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Abstract—A cloud environment is a complex environment
composed of many different entities and layers. Each of these
cloud entities may be furnished with mechanisms offering various
management actions. For any given situation, different man-
agement actions may be applicable and often simultaneously.
Enforcing isolated management actions or combining contradic-
tory management actions may negatively affect cloud application
quality and cloud infrastructure performance. This means that
correctly selecting and effectively combining these management
actions for a given situation becomes an important challenge
in cloud computing. In this paper, we address the problem of
identifying situations where more than one management action
can be performed. The key contributions of our paper are: (1)
a three dimensional (3-D) monitoring model for analyzing cloud
monitoring information; (2) the concept and formalization of
Context of Interest (CoI) that specifies how to retrieve meaningful
information from the 3-D model to support the coordination
of management actions between cloud infrastructure and ap-
plication. We conducted experiments in a real testbed using
Openstack and the WordPress Web site application. Our results
show that analyzing cloud monitoring information using the 3-D
model and the CoI can support a more effective identification of
management actions to be taken.

I. INTRODUCTION

Appropriate cloud management is essential. Popular man-
agement actions to handle dynamic changes inside the cloud
environment are: migration and elasticity of virtual resources
[1][2][3][4], multi-cloud resource management [5][6], load
balancing [7], and infrastructure resource management [8].
However, a cloud environment is complex and composed of
many different entities and layers [9]. These entities include, to
name a few, physical resources, virtual resources deployed on
top of physical resources, Web application servers deployed
inside virtual machines, as well as software code running
inside a Web application server. These entities typically offer
dedicated management actions that can be used to enable
dynamic adaptation at runtime. As a consequence, various
management actions can be applied simultaneously and this
might negatively affect both cloud application quality of
service and cloud infrastructure performance [9].

Thus, the decision on which management action(s) are
appropriate for a given situation depends on monitoring and
analysis support able to consider the complex dependencies
between cloud entities and their management mechanisms.
Few solutions in cloud monitoring consider the collection

of information from different layers [10]. Other works focus
on building the support for collecting information from the
cloud environment [11] or automating the configuration of the
monitoring solutions, such as Chef and Puppet frameworks.
However, these solutions do not provide a way to analyze
this data in order to identify multiple management actions for
a given situation. In addition, current management solutions
for cloud applications [3][4] and cloud infrastructures [12][13]
are still limited in analyzing the information and adaptation
options from the different layers of cloud environment.

In this paper, we address the problem of identifying situa-
tions where various management actions can be performed.
Instead of looking at the cloud monitoring information as
isolated streams of data, we propose to analyze this infor-
mation as a three-dimensional data space. Inside this space
there are combinations of points that indicate situations in
which one or more management actions could be applied in
different layers of the cloud. We assume that the Monitoring
as a Service model is used by all the stakeholders of a cloud
environment that are willing to coordinate their management
actions. This allows information to be collected from the dif-
ferent layers of the cloud environment. The key contributions
of our paper are: (1) a three dimensional (3-D) monitoring
model for analyzing cloud monitoring information as volumes;
and (2) the formalization of Context of Interest (CoI) that
specifies how to retrieve meaningful information from the 3-
D monitoring model to support coordinated infrastructure and
application management actions and handle dynamic changes
in the cloud environment. We applied our formulation to
a testbed using Openstack and the WordPress application.
Experiments conducted in the testbed show that with the 3-
D monitoring model and Contexts of Interest it is possible
to identify multiple management actions and support a more
efficient decision-making on which action should be taken.

The remainder of this paper is organized as follows. Section
II describes the related work. Section III presents the back-
ground on cloud layers and introduces the 3-D monitoring
model. The Context of Interest is formalized in Section IV.
Section V describes the experiments. Finally, Section VI
contains the conclusions and future work.



II. RELATED WORK

In this section, we discuss two classes of related work. First,
the ones devoted to cloud monitoring. Second, we analyze
which kind of monitoring information is currently used for
performing management actions in cloud environments.

