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Abstract—The Application Layer Traffic Optimization (ALTO)
protocol allows network service providers to make available a
pair of maps to applications such that the applications can intel-
ligently (compared to randomly) connect to a desired resource.
The network map aggregates the service provider network into
provider defined identifiers (PID) and the cost map provides a
pair-wise link cost between each PID. Clearly, a service provider
has an authoritative view of its network and is able to provide
an ALTO server that distributes such maps. However, ALTO
also envisions third-parties as being able to provide such maps.
In this paper, we demonstrate how a third-party ALTO server
can provide maps by mining public information. Specifically, we
build our maps from the United States Federal Communications
Commission public broadband data set, which contains an
expressive (multi-tier wireline broadband measurements) and
rich (measurements for specific application uses) dataset. In all,
we examined over 1 billion records spread over 90 GBytes as part
of our analysis. We borrow concepts from financial engineering
and social network analysis to show how network topology and
cost maps can be created, and furthermore, how peer-to-peer
systems can insulate themselves from going dark by choosing
supernodes effectively from mining historical data.

I. INTRODUCTION AND PROBLEM STATEMENT

The Application Layer Traffic Optimization Protocol [1] is
a IETF-standardized protocol that constitutes a service for dis-
seminating network information (e.g., basic network location
structure and preference of network paths) to applications for
improving performance. The basic information in ALTO is
provided in the form of two maps: a network topology map
and a cost map. These maps allows the network provider to
provide a succinct, yet abstract view, of the network to allow
applications express preferences when connecting to the de-
sired resource. For example, a node in a peer-to-peer network
can choose other peers that belong to the same Internet service
provider (ISP) to minimize latency; similarly, a Content Distri-
bution Network (CDN) router can use the maps to rendezvous
a client with the nearest surrogate. Figure 1 shows an example
of the map service. In the example, the network map partitions
all endpoints into three provider-defined identifiers (PID);
the Default PID is essentially a catch-all for all hosts not
belonging to the ISP. The cost map provides directed costs
between each pair of PIDs. Using these maps, a peer in PID-2
will contact peers in PID-1 first before reaching out to other
peers on the Internet, forearmed with the knowledge that it
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costs less (2 units)
to access peers in
PID-1 than it does
to access peers
in the default
PID (6 units).
The costs on the
link  represents
generic costs and
are computed
by the ISP
according to its
preferences  and
policies.  These
two abstractions
— the topology and the cost maps — provided by the ISP
allow peers (or clients) on the network to affect the choice of
peers (or servers) they will connect with.

In principle, the ALTO protocol allows for parties not asso-
ciated with the ISP (third parties) to create topology and cost
maps. However, in ALTO-like deployments prevalent today, it
is the ISP that creates these maps and make them available on
an ALTO server. After all, the ISP is the authoritative entity
that knows the dynamics and reach of its network as well as the
settlement price associated with peering and transit links. To
the best of our knowledge, there isn’t any published literature
that allows third parties to create network topology and cost
maps tailored to a specific application running in a network.

Our primary contribution is to demonstrate how third parties
can create network and topology maps for ALTO from public
sources of information. More specifically, we use the United
States Federal Communications Commission (FCC) public
database from the Measuring Broadband America (MBA)
program. This is an ongoing, rigorous, nationwide study of
residential broadband performance in the United States. We
mine the public data to assign each subscriber to an ISP (this
relationship is not captured in the data distributed by the FCC).
The ISP clusters serve as the PIDs in our work. In fact, unlike
an ISP that possesses a localized view, our work operates at
a layer above, essentially considering relationships between a
cluster of ISPs.

The rest of the paper is structured as follows. A brief
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introduction to the FCC MBA program and the dataset are
in Section II. The nodes participating in the FCC study are
anonymized; consequently, the first task was to identify a
stable set of nodes and their corresponding ISPs (Section III).
This set constitutes the network map, each ISP corresponding
to a PID. At this stage, each component in the network map (or
graph) is disconnected. Section IV uses financial engineering
techniques to derive cost maps and connect the graph depend-
ing on the specific service under consideration. Given such
networks and cost maps, a peer (client) can now make better
decisions on which other peers (servers) it will seek out. This
decision can be optimized for a specific service, e.g., the costs
involved in a low-latency service will be different than those
involved in a high upload bandwidth service. In Section V, we
see how historical data allows accurate identification of stable
nodes; such nodes could be candidates for being promoted to
supernodes in a P2P network. We describe related work in
Section VI followed by a conclusion.

