture. Subsequently, the problem
is formally modelled as an ILP in Section III and an algorithm
based on this model is proposed. Next, details on the use
case, considered in this paper, are presented in Section IV.
Section V evaluates the performance of the proposed algorithm
and compares it to the traditional LRU caching strategy.
Section VI highlights related work in the area of content
placement in distributed storage infrastructures. Finally, the
main conclusions are presented in Section VII.

II. SCENARIO DESCRIPTION

We consider a scenario where a large-scale ISP operates
a limited capacity CDN service by deploying caching points
within its network, as depicted in Fig. 1. The set of network
nodes consists of edge nodes, which represent access networks
connecting multiple users in the same region, and core nodes,
which interconnect the access networks. Each network node
is associated with caching capabilities, which enable a set of
content items to be stored locally. The local caches can be
external storage modules attached to routers or, with the advent
of flash drive technology, integrated within routers.

All content requests are received at the edge nodes. If a
requested content item is available in the local cache of the
corresponding edge node, it is served locally. Otherwise, the
request is redirected to one of the caches in the network where

the requested item is stored. In case a copy of the item is
not available in the ISP network, the request is served from
outside of the network by a content provider (CP). As depicted
in Fig. 1, the request for content x1 received at edge node E2
is served locally, whereas the request for content x1 received
at edge node E1 is redirected to and served by node E2. In
line with previous related research by Applegate et al. [7], we
assume shortest path routing is used, which has been shown
to be more realistic than arbitrary routing [8].

In our scenario, the ISP leases the caching space in its
network to multiple CPs. Each CP specifies the amount of
caching capacity it wishes to lease for storing part of its content
catalog. The optimal placement of content, in terms of network
resource utilization, depends on the geographical distribution
of requests, the content popularity and the network topology.
Based on the availability of such information to the ISP,
we propose a novel proactive multi-tenant cache management
approach where the ISP controls the partitioning of available
storage space between multiple CPs. More specifically, the
proposed solution focuses on the following management deci-
sions: (i) where to allocate the leased capacity, (ii) where to
store which content (content placement) and, (iii) from where
to serve user requests (server selection), with the objective
of minimizing ISP network resource utilization, while simul-
taneously maximizing the total cache hit ratio (i.e., reducing
the number of requests that have to be served from outside
the network). New caching configurations are periodically
computed by a central manager, based on predicted values of
content popularity and geographical distribution of requests for
the next provisioning period.

III. ILP FORMULATION

To model the considered problem as an ILP, the network
is represented by a directed graph G = (V,E) with V and E
representing the set of nodes and links, respectively. The set of
nodes contains both the nodes VISP , belonging to the ISP, and
an external server node S, logically representing the Internet,
containing all contents of all providers. VISP can further be
divided in a set of core nodes VC and edge nodes VE . The
links E can be divided into a set of links, ES , connected to
the external server (i.e. the ingress links), and, ISP-managed
links, EISP , connecting core and edge nodes. For each node
n ∈ V , we define a caching capacity cn ∈ N+ and a set of
incoming and outgoing links, denoted by In ∈ E and On ∈ E,
respectively. For every link e ∈ E, the available bandwidth
capacity is denoted as be ∈ N+. The routing strategy, applied in
the network is represented by a forwarding path Rn,n′ ⊂ E, for
every source-destination pair (n, n′) ∈ V ×V . The forwarding
path can be divided into a set of server links RSn,n′ ⊂ ES ,
containing the links in the forwarding path connected to the
external server node S, and a set RISPn,n′ ⊂ EISP containing
the other links in the forwarding path, inside the ISP network.

A set of content providers P lease caching space from the
ISP. For each content provider p ∈ P , the leased amount of
caching space and the set of offered content items are denoted
by dp ∈ N+ and Op, respectively. O =

⋃
p∈P O

p represents
the entire set of offered content. Every content item o ∈ O has
an associated size so ∈ N+ and bitrate Bo ∈ N+.

The objective of the proposed approach is to periodically
compute a new caching configuration based on the estimation



of content popularity and geographical distribution of requests
for the next provisioning interval. As such, a prediction of
the request pattern for the considered time interval is required
by the algorithm at each reconfiguration step to determine
a new content placement and server selection strategy. We
note T the finite set of n timepoints (|T | = n) at which a
request is predicted to start or to finish. For every timepoint
t ∈ T , ro,d,t ∈ N denotes the active number of requests for
content o ∈ O, originating from edge node d ∈ VE . V ot ⊂ VE
represents the set of edge nodes requesting content o ∈ O at
timepoint t ∈ T . The validity period of timepoint ti ∈ T is
defined as (ti+1−ti) and is denoted as δti . The validity period
of the last timepoint tn ∈ T is defined to be 1 (δtn = 1).