Montes et al. [10] introduced the idea of levels of monitor-
ing in a cloud environment. They defined the monitoring in the
virtual system level (composed by the sub-levels application,
platform, and infrastructure) and the physical system level.
The focus of this work is the collection of the monitoring
information and not how the information is processed and
associated with different layers of monitoring to be correlated.

Popular tools such as Chef and Puppet are indeed frame-
works for the automatic configuration of infrastructures. They
also provide support for the most common available resource
usage visualization tools. Puppet provides some more func-
tionalities for inspection of events grouped together. However,
the combination of more sophisticated information in a cloud
environment is still a task to be done by human administrators.

In addition, monitoring tools and APIs are also available on
cloud commercial and open source solutions such as Google
App Engine, Amazon Web Services, Ceilometer, Ganglia,
Nagios, and Zabbix. The Google App Engine provides support
for monitoring a fixed set of performance metrics. Amazon
Web Services (AWS) provide a set of tools and APIs for the
developers, such as AWS OpsWorks, CloudWatch, and EC2.
CloudWatch provides a large set of metrics and possibilities for
the configuration of new metrics and it also allows to capture
some metrics associated with EC2 (related to auto scaling).
Ceilometer provides all basic information about the OpenStack
components, such as Nova-Compute, Swift, Cinder, etc. It
provides support for the generation of events. The traditional
monitoring frameworks such as Ganglia, Nagios, and Zabbix
also support extensions for monitoring the cloud environment.
However, the aforementioned solutions do not provide the
sophisticated logic for relating monitoring information since
their purpose is the collection of monitoring information and
handling event notifications.

Leitner et al. [14] introduce a framework where application
developers can define which application metrics should be
monitored. The framework collect the desired application
information from single hosts (i.e., single VMs), pools of
hosts (i.e., pools of VMs) and correlate this information. In
their case, correlation means filtering and aggregating data to
reduce the flood of information. No analysis specifically target
to activating management actions is proposed in this work.
Differently from this work, for us, set of pieces of monitored
information are modeled to indicate one or more management
actions in one or more layers of the cloud environment.
Miglierina et al. [6] and Dutta et al. [3] both proposed solutions
for auto-scaling cloud applications. Their solutions consider
monitored information about the architecture of the application
in addition to the ones from the cloud virtualization layer. He
et al. [4] provide a framework for the deployment, migration,
and elasticity of applications based on Elastic Application

Containers. The monitored information used by the them is
related to physical and virtual machines, such as CPU, I/O
operations, and network traffic. In contrast to these approaches,
we focus on using different sources of monitoring information
not only for auto-scaling but also for triggering different types
of management mechanisms inside a cloud environment.

In addition to the work on the adaptation of cloud ap-
plications, there is a large amount of research related to
management of cloud infrastructures. Fischer et al. [8] present
a large survey about solutions for embedding virtual resources
into physical infrastructures. The main information taken into
account are IaaS measurements, such as network usage, CPU,
and memory. Recent works proposed by Wuhib et al. [12]
and Esteves et al. [13] also take into account the structure
of the application as part of the problem formulation of
cloud resource management. However, no other application
information is considered for taking the management decisions
for allocating the resources.

As discussed above, there is still a gap when it comes to
better combining and analyzing the information from the cloud
environment in order to enable a more coordinated execution
of management actions in a cloud environment. The advances
in monitoring information collection and more sophisticated
management solutions for cloud management discussed in this
section serve as basis for the next step proposed in this paper.

III. NEW APPROACH FOR CLOUD MONITORING

For adaptations to take place, it is first necessary to monitor
the information that is relevant to detect a situation in which
changes are required, i.e., management actions should be
activated. In a previous work [9], we defined the layers and
entities inside the cloud environment that can initiate or suffer
adaptation actions, and the influences that adaptation actions
can cause among the various entities of the cloud environment.
In this paper, we focus on defining the necessary monitoring
model and initial support to enable the identification of situa-
tions inside the cloud environment that can lead to activation
of distinct management actions in different entities of the cloud
layers. The long term goal of our research is to automatically
analyze the monitored situations and their multiple manage-
ment actions, aiming at enabling a better coordination of these
actions to reduce their influences in the entities of cloud
environment. In this section, we focus on the presentation of
the reference cloud scenario and its layers. Then, we propose
a high level three dimensional cloud monitoring data model,
called 3-D monitoring model. The purpose of this model is
to support the identification of monitoring information inside
the cloud environment that will reveal situations leading to
multiple and eventually conflicting management actions.