II. DESCRIBING THE DATA: FCC MBA DATASET

To model or reason on network dynamics, one needs to have
measures derived from the actual installation over a reasonable
period of time. Obtaining such data is not easy because the
network operators typically do not make such data public
due to privacy and business reasons. Furthermore distributing
sensors evenly to measure performance and capabilities of a
system need careful planning as these should not interfere
with the daily traffic of the system biasing the measures.
In an ongoing study that started in 2010, the U.S. Federal
Communication Commission (FCC) has been measuring the
nationwide performance of broadband service in the United
States under a program called Measuring Broadband America
(MBA). The data collected is available publicly after removing
all subscriber identifying information (name, address, cus-
tomer tier, IP address, etc.). The subscriber is represented only
by an invariant opaque unit identification number, a unit_id.

The MBA program collects data with the support of national
broadband service providers to measure the actual capabilities
of their national wired network. MBA is an opt-in program
where volunteers agree to host a whitebox in their homes.
The whitebox plugs into the home network and runs a series
of network performance tests hourly to gather the data. The
data is then collected, analysed and published as an annual
report by the FCC. More information about the MBA program
is available in the FCC MBA Technical Appendix [2].

There are 14 tests run once every hour. Data from
each of the tests is sent to measurement servers where
it is tabulated, anonymized and made available publicly.
Our work uses the data corpus from 2012 !. The data
set consists of 12 tables, of which the following three
tables were used in our work (see Figure 2): (1) Ta-
ble curr_dns uses 9 predefined and well-known websites
to measure the DNS resolution time for each of them.

'The anonymized raw data for each month of 2012 is available at
http://www.fcc.gov/measuring-broadband-america/2012/raw-data-2012/
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was configured in the client, and data download at the
maximum rate to ensure this buffer never drained. Each table
contains unit_id as an invariant, allowing us to cross-index the
same subscriber across tables. Each table has a location_id
field as well, but the contents are random digits that cannot
be used to derive the physical location of the subscribers.

III. GEO-LOCATING UNIT_IDS FOR A NETWORK MAP

Table I shows the total volume of data analyzed from the
2012 dataset. The first

challenge was to ar- Data Records
rive at computing re- (GBytes) | (Millions)
ble i curr_dns 759 984.3
sources comparable 1n curr_netusage 2.9 48
scale to the dataset con- curr_videostream 118 9%
sisting of over 1 billion | Total [ 906 [ 11283 |

records spread across
gigabyte-sized files. We
used Map-Reduce on a 4-node cluster running Apache Hadoop
(version 2.0.0-cdh 4.30). Each node is configured as a hexacore
Xeon CPU with 2.4 GHz and 120 GB RAM.

A second, more pressing challenge, was to identify the
geographic location of the wunit_ids. In order to derive a
topology map and impose costs on the links, it is important to
know the physical locations of the unit_ids that contributed the
measurements. However, in the MBA dataset, the population
is anonymized and the individual subscriber reporting the
measurement data is simply referred to by a random number.
Therefore, an important task was to use the information from
the public dataset to reveal a coarse location of the subscriber
and assign the subscriber to a specific ISP. To geo-locate the
units, we simply note that broadband subscriber devices are
likely to be configured using DHCP, which imparts an IP
address and DNS servers to the subscriber device. These DNS
name servers are located in close physical proximity of the
subscriber device. The FCC technical appendix [2] states that
the DNS resolution tests were targeted directly at the ISP’s
recursive resolvers; therefore, a reasonable approximation of
a subscribers location is the geographic location of the DNS
name server serving the subscriber. We use this very heuristic
to geo-locate a subscriber. The time needed for extracting DN'S
resolver’s IP addresses associated with individual wunit_ids

Table I: Volume of data analyzed




was around 30 minutes for the data set. To identify the
geographic location of the unit_ids, we used an online geo-
location service, although we were limited by the number of
queries. It took us two days to analyze the entire dataset.
This methodology does not identify the specific location of a
subscriber, who still remains anonymous. It simply locates the
subscriber in a region and associates an ISP with the specific
subscriber. This level of granularity suffices for our work.