A solution to the content placement problem can be trans-
lated into binary decision variables xn,o ∈ {0, 1} defining if an
ISP node n ∈ VISP is used to store content o ∈ O. In addition,
auxiliary decision variables zn,o,d ∈ {0, 1} are introduced to
represent the server selection strategy. These define if a node
n ∈ VISP is used to store content o ∈ O to be delivered to
edge node d ∈ VE . In order to determine a valid solution, the
auxiliary variables satisfy the constraints zn,o,d ≤ xn,o and
xn,o ≤

∑
d∈VE

zn,o,d (content o is stored at node n if and
only if at least one edge node d requests o from n).

Different optimization criteria, such as cache hit ratio maxi-
mization or delivery delay minimization, have been considered
in the literature [7], [9], [10]. In this paper, we focus on re-
ducing the ISP resource usage. As such, we define the optimal
solution to the problem as the one minimizing the bandwidth
usage inside the ISP network. This can be represented by
the minimization of the objective function defined in (1). A
weighting factor α ∈ [0; 1] is used to define the importance of
ingress link usage. Higher values of α will result in minimizing
the usage of ingress link bandwidth, leading to a higher cache
hit ratio.

∑
t∈T,n∈V,
o∈O,d∈V o

t

 ∑
e∈RS

n,d

α+
∑

e∈RISP
n,d

(1− α)

× δt× ro,d,t×Bo× zn,o,d

(1)

Multiple constraints are considered to define the set of
valid solutions to the considered optimization problem. A valid
solution is so that the caching space reserved for each content
provider p ∈ P is at most equal to the leased capacity, while
satisfying the storage capacity limitations. These constraints
are modelled in (2) and (3), respectively.

∀p ∈ P :
∑

n∈VISP

∑
o∈Op

so × xn,o ≤ dp (2)

∀n ∈ VISP :
∑
o∈O

so × xn,o ≤ cn (3)

Furthermore, the bandwidth limitations should be enforced
at any point in time of the considered period. To simplify
the formulation of this constraint, an additional notation Ue is
introduced for every link e ∈ E to represent the set of source-
destination pairs (s, d) ∈ V ×V which are routed over link e.
The bandwidth limitation constraint is then defined as shown
in (4).

∀t ∈ T, ∀e ∈ E :
∑

(s,d)∈Ue

∑
o∈O

ro,d,t ×Bo × zs,o,d ≤ be (4)
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Fig. 2. Number of requests per day in the considered VoD trace.

Finally, constraint (5) ensures that every request is served
from exactly one location.

∀o ∈ O,∀d ∈ VE :
∑
n∈V

zn,o,d = 1 (5)

Solving the ILP using IBM ILOG CPLEX Optimization
Studio 12.4, results in a storage profile, represented by the
values of xn,o, and a server selection strategy, represented by
the values of zn,o,d, which minimizes the objective function in
(1), while satisfying constraints (2) – (5). Every request from
edge node d ∈ VE for content o ∈ O is served from node
n ∈ V where zn,o,d = 1, using the shortest path Rn,d.

IV. USE CASE

We evaluate the proposed approach based on a Video-on-
Demand (VoD) use case, for which we used a request trace of
the VoD service of a leading European telecom operator. We
first discuss the characteristics of this trace and then describe
the request prediction method we use.

A. VoD trace characteristics

The trace was collected over a period of 31 days between
Saturday February 6, 2010 and Sunday March 7, 2010. Dur-
ing the considered period, 104,217 requests for 5644 unique
movies were monitored, sent by 8825 unique users, originating
from 12 cities. All movies are considered to have an equal
length of 90 minutes and a bitrate of 1Mbit/s (bo = 1 ∀o ∈ O).
Each movie thus has a size of 5.4Gbit (so = 5400 ∀o ∈ O)
and is requested by the user in segments of 1 second each.

Fig. 2 depicts the evolution of the number of requests per
day over the considered time period. As can be observed,
this exhibits a weekly pattern. The five peaks in Fig. 2
correspond to the five weekends, with increased activity on
Friday, Saturday and Sunday. In addition to the weekly pattern,
a diurnal trend also exists, which is not visible in Fig. 2 due
to the per-day data aggregation used. For Wednesdays and
Sundays, the activity peak is between 4:30pm and 6:30pm.
For the other days of the week, the largest number of requests
is reported between 8pm and 10pm.