A. Cloud Layers

Fig. 1 depicts a simplified version of the four layers and
entities composing our reference model of a cloud environment
[9]. The Physical Layer (PL) is in the base of Fig. 1. It includes
the data center physical resources (e.g., Physical Machines
and routers) and all management entities controlling those



physical resources. The Virtualization Layer (VL) is composed
of virtual resources and the respective management support.
The Application Architecture Layer (AAL) encloses the set of
entities, such as servers and software components, necessary
to support the architecture of an application. For example, in
the case of Web applications, the components associated with
this layer are Web Servers and Database servers. Examples of
monitoring metrics in this layer are: number of transactions
per second and response time of the server requests. Finally,
the Application Business Logic Layer (ABLL) involves the
entities directly related to the application business logic im-
plementation. In the case of an Web application, an example
of monitoring information in this layer is the response time of
method associated with the purchase order.

PM
PM

PM

VM

VM

VM

VM

VM

DB
DB

AS

AS

LBAS

App 1
App 2

Ph
ys
ic
al

La
ye
r

Vi
rtu
al
iz
at
io
n 

La
ye
r

Ap
pl
ic
at
io
n 

Ar
ch
ite
ct
ur
e

La
ye
r

M
o
n
it
o
ri
n
g
 B
u
s

Ap
pl
ic
at
io
n 
Bu
si
ne
ss
 

Lo
gi
c 
La
ye
r

Fig. 1. Cloud layers, entities, and relationships.

As illustrated in Fig. 1, the different entities populating
the cloud layers are related to each other. For instance, each
Physical Machine (PM) can host multiple Virtual Machines
(VMs). Each of these VMs can run different servers, e.g.,
Web servers, database servers, application servers that host
components of the application. For instance, a server like
Apache Tomcat is able to host different servlets, which
are entities of the Application Business Logic Layer.

In order to make the cloud infrastructure ready for iden-
tification and later coordination of the multiple management
actions, the entities in the layers and their relationships need to
be accurately monitored. For instance, the approach proposed
by Montes et al. [10] already foresees a mechanism for data
collection such as the one represented in Fig. 1. However, just
the collection of data is not enough. It is still necessary the
definition of a monitoring model that can lead to a successful
data analysis and easy runtime detection of situations where
multiple management actions could be applied. The next
section introduces such a monitoring model.

B. 3-D Cloud Monitoring Model

We propose using three dimensions to define a cloud
monitoring model able to support an elaborated analysis of the
measured information. This model is based on the following
assumptions:

• We consider that for any type of applications executing
inside the cloud environment there will be entities and
relationships in different layers of this environment that
can change and affect each other, independently of who
is selling or buying cloud services. These entities can be
monitored and their measurements can be correlated.

• We assume the existence of mappings among the entities
across layers, as illustrated in Fig. 1. This means that
virtual entities are mapped to physical ones, application
architecture entities are mapped to virtual ones, and appli-
cation business logic entities are mapped to application
architecture ones. OpenStack, for example, has support
for mapping the physical and virtual entities, but the
mapping for the other layers is not supported yet.

• There must always exist one application associated with
the entities in the Application Architecture, Virtualization,
and Physical layers. It is out of the scope of this paper
to discuss which stakeholder in the cloud environment
would be responsible for keeping this information. We
assume that the information is available and is delivered
using a Monitoring as a Service model.