Our first and very simple filter consisted of obtaining a
mapping from a unit_id (representing a subscriber) to one
or more DNS name servers that the unir_id is sending DNS
requests to. It turned out that while this was a necessary
condition for advancing, it was not a sufficient one. The
raw data would need to be further processed to reduce in-
consistencies and remove outliers. A number of interesting
artifacts were uncovered during further processing of the data.
These artifacts, enumerated below, informed the selection of
the unit_ids for further analysis.

(1) A handful of unit_ids were geo-located outside the contigu-
ous United States, such as in Ukraine, Poland or the U.K. We
theorize that the subscribers corresponding to the unit_ids had
simply configured their devices to use alternate DNS servers.
These records did not contribute to our analysis.

(2) We also observed a number of non-ISP DNS re-
solvers, especially Google’s 8.8.8.8, 8.8.4.4; and OpenDNS’s
208.67.222.222, 208.67.220.220. These 4 public servers are
geo-located in California. We removed these records to ensure
that California was not oversampled.

(3) We noticed that a large number of unit_ids were geo-
located in Potwin, Kansas (37°N97°W). Intrigued as to why
there appeared to be a large population of Internet users being
located in a small rural community (pop. 441), we investigated
further. It appears that Potwin, Kansas is the geographical
center of the United States. If the IP geo-location service is
unable to pinpoint the location of an IP address, it returns
the coordinates corresponding to the geographic center of
the country. Other researchers have dubbed this the “Potwin
Effect” [3]. We excised all records that showed the impact of
such aggregation points so they don’t skew our results.

Subsequent filters extracted the stable wunit_ids from our
dataset. In order to determine which unit_ids are stable, i.e.,
remain constant with respect to their geographic location over
the observation period from January to December 2012, we
extracted for each unit_id the IP address of each DNS name
server it consulted. This was repeated for each month of the
observation period. The resulting sets were cleaned up of
private IP addresses and other artifacts discussed above.

To determine the stability of each unit_id we proceeded
to sum up the occurrences of IP addresses over the whole
observation period separated in monthly files. If the IP address
of a DNS server occurred 12 times this meant that the
unit_id always accessed the same DNS server and therefore
remained stable over the observation period. The 2,142 stable
unit_ids thus obtained were used for further analysis. We note
that about 2,000 unit_ids constitute a good sample from a
population of 7,968 subscribers in the July 2012 MBA report
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Figure 3: Distribution of stable unit_ids

[2]. Assuming a 99% confidence level and 43 point margin of
error, we will require a sample of 1494 unit_ids. With our more
than adequate stable set of 2,142 unit_ids , we continued with
further analysis on the dataset to create the full topology and
cost maps. The stable unit_ids superimposed on the map of the

United States are illustrated in

ISP unit_ids Figure 3. The size of the ra-
Comeast 726 dius of a circle represents the
Charter Comm. 447 . ..
concentration of unit_ids.

Cox Comm. 386 . .
Verizon DSL (MCI) 243 A side effect of geo-locating
Windstream Comm. 151 susbcribers using the DNS re-
Medi ) 4 .

ediacom Comm 0 solver is that we were also able
Cablevision 37 X
Time Warnor 31 to associate each of the sta-
Century Link (Embarq) 19 ble unit_ids with an ISP. Be-
Total 2,089 cause the DNS resolution test

Table II: Top 9 ISPs was targeted directly against
the ISP’s recursive resolvers, it was trivial, therefore, to figure

out which ISP served a particular unit_id. Table II shows those
ISPs having at least 19 stable unit_ids. The remaining 53
unit_ids are distributed over 32 ISPs, but because each ISP
has a small number of unit_ids, they are not listed in the table.
For the analysis in the rest of this paper, we only consider the
top 9 national ISPs listed in Table II.

The collection of ISPs
serves as our network
map. In ALTO, a net-
work map is provides a
full set of network loca-
tion groupings and end-
points contained within
each grouping. The ISPs
serve as our location
grouping, with each ISP
corresponding to a PID.
The stable hosts in an ISP
serve as endpoints con-
tained within each group-
ing. Figure 4 shows the
top 9 ISPs as isolated clusters (or disconnected components)
in a network. (Only 30% of the hosts in each ISP are shown
in the figure to aid in visualization.) Note that at this point, no
links exists between the components; i.e., we have only created
a network map, a cost map that connects the components still
needs to be created.