B. Request prediction

As discussed in Section III, the ILP requires the request
rates ro,d,t for a content o ∈ O, originating from edge node
d ∈ VE at a future time point t ∈ T as input variables.
In this paper, we use a simple request prediction method,
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Fig. 3. Analysis of the prediction accuracy for the VoD trace.

which is based on the observed characteristics of the VoD
trace (cf. Section IV-A), to estimate the future request pattern.
While more sophisticated solutions can be used [7], popularity
prediction is a complex issue and a more elaborate mechanism
is therefore outside the scope of this paper. The influence of the
prediction accuracy on optimality is discussed in Section V-C.

The request pattern contains various types of information:
(i) the request intensity over time, i.e. the total number of
requests in the network for every point in time, (ii) the
geographical distribution of this request intensity and (iii) the
content popularity, i.e. the distribution of requests amongst all
contents. As explained in Section IV-A, weekly patterns can be
identified for the request intensity in the considered VoD use
case. In order to predict the request pattern for a specific time
period, the request intensity and its geographical distribution
over the same period of the previous week are used. However,
given the highly dynamic nature of video popularity, such
an approach cannot be used to predict content popularity.
Although some request intensity trends can be identified for
each day of the week, it is more likely that the change in
popularity of a given content item will be more significant
over a week than between two consecutive days. As such, we
use the content popularity of the x previous days to predict
the popularity of specific content items.

To estimate the prediction accuracy, we defined an accuracy
metric. When the total amount of leased capacity is equal to
the combined size of y videos, the videos that are more likely
to be cached for a specific day are the y most popular videos of
that day. We define the accuracy of a prediction for a specific
day, based on the x previous days, to be the percentage of the y
most popular content items of the previous x days that are still
in the top y most popular content items during the considered
time period. For example, when we consider a history of the
2 previous days and a total amount of leased caching capacity
of 100 videos, a prediction accuracy of 50% means that 50 of
the 100 most popular videos of the 2 previous days are in the
top 100 most popular videos of the considered time period.
Fig. 3a shows the average prediction accuracy for the VoD
trace in terms of the history length for the scenario where the
content providers lease a caching capacity equal to 5%, 10%
or 20% of their total content catalogue. Fig. 3a shows that
on average, the highest prediction accuracy can be achieved
when using 3 days of history. Furthermore, increasing leased
capacity leads to lower accuracy, which indicates that the more
requested content items are easier to predict than less popular
ones.

Fig. 3b shows the prediction accuracy, using a history
length of 3 days, in terms of the length of the considered
period. It can be observed that the prediction accuracy de-
creases when shorter time periods are considered: the content
popularity is easier to predict for an entire day than for a
short time period. This is even more distinct when the leased
capacity increases. Finally, Fig. 3c shows the limitation of pure
history-based prediction. In the VoD use-case, the number of
daily new content items is significant. On average, 30% of all
content requested on a given day has not been requested in the
previous 3 days. Requests for these content items are therefore
impossible to predict based on history only. Techniques that
predict the popularity of new content, based on additional
information, have been proposed in the literature [7], but are
out of the scope of this research.

V. EVALUATION RESULTS

In this section, we thoroughly evaluate the proposed ILP
approach. First, the evaluation setup is described in Sec-
tion V-A. Next, a parameter analysis is performed in Sec-
tion V-B to find the preferred parameter configuration for
the ISP. The performance of the proposed proactive approach
using this preferred configuration is compared to a reactive
approach in Section V-C. Finally, the influence of the number
of tenants is discussed in Section V-D.

A. Evaluation setup

We evaluate the performance of the proposed ILP-based
algorithm using the GÉANT topology1, which consists of 23
nodes. The employed VoD request trace contains 12 cities
that we map onto 12 edge nodes (VE = {E1, .., E12}). One
node is assigned as server node S, while the 10 remaining
nodes are modelled as core nodes (VC = {C1, .., C10}). The
10 most connected nodes were selected as core nodes. The
resulting topology is shown in Fig. 4. The links interconnecting
core nodes and the links connected to the server have a
bandwidth capacity of 1Gbit/s. All other links have a capacity
of 500Mbit/s. Since fixed shortest path routing is used, the
exact bandwidth capacities are of minor importance, as long
as they suffice to serve the requests. The server node S hosts
all the available content of all CPs. In each experiment, the
storage capacity of each core node was set high enough to
be able to accommodate the leased capacity of all tenants,
i.e. for every core node n ∈ VC , the caching capacity was

1GÉANT Project – http://www.geant.net
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defined as cn =
∑
p∈P dp. Preliminary simulations have been

performed using other capacities for the core nodes, but no
significant influence could be observed. The storage capacity
of the edge nodes and the amount of leased storage space is
varied throughout the experiments. Unless otherwise stated,
the number of tenants is equal to two.