Based on the above assumptions, we propose that a spe-
cific metric within the space of the collected data can be
identified by three different characteristics: (1) the PM on
top of which the metric was collected, (2) the application
to which the metric is related; and (3) the kind of metric
and its corresponding cloud layer. These characteristics can
be expressed as coordinates in a 3-dimensional representation
of data collection space in a cloud environment, thus leading
to the proposed 3-D monitoring model as depicted in Fig. 2.
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Fig. 2. Example of 3-D monitoring volume for the data collected in a Cloud
Environment for the Application Architecture Layer.
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Fig. 3. Monitoring slices in the 3-D monitoring model.

The transparent volume with dotted lines illustrated in Fig. 2
represents the entire space of data that can be monitored in
a cloud environment, and we named it: Cloud Environment
Monitoring Volume (or monitoring volume). The monitoring
volume can be sub-divided and reduced into monitoring sub-
volumes. For instance, Fig. 2 shows the Application Ar-
chitecture Monitoring Volume which is a sub-volume with
monitoring metrics from the Application Architecture Layer
related to all applications deployed in the cloud environment
under consideration. In fact, the space of the collected metrics
can be cut through with the use of planes to identify subsets
of the space that are of interest for a given situation. For
example, Fig. 3 shows the monitoring slices obtained by
cutting the space through a couple of planes. The application
appi monitoring slice groups all the metrics in all of the layers
that are collected for application appi, on top of all the PMs
that host virtual resources associated with appi. On the other
hand, the pm j monitoring slice involves all the metrics in all
the layers that are related to pm j. The intersection of the two
slices (highlighted in red) represents the set of the metrics
in the different cloud layers that are related to application
appi and measured in pm j. We use the intersection among
monitoring slices from different planes to detect situations that
will eventually lead to the activation of multiple management
actions throughout the different cloud entities. However, not
all the monitoring data in an intersection is relevant for the
identification of these situations. Therefore, in the next section,
we introduce the concept of Context of Interest (CoI), a
formalization that allows dealing with the complexity of the
monitoring volumes, slices, and intersections.

IV. CONTEXT OF INTEREST

A Context of Interest (CoI) is the simultaneous observation
of metrics in the intersection of monitoring slices that are
relevant for taking management actions in different layers

of the cloud environment in response to dynamic changes
inside such an environment. The Context of Interest necessarily
implies that for the observed information a distinct and maybe
conflicting set of cloud management actions could be trig-
gered. Thus, the definition and identification of CoIs enable the
mapping of different management actions in different layers
of the cloud environment. The CoI concept builds upon a
sequence of definitions and characterizes the 3-D monitoring
scope and the monitoring slices, defining which cuts on
the monitoring slices are relevant to determine monitoring
information that characterize situations leading to multiple
management actions. This concept does not determine how
information is collected in the cloud environment. It rather
establishes how such information will be analyzed. In the
following section, we provide a mathematical formulation of
the Context of Interest concept in order to enable the automatic
analysis of the collected monitoring information.

A. Formalization
Definition 1 (Application) An application is a set

of components (e.g., systems, sub-systems) and it has
necessarily a unique identifier in the cloud environment
(appi). The components of the application might be mapped
to different VMs along the cloud infrastructure. However,
they will be associated with the same application identifier.

Definition 2 (Application Set) The application set A
refers to the set of all apps deployed inside the cloud
environment. A = {appi} where 1 ≤ i ≤ I and I is the total
number of applications deployed in the cloud environment.

Definition 3 (Physical Machine Set) The physical machine
set P refers to the set of all PMs in the cloud environment.
P = {pm j} where 1 ≤ j ≤ J and J is the total number of
PMs in the cloud environment.

Definition 4 (Physical Layer Metric Set) The physical
layer metric set MPL refers to the set of all physical metrics
in the cloud environment. MPL = {plmp} where 1 ≤ p ≤ P
and P is the total number of physical layer metrics measured.

Definition 5 (Virtualization Layer Metric Set) The
virtualization layer metric set MV L refers to the set
of all virtualization metrics in the cloud environment.
MV L = {vlmq} where 1 ≤ q ≤ Q and Q is the total number
of virtualization layer metrics that can be measured.