Figure 4: Top 9 ISPs as discon-
nected components in a graph



IV. BUILDING COST MAPS FROM FCC DATA

We build cost maps for each ISP using two important
features that are relevant for end user experience: the upload
throughput rate (from curr_netusage table) and and latency
(from curr_videostream table). We compute a monthly average
of these rates for each ISP and define the cost matrix in
terms of Sharpe ratio [4], a common financial engineering
metric. This ratio measures to which extent a given asset
is an adequate tradeoff between the risk assumed by an
investor compared to the expected return. The ratio is a natural
extension to calculate a cost matrix: we model the investor as
a network node and a portfolio as the specific service (latency
or bandwidth) of interest.

The Sharpe ratio for a portfolio p, is computed
by subtracting the risk-free rate of
return (Ry) from the rate of the
portfolio return itself (v,), and di-
viding by the standard deviation of
the portfolio returns (o},), as shown in Eq. (1). Historical aver-
ages alone might not be appropriate if the associated standard
deviations are high, because in such cases the effective metric
of interest is much lower than the historical average. However,
the Sharpe ratio takes the associated standard deviation in
account, so it is a better candidate for approximating a cost
function. Higher Sharpe ratios are equivalent to high averages
and small standard deviations. Smaller Sharpe ratios are due
to either high standard deviations, or to small averages. A
negative Sharpe ratio implies that the risk-free rate of return
would perform better than the portfolio being analyzed.

We create two cost maps, each specific to a class of applica-
tions. Cost map C,, is for P2P-class of applications that seeks
out PIDs that host peers with high upload bandwidth. Cost
map C} is used by latency-sensitive applications (e.g., CDNs).
C, and C; are computed by analyzing the Sharpe ratio (Eq.
(1)), where 7, represents the actual average upload throughput
(or average latency) for the given month and o), the standard
deviation of the download throughput (or latency). Ry, the
risk-free rate of return is modeled as one standard deviation
below the yearly average upload bandwidth (or latency). Fig. 5
shows the Sharpe ratios for the upload bandwidth (Fig. 5a) and
latency (Fig. 5b). The figure shows the monthly evolution (x-
axis) of the Sharpe ratio (y-axis) for our 9 ISPs. The horizontal
line in the graphs (at y = 0) represents the threshold at which
the risk-free investment no longer is the best option. These
ratios can be compared not only in terms of absolute values,
but also on the temporal evolution for individual ISPs.

There are some interesting trends to explore. First, the data
does not show any correlation between the upload throughput
and the latency among the ISPs. However, Fig. 5b does show
that most ISPs deliver acceptable latency according to the
risk-free investment benchmark we establish. This is less
the case with upload throughput (Fig. 5a), where there is
a wider variation among ISPs delivering what we consider
an acceptable upload speed. Second, a number of ISPs show
continuous improvement over the year in upload throughput
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(Comcast, Cox, MCI, and Mediacom). This may be a result
of cumulative engineering and provisioning. Alternatively,
some ISPs shows a downward trend in the Sharpe ratio for
the upload throughput as epitomized by Time Warner and
Windstream. Time Warner’s downward trend that starts around
February and does not show a sustained uptick until July can
be explained by its acquisition of Insight Communications,
which was completed on February, 2012. After the merger, it
took 5 months for the operating capacities to show growth.

To calculate the cost maps using the Sharpe ratio (Eq.
1), we consider PID to be a set of all the ISPs in
Table II. The upload throughput cost map, C,, is calcu-
lated using Eq. 2 below. Here, C? is the upload through-
put cost for each PID ¢, which is calculated over sum-
mation of the value of each month’s Sharpe ratio for the
PID i (S!) and multiplying by a weight associated with
the PID. To reward
positive Sharpe ra-
tios, we weigh the
oo sum by the fraction
of months (from the last 12 months) that the Sharpe ratio for
PID i is positive (i.e., above the risk-free investment line). In
ALTO, a lower cost value indicates a higher preference for
traffic from a source to a destination. Therefore, the actual
cost for each PID is further calculated from Eq. 3:

Vi € PID, Default_cost = [max(C},C2,....,CL)]