The performance of the proposed proactive approach is
compared to the one of a reactive approach following the
commonly used LRU caching strategy in the VoD use case
described in Section IV. For the reactive approach, the leased
capacity of every content provider is uniformly split over the
22 ISP managed nodes. All requests are sent to the origin
server, applying reactive caching for future requests. Each
content item is considered to consist of fixed duration segments
(i.e., 1 second each), which is often the case in modern
streaming technologies (e.g., Apple HLS, MPEG DASH). As
a consequence, the reactive approach can result in a config-
uration where only parts of a movie are available at a given
node. In contrast, the proactive approach either places an entire
movie at a specific node, or does not store it there at all.
Shortest path routing, based on hop count, is used in both
approaches.

We performed experiments for all of the 31 days in the VoD
trace, while only evaluating the last 24 days (from February
13, 2010 to March 7, 2010). The first 7 days of the trace were
used for obtaining the request prediction for the ILP approach,
but also for warming up the LRU caches.

B. Parameter analysis

Using the proactive content placement approach, described
in Section III, the ISP can decide on multiple design param-
eters to optimize the performance of the cache management.
The server link weight α in objective function (1) can influence
the placement decisions, based on the cost of using the
ingress link, while the frequency of reconfiguration defines
the trade-off between the optimality of the decisions and the
management overhead. In addition, given that a high cost can
be associated with the provisioning of caching capacity at
the network edge, it is important to evaluate the influence of
the edge node capacity on the performance of the system. To
determine the impact of each of these decisions, we analyzed a
wide range of possible parameter configurations, as presented
in Table I. The results of this analysis are subsequently used
to define the preferred configuration for the ISP.

TABLE I. EVALUATED PARAMETER CONFIGURATIONS

Parameter Values
α 0.50, 0.75, 0.90
Reconfiguration frequency 6h, 12h, 24h
Edge node capacity∗ 1%, 5%, 10%, 20%, 50%

∗Relative to the core node capacity.

To assess the influence of the request prediction strategy,
we evaluated the ILP approach, using both the request pre-
diction algorithm described in Section IV-B, as well as the
(theoretical) perfect prediction where the actual trace data
is used. For completeness, the comparison between these
approaches is always incorporated in the presented graphs. A
performance comparison between the reactive LRU approach
and the ILP approach using both prediction strategies is
presented in Section V-C. The performance is evaluated in
terms of (i) the peak bandwidth usage of the links, i.e. the
maximum bandwidth usage on every link during the evaluated
period, (ii) the average bandwidth usage inside the entire ISP
network, (iii) the average bandwidth usage on the ingress links,
(iv) the bandwidth required to migrate the content at each
reconfiguration period and (v) the time required by the ILP-
based algorithm to calculate a solution. In order to analyze
the influence of a specific parameter, average performance
measures have been calculated over all configurations that have
the same value for that parameter (e.g., all configurations that
include α = 0.5).

1) Server link weight α: The server link weight α in
objective function (1) defines the trade-off between minimizing
the bandwidth usage inside the ISP network and minimizing
the ingress link usage. A value of α = 0.50 indicates that
the same weight is applied to both objectives. As the value
of α increases, more weight is applied by the system to the
minimization of the ingress link usage, which results in the
maximization of the cache hit ratio. This can be observed in
Fig. 5, which shows the influence of the server link weight
α on the bandwidth usage of the ingress links and of the
links inside the ISP network. Lower values of α lead to
the placement of more popular content items at multiple
locations (i.e. higher replication degree), while less popular
items have to be fetched from the origin server. This results
in shorter delivery paths for most requests and thus lower
bandwidth usage inside the ISP network, at the expense of
ingress link usage given that a smaller number of distinct
contents can be cached. In contrast, with higher values of
α, the minimization of the ingress link usage is given more
weight. This forces the system to place a larger number of
contents inside the ISP network, but with a lower replication
degree. While this leads to higher bandwidth usage inside the
ISP network (the content is further away from the users), it
reduces the ingress link usage. Similar observations can be
made for the peak bandwidth usage inside the ISP network
and on the ingress links. Furthermore, the results show that,
for a value α = 0.90, the average overhead incurred by the
migration of the content at each reconfiguration interval is
4.75% higher compared to the case with α = 0.50 (graph
omitted due to space limitations). More specifically, in this
case, the algorithm decides to cache a larger number of unique
contents inside the ISP network, which have to be migrated
from the origin server. Finally, it was observed that the value
of α does not significantly affect the time required by the
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Fig. 5. Influence of the server link weight α on the average bandwidth usage

algorithm to compute a feasible solution of the ILP model.