Vi € PID,C" = Default_cost — C",
That is, we first find the maximum cost across all PIDs;
this becomes our default cost that is applied to the Default
PID. Costs to the remaining PIDs are calculated as a distance
from the default cost. The latency cost for each PID, C7, is
calculated in a similar manner. The computations of Egs. 2
and 3 result in the cost matrices shown in Tables III and IV
for C,, and Cj, respectively. The first column represents the
source PID and the remaining columns the destination PID.
Thus, a host in the PID Comcast will always prefer other hosts
in Comcast first (cost: 0), followed by hosts in PID Mediacom
(cost: 0.316) to optimize upload bandwidth, or hosts in the
PID Time Warner (cost: 0.32) to minimize latency. The costs
serve to connect the previously disconnected components of
Fig. 4; Fig. 6 depicts the links formed by peers in the largest
PID (Comcast) to peers in
other PIDs based on the
upload bandwidth cost of
Table III. The width of the
edges between the PIDs is
a measure of preference;
i.e., the PIDs connected by
wider edges are preferred.

12
Vie PID,C, =Y Si,«W; (2)

3)

An example helps explain
the use of costs. Assume
that a peer located in
the Comcast PID wants to
download content using a
P2P network; it therefore

Figure 6: Connecting the Com-
cast PID based on C,,
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Figure 5: Sharpe ratios for upload throughput and latency
Cablevision | Charter | Comcast Cox Embarq MCI Mediacom | TimeWarner | Windstream | Default
Cablevision 0.000 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Charter 0.498 0.000 0.804 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Comcast 0.498 0.799 0.000 0.796 0.377 0.700 0.316 0.508 0.782 1.000
Cox 0.498 0.799 0.804 0.000 0.377 0.700 0.316 0.508 0.782 1.000
Embarq 0.498 0.799 0.804 0.796 0.000 0.700 0.316 0.508 0.782 1.000
MCI 0.498 0.799 0.804 0.796 0.377 0.000 0.316 0.508 0.782 1.000
Mediacom 0.498 0.799 0.804 0.796 0.377 0.700 0.000 0.508 0.782 1.000
TimeWarner 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.000 0.782 1.000
Windstream 0.498 0.799 0.804 0.796 0.377 0.700 0.316 0.508 0.000 1.000
Table III: Cost map for upload bandwidth (C.,)
Cablevision | Charter | Comcast | Cox Embarq | MCI | Mediacom | TimeWarner | Windstream | Default
Cablevision 0.00 1.67 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Charter 0.76 0.00 1.81 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Comcast 0.76 1.67 0.00 1.10 1.41 0.86 1.32 0.32 1.38 2.00
Cox 0.76 1.67 1.81 0.00 1.41 0.86 1.32 0.32 1.38 2.00
Embarq 0.76 1.67 1.81 1.10 0.00 0.86 1.32 0.32 1.38 2.00
MCI 0.76 1.67 1.81 1.10 1.41 0.00 1.32 0.32 1.38 2.00
Mediacom 0.76 1.67 1.81 1.10 1.41 0.86 0.00 0.32 1.38 2.00
TimeWarner 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.00 1.38 2.00
Windstream 0.76 1.67 1.81 1.10 1.41 0.86 1.32 0.32 0.00 2.00

Table IV: Cost map for latency (C)

seeks PIDs with high upload capacities. The cost map for C,,
(Table III) informs the querying peer to seek out peers in the
local PID (i.e., Comcast) first (cost: 0.0), followed by looking
for peers in the Mediacom PID (0.316), and then connect to
peers in Embarq PID (0.377), and so on. If there aren’t enough
peers in the set of PIDs whose costs are known, the querying
peer will seek out peers in the Default PID, where the cost is
the highest. Similarly, when looking for peers with minimal
latency (Table IV) , the querying peer would try peers in the
PID Comcast first (cost: 0.0) followed by peers in the PID
Time Warner (cost: 0.32), MCI (0.86) and so on before seeking
peers in the Default PID.

The calculated costs accurately reflect how the particular
PID behaves according to historical data; e.g., consider the
PIDs Mediacom and Embarq in Table III and their associated

curves in Fig. 5a. In the figure, the Embarq curve is above
the risk-free threshold for all of the year when compared to
the Mediacom curve. However, Mediacom cost in Table III
is less than Embarq cost, making the former more attractive
when forming connections. The cost for Mediacom reflects
the upward slope of its curve when compared to the vagaries
reflected by the Embarq curve. Such objective historical guid-
ance reflected in the cost makes our approach a better solution.