Considering this trade-off, a value of α = 0.50 is preferred.
The average total bandwidth usage (i.e., the sum of the
bandwidth usage inside the ISP network and on the ingress
links) is 6.90% lower compared to α = 0.90, while having
4.53% less migration overhead.

2) Frequency of reconfiguration: The frequency at which
the proactive algorithm computes new content placement de-
fines the trade-off between optimality and overhead. While
more frequent reconfigurations allow the system to be more
reactive with respect to changes in the request pattern, this
comes at the cost of more frequent content migrations. Fig. 6
shows the influence of the frequency of the reconfiguration on
the average bandwidth usage inside the ISP network and the
ingress links. As can be observed in the figure, less frequent
reconfigurations lead to a performance degradation in the case
of the perfect request prediction. This, however, is not the case
when using our request prediction strategy. Although the aver-
age bandwidth usage inside the ISP network slightly increases
when the frequency of reconfiguration decreases, the increase
is limited to 3.44% when the reconfiguration period goes from
6h to 24h. In contrast, the average bandwidth usage on the
ingress links decreases by 8.25% when the reconfiguration
period increases from 6h to 24h. This counterintuitive result
can be explained by the characteristics of the VoD trace and
our prediction strategy, discussed in Section IV. As shown in
Fig. 3b, content popularity is easier to predict for longer time
periods. In the case of very frequent reconfigurations, the low
accuracy of the prediction means that a significant number of
items has to be fetched from the origin server, which results in
high ingress link bandwidth usage. Similar observations were
made for the peak link usage inside the ISP network and on
the ingress links (graphs omitted due to space limitations).

Given that the number of items and requests considered
in the ILP model directly depends on the frequency of the
reconfiguration, this can influence the time needed to solve it.
The values of the average and maximum solving time obtained
for the different reconfiguration frequencies are reported in
Table II. Although the time required to find a solution increases
when the reconfiguration frequency decreases, the complexity
can be considered acceptable with respect to the length of the
provisioning period. For instance, in the case of a reconfigu-
ration period of 24h, the ILP has to be solved once every 24h
only. In terms of the number of contents that cross a single link
during content migration on a daily basis, Fig. 7 shows that
the overhead is 67.33% lower when using a reconfiguration
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Fig. 6. Influence of the reconfiguration frequency on the average bandwidth
usage.

TABLE II. ILP SOLVING DURATION IN TERMS OF THE
RECONFIGURATION PERIOD.

Reconfiguration Average Maximum
period solving duration solving duration

6h 4min 34s 21min 51s
12h 10min 17s 34min 35s
24h 23min 51s 51min 55s

period of 24h compared to the one of 6h. Based on the above
findings, a reconfiguration every 24h is preferred.

3) Edge node capacity: The deployment of caching capac-
ity at the edge nodes allows the content to be placed close to
the end users, resulting in shorter delivery paths and lower
bandwidth usage. However, to be able to provide caching
capacity at the edge of the network, storage nodes need to
be deployed at distributed street cabinets. This significantly
increases deployment and maintenance costs compared to
providing storage in centralized data centers in the core of the
ISP network. As shown in Fig. 8, low edge node capacities
result to increasing bandwidth usage inside the ISP network.
This is caused by longer delivery paths since contents are
cached further away from the end users. However, since
content is more likely to be cached in the network core, the
replication degree is likely to be lower. Therefore, more distinct
contents can be cached inside the network, which reduces the
average ingress link usage. Similar observations were made
for the peak bandwidth usage (graphs omitted due to space
limitations). Lower edge node capacities lead to slightly higher
peak bandwidth usages inside the ISP network (1.65% higher
with an edge node capacity of 1% compared to an edge
node capacity of 50%), while the peak bandwidth usage of
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Fig. 7. Influence of the reconfiguration frequency on the content migration
overhead.
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Fig. 8. Influence of the edge node capacity on the average bandwidth usage.

TABLE III. PERFORMANCE RESULTS FOR MULTIPLE AMOUNTS OF
LEASED CAPACITY USING THE SELECTED PARAMETER CONFIGURATION.

5%‡ 10%‡ 20%‡
Criteria LRU ILP∗ LRU ILP∗ LRU ILP∗

Avg. ISP link usage◦ 360 317 (236) 344 292 (174) 323 268 (98)
Avg. ingress link usage◦ 175 147 (95) 157 136 (63) 135 127 (28)
Migration overhead ISP† n/a 334 (333) n/a 669 (677) n/a 1333 (1370)
Migration overhead server† n/a 113 (178) n/a 221 (364) n/a 420 (739)
Max. peak link usage◦ 832 664 (431) 710 583 (293) 572 548 (188)
Avg. peak link usage◦ 197 51 (38) 180 47 (29) 163 44 (19)

∗The values between brackets are for the scenario with perfect prediction.
◦Bandwidth in Mbps.
‡Relative to the total catalog size.
†Upper limit of migration overhead bandwidth in Mbps, needed to migrate all
content in 60 minutes when all migrations would need to cross the same link.

the ingress link is reduced (5.17% lower with an edge node
capacity of 1% compared to an edge node capacity of 50%). In
addition, given that most of the items tend to be cached in the
core nodes, the paths used for migrating the content tend to be
shorter. As a result, slightly lower migration overhead can be
observed in the case of low edge node capacities. It can also
be observed that there is no significant performance difference
between the different configurations when the capacity of the
edge nodes is more than 10% of the core node capacity.
Finally, the choice of the capacity of the edge nodes does
not significantly influence the time required to solve the ILP
(graphs omitted due to space limitations). Based on these
findings, an edge node capacity equal to 10% of the core node
capacity is preferred. Further increasing the edge node capacity
comes at a high provisioning cost without further performance
gain.

C. Performance comparison

Based on the above parameter analysis, the preferred
configuration for the ISP has the following parameter values: a
server link weight α of 0.5, a reconfiguration period of 24h and
an edge node capacity equal to 10% of the core node capacity.
The leased capacity is decided by the content providers and
is expressed relative to their total catalog size. Table III
shows a performance comparison, based on multiple criteria,
between the reactive LRU approach and the proposed ILP
approach using the preferred configuration. For the proactive
ILP approach, results are shown both using a perfect prediction
and the prediction strategy discussed in Section IV-B.

The results show that with the proposed ILP approach, the
average total bandwidth usage inside the entire ISP network
can be reduced by 12%-17%, depending on the amount of

leased caching capacity. However, with perfect prediction,
these reductions could be further increased by 34% up to 70%,
based on the amount of leased caching capacity. The bandwidth
usage on the ingress links can, on average, be reduced by 6%
to 17%, depending on the amount of leased capacity. With
a perfect request prediction, the performance increase could
amount to 46% up to 79%.

We also investigated the impact of the overhead in terms of
resource utilization of the content migration that needs to be
performed at each reconfiguration interval. This is computed
based on the available bandwidth required to perform all
content migrations within 60 minutes. For different migration
periods, the overhead bandwidth scales linearly (e.g., the
overhead bandwidth doubles when the migration has to be
done in 30 minutes instead of 60 minutes). However, given that
some assumptions are made while calculating this overhead,
the presented values represent a broad and pessimistic upper
bound. For example, the calculations assume that every content
migration traverses a single link in the network and that
all migrations are performed in parallel. In practice, content
migration can be optimized by serialization. As an example,
we consider the topology in Fig. 4. If a new content item has
to be migrated from the server node S to the core nodes C7
and C3, the overhead estimation assumes that the content is
fetched twice from the origin server in parallel. In practice,
however, it may be more efficient to first migrate the content
from S to C7 and then duplicate the content from C7 to C3.
As such, the bandwidth overhead will be significantly lower
than the presented upper bound.

Given that the number of content items to be cached
increases when more capacity is leased, the migration overhead
scales with the leased capacity. As observed in Table III,
the migration overhead inside the ISP network is similar
when using a practical or perfect request prediction. However,
the migration overhead on the ingress link is significantly
higher when a perfect prediction can be made. Given that
the predicted content popularity is based on a history of three
days, the daily predicted number of new content items (i.e.
which have to be migrated from the server node at each
reconfiguration interval) is significantly lower than the actual
number of new contents. Given that the most popular content
items are more likely to remain the same over time, compared
to the less popular ones, this difference further increases when
a larger amount of caching capacity is leased.