V. PROMOTING SUPERNODES VIA SOCIAL NETWORK
ANALYSIS (SNA)

In December 2010 Skype experienced a large-scale outage
that reduced the global number of active supernodes by 25-
30% [5]. A supernode acts like a directory, allowing normal
Skype peers to rendezvous with each other and acting as relay



nodes when necessary. Each supernode assumes responsibil-
ity for several hundred peers. Consequently, they become a
single point of failure, and when they crash, as occurred in
December 2010, a large part of the P2P network goes dark.
The algorithm for promoting a peer to a supernode takes
many attributes into consideration: uptime of a peer and how
connected the peer is in the network are two indications that
may be used. We analyzed the MBA dataset to discern hosts
in a PID that may be candidates for promotion to a supern-
ode. We present our analysis on the largest PID, Comcast.
Comcast contains 726

hosts that remain sta- Month | Vertices/ | Density | Clusters/Avg.
ble throughout the Edges Components
. per Cluster
year. To determine Jan 56/138 0.045 127467
the host connectivit Feb 517138 0.054 9567
Y, Mar 407100 | 0.064 75712
we compute a Pear- Apr | 427112 | 0.065 6/7.00
son correlation matrix “J/Iay ;ggg‘z‘ 8823 gggg
. un A .
with p-value = 0.003 Tol | 6833 | 0073 /1133
and correlation value Aug 36/66 0.052 13/2.77
. . Sep 62/338 0.089 77336
> 0.9. Using this ma- Oct_| 45108 | 0.055 10/4.50
trix we construct for Nov 77152 0.070 9522
every month a num- Dec S0/114 | 0.047 127417

ber of metrics. These Table V: Comcast SNA
include the numbers of vertices and edges per month, the
density, the number of cluster of connected components and
the average number of components per cluster. The density
of a graph is a ratio of the edges to the maximum number
of possible edges. The cluster of connected components is
the number of subgraphs that have at least two vertices that
are connected to each other, and the average number of
components per cluster gives us the average number of nodes
over all subgraphs. Table V summarizes these metrics and Fig.
7 depicts the correlated components for the month of June (that
month has the highest number of vertices). The data in Table
V can be used by an algorithm that picks supernodes based
on longevity and graph centrality.

Social network analysis has other uses as well. For
example, a tracker in Comcast PID that wants to
choose local peers with good upload bandwidth can
use historical data to precompute the -clusters shown

in Fig. 7. Furthermore,

differences between con-
° nected components in the
same PID but for differ-
1 o 2 ° ent time frames and geo-
o graphic locations are good
Nt * °  markers for temporal vari-
ations — e.g., if two hosts
(one in Chicago, other in
Boston) are linked for a
long time (say, Jan-Apr)
but are not linked any more
in May then this could be
an indication of a signifi-
cant change in the network
capacities or in the traffic management policies.

Figure 7: Correlated compo-
nents in Comcast (June 2012)

VI. RELATED WORK AND CONCLUSION

D’Elia et al. [6] describe how ALTO’s ranking service ranks
peers in a P2P network in wireless mesh networks. Unlike our
work that considers application classes (bandwidth sensitive,
delay sensitive), D’Elia et al. depend on single cost that serves
different application classes. Shibuya et al. [7] also provide an
ALTO ranking service; however, their service uses the ISP’s
policies, which would not be available to a third-party.

Significant efforts [8], [7], [9], [10], [11] have been made
to explore ALTO in conjunction with modeling the Internet
topology at the Autonomous System (AS) level. Some of
the papers simply use simulation to approximate ASes while
others construct AS topologies through various means. The
mapping of IP addresses to an AS provides a crude topology
map and the BGP route announcements from ASes constitute
a cost map. But techniques to create network and cost maps
from ASes and BGP are not without disadvantages [12].
The information gathered by BGP and AS scraping does not
provide the rich dynamics inherent inside an ISP. For instance,
attributes used in our study, such as download speed, upload
capability, and latency are not visible at the BGP routing layer.

Our work demonstrates the importance of historical data as
an important source to create ALTO maps. We show how to
provide multiple cost maps, each suited to a particular class
of applications (i.e., delay- or bandwidth- sensitive). This is
harder to achieve when BGP cost is the only available option.
Future research activity will investigate how to extend this ap-
proach to wireless networks, where applications requirements
can drive advanced vertical handover schemes.
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