The performance is also evaluated in terms of the peak link
usage. The maximum peak link usage is the peak usage of
the most loaded link in the network, while the average peak
link usage is the peak usage averaged over all links in the
network. Given that the content items that are not stored inside
the ISP network have to be fetched from the origin server for
every edge node, and, as such, traffic has to be routed over
the ingress links, the latter will always be the most heavily
loaded links in the network. Therefore, the maximum peak
link usage is measured on the ingress links. As shown in
Table III, the maximum peak link usage can be reduced by
4% to 20%, compared to a reactive LRU approach, depending
on the amount of leased capacity. In the case of the perfect
request prediction, the maximum peak usage is decreased by
48%-67%. In addition, the performance that can be achieved
in terms of average peak link usage can be improved by
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Fig. 9. Peak link load division for the reactive LRU approach and the
proposed proactive ILP approach, using the selected parameter configuration
and a leased capacity of 5%.

around 73%. In the case of the perfect request prediction, the
performance gain is between 81% and 88%.

Finally, the results of the evaluations showed that using the
proactive ILP approach can lead to more balanced link load
distribution inside the ISP network. This is shown in Fig. 9,
which depicts the relative cumulative maximum link usage as a
function of the relative number of links, ordered by decreasing
link load, for a leased capacity of 5%. The dotted diagonal
line represents a uniform load distribution, corresponding to a
situation where each link is equally loaded. The horizontal line
y = 1 in the figure represents an extreme scenario where only
one link is used. The graph shows that with the LRU approach
only 27% of the links are used, while 95% of the links are
used with the proactive ILP approach. To measure how the
network load is balanced, we define the unfairness degree as
the sum of the deviations from the cumulative maximum link
usage to the uniform cumulative link usage. Graphically, this
corresponds to the area between the cumulative maximum link
usage curve and the dotted diagonal. The unfairness degree
is scaled to be 0% when the load is perfectly balanced (all
links are equally loaded) and to be 100% when only one link
is loaded. Using the proactive ILP approach, the degree of
unfairness can be reduced from 86% to 75%, compared to the
reactive LRU approach. With a perfect request prediction, the
degree of unfairness could be further decreased to 70%.

D. Influence of the number of tenants

To show the general applicability of the proposed approach,
evaluations have been performed for multiple tenants leasing
storage capacity from the ISP. For each of these evaluations,
the VoD catalog of 5644 movies is uniformly split amongst
the tenants. As the content characteristics are unchanged,
performance deviations are only due to the multi-tenancy.
Table IV shows the performance for 1 up to 5 tenants, using
the preferred parameter configuration and a leased capacity of
5% of the total catalog size for every tenant. Due to space
limitations, the results using perfect request prediction are
omitted. The results show that the performance of the proposed
ILP approach is not influenced by the number of tenants.

TABLE IV. PERFORMANCE RESULTS FOR MULTIPLE NUMBERS OF
TENANTS, USING THE SELECTED PARAMETER CONFIGURATION AND A

LEASED CAPACITY OF 5%.

1 2 3 4 5
Criteria LRU ILP LRU ILP LRU ILP LRU ILP LRU ILP
Avg. ISP link usage◦ 360 317 360 317 360 317 361 318 361 319
Avg. ingress link usage◦ 175 146 175 147 175 147 176 147 175 147
Migration overhead ISP† n/a 334 n/a 334 n/a 333 n/a 333 n/a 332
Migration overhead server† n/a 112 n/a 113 n/a 113 n/a 115 n/a 114
Max. peak link usage◦ 832 655 832 664 830 661 835 659 838 659
Avg. peak link usage◦ 196 51 197 50 197 51 197 51 198 51

◦Bandwidth in Mbps.
†Upper limit of migration overhead bandwidth in Mbps, needed to migrate all
content in 60 minutes when all migrations would need to cross the same link.

VI. RELATED WORK

The problem of how to allocate capacity resources to
different nodes was considered by Laoutaris et al. in [11]
and [12]. The authors focused on the design of algorithms
for the joint optimization of capacity allocation and object
placement decisions under known topological and user demand
information. The objective is to determine the placement of
objects selected from a set of available content items and also
the proportion of the total storage capacity to be allocated
at each potential caching location so that the network cost is
minimized.

While the solutions proposed in [11] and [12] take into
account a global capacity constraint on the total storage space
available in the network, the constraint is not applied on a
per-node basis. This may not be realistic in practice given
that a node may not have enough capacity to accommodate
all content items. In contrast, we formulate the problem by
considering the capacity constraint at the node level. In addi-
tion, we extend the optimization problem by also considering
from where to serve user requests. It should also be noted that
Laoutaris et al. focused on hierarchical caching infrastructures,
whereas this restriction does not apply in our work.

The issue of partitioning the storage space available at
each caching location has been considered from a different
perspective in [7] and [10]. In these works, the authors propose
to pre-partition the local storage capacity according to fixed
ratios in order to implement different caching strategies and
investigate the effects of such a scheme on network perfor-
mance. In [7], Applegate et al. present an approach to solve
the combined problem of content placement and assignment
of requests to caching locations for a large-scale VoD sys-
tem. The problem is formulated as a mixed integer program
which takes into account storage capacity and link bandwidth
constraints, as well as content popularity. The authors discuss
some simple strategies to estimate the popularity and determine
the frequency of updates. Optimal solution structures for the
combined problem have also been proposed in [13] and [14].
In contrast to our approach, however, these consider a single
provider scenario only, which can be considered as a subset
of the problem we investigate.

Various content placement approaches have been proposed
in the context of a single provider scenario, e.g. in [4], [9],
[15], [16]. These focused on intelligent techniques to replicate
content across different network locations in order to better
utilize network resources. A distributed content placement
strategy is proposed in [9] in the context of distributed repli-



cation groups. Sourlas et al. present in [4] an autonomic cache
management framework for information-centric networks. Spe-
cific placement approaches have also been considered for
hierarchical network infrastructures, especially in the context
of IPTV [15], [16]. Chun et al. analyzed the content placement
problem and the effect of coordination among caches using
a game theoretic model [17]. However, they assume caches
have unlimited capacity. In parallel to the placement problem,
previous research efforts (e.g. [18], [19]) have also focused on
the server selection issue and have proposed new mechanisms
to manage the redirection of user requests.

Given that current content delivery services can adversely
affect the utilization of ISP networks, some research efforts
have been investigating new models and frameworks to support
the interaction between ISPs and CDNs. These range from ISP-
centric caching approaches (e.g. [2], [3]), which exclude CDNs
from the delivery chain, to collaborative solutions (e.g. [19],
[20]), which define new models of cooperation between ISPs
and CDNs in order to improve content delivery performance.

More recently, the approach developed in [5] by co-authors
of this paper has proposed the operation of a limited capacity
CDN service within ISP networks by deploying caches at the
network edges. Such a service can allow ISPs to implement
their own cache management strategy. This paper extends the
framework to a multi-tenant scenario.

VII. CONCLUSIONS

In this paper, we presented a proactive cache management
approach for ISP networks in a scenario where multiple content
providers lease caching capacity. Based on predictions of
the content popularity and the geographical distribution of
requests, this approach employs an ILP-based optimization al-
gorithm to perform content placement and server selection. The
approach has been thoroughly evaluated in a VoD use-case.
Evaluations have shown that this reconfiguration should ideally
be performed every 24 hours, due to the trade-off between
solution optimality and migration overhead. Furthermore, we
have shown that using the proposed ILP-based algorithm, the
average bandwidth usage can be reduced by up to 17%, both
inside the ISP network and on the ingress links, compared
to a reactive LRU approach. Moreover, a more balanced load
distribution is achieved, reducing the average peak link usage
inside the ISP network by 73%, while reducing the maximum
peak link usage by 20%. However, the performance of the
proposed approach strongly depends on the accuracy of the
prediction of future request patterns. Results have shown that
under the assumption of perfect prediction, average bandwidth
usage within the ISP network can be reduced by up to
70% compared to LRU. Future work consists of focusing on
more advanced prediction methods and evaluate their obtained
performance.
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[14] T. Bektaş, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact algorithms
for the joint object placement and request routing problem in content
distribution networks,” Comput. Oper. Res., vol. 35, no. 12, pp. 3860–
3884, dec. 2008.

[15] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM’10, mar. 2010,
pp. 1–9.

[16] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical
caching with dynamic request routing for massive content distribution,”
in Proc. IEEE INFOCOM’12, mar. 2012, pp. 2444–2452.

[17] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. H. Papadimitriou,
and J. Kubiatowicz, “Selfish caching in distributed systems: a game-
theoretic analysis,” in Proceedings of the 23rd annual ACM Symposium
on Principles of Distributed Computing (PODC’04), 2004, pp. 21–30.

[18] V. Valancius, B. Ravi, N. Feamster, and A. C. Snoeren, “Quantifying
the Benefits of Joint Content and Network Routing,” in Proceedings
of the ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’13, 2013, pp.
243–254.

[19] B. Frank, I. Poese, G. Smaragdakis, S. Uhlig, and A. Feldmann,
“Content-aware traffic engineering,” SIGMETRICS Perform. Eval. Rev.,
vol. 40, no. 1, pp. 413–414, jun. 2012.

[20] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative
content distribution and traffic engineering in an ISP network,” in Proc.
SIGMETRICS ’09, Seattle, WA, USA, 2009, pp. 239–250.