Definition 6 (Application Architecture Layer Metric
Set) The application architecture layer metric set MAAL
refers to the set of all metrics related to the application
architecture layer in the cloud environment. MAAL = {aalmr}
where 1 ≤ r ≤ R and R is the total number of application
architecture layer metrics that can be measured.

Definition 7 (Application Business Logic Layer Metric
Set) The application business logic layer metric set MABLL
refers to the set of all metrics related to application business
logic layer in the cloud environment. MABLL = {abllms}
where 1 ≤ s ≤ S and S is the total number of application
business logic layer metrics that can be measured.



Definition 8 (Set of Metrics) The set of all metrics
M is composed by all the metrics that can be
measured in the cloud environment. M = {mk} where
mk ∈ (MPL ∪MV L ∪MAAL ∪MABLL), 1 ≤ k ≤ K, and
K = P+Q+R+S.

Definition 9 (Cloud Monitoring Volume) The
cloud monitoring volume V = {(appi, pm j,mk)} (with
|V | = |A |× |P|× |M |) is the Cartesian product of sets A ,
P , and M indicating the space of information that can be
collected in a cloud environment.

Fig. 2 graphically depicts V , also highlighting the subset
corresponding to the Application Architecture Layer. Let us
consider a function f : V × T → R∪{null} where T ⊆ R+

is the set of time instants. Then, f (i, j,k, t) is the value
associated with the metric mk related to the components
of application appi deployed in the PM pm j, measured at
time instant t. If the application appi does not have any
component actually deployed in pm j or the measure mk does
not apply to the specific application, the null value is returned.

Definition 10 (Application Monitoring Slice) An
application monitoring slice SA is a plane {(app, pm j,mk)}
in the cloud monitoring volume V obtained by considering
all the points in the volume associated to a specific app ∈A .

Definition 11 (Physical Machine Monitoring Slice)
A physical machine monitoring slice SPM is a plane
{(appi, pm,mk)} in the cloud monitoring volume V obtained
by considering all the points in the volume associated to a
specific pm ∈P .

Fig. 3 graphically depicts two monitoring slices. The
intersection between the application monitoring slice
associated to appi and the physical machine monitoring slice
associated to pm j is represented by a dashed line.

Definition 12 (Observing Data Set) An observing
data set O over a subset of metrics Mo ⊆M is a subset
{(app, pm,mo)} (with mo ∈Mo) of the monitoring volume V
obtained by properly selecting the points in the intersection
between a physical machine monitoring slice SPM (associated
to a physical machine pm) and an application monitoring
slice SA (associated to an application app) that correspond
to metrics in Mo.

From a practical point of view, an observing data set can
be used to select a certain number of metrics of interest
for the components of a specific application deployed on a
certain PM. In Fig. 3, an example of an observing data set is
highlighted in red.

Definition 13 (Application Cut Set) An application
cut set CA is a set of application monitoring slices (with
1≤ |CA| ≤ |A |).

Definition 14 (Physical Machine Cut Set) A physical
machine cut set CPM is a set of physical machine monitoring
slices (with 1≤ |CPM| ≤ |P|).

Definition 15 (Application Context of Interest) An appli-
cation context of interest CoIA is a set of observing data sets

{Oz} obtained from the intersection between the application
monitoring slice SA related to application app and a physical
machine cut set CPM , with 1 ≤ z ≤ |CPM| satisfying the
following constraints:

∃ c′ = (app, pm′,m′), c′′ = (app, pm′′,m′′) ∈CoIA :
c′ ∈ Oz′ ,c

′′ ∈ Oz′′ , z′ 6= z′′ OR

layer(m′) 6= layer(m′′)

where the function layer returns the metric set corresponding
to a metric m. The constraints guarantee that there will
exist at least 2 metrics associated with the same application
that belong either to different PMs or layers of the cloud
environment. This is necessary to characterize situations
where management actions for the same application can be
coordinated. Being these actions either in entities hosted in
different physical machines or in different layers of the cloud
environment but all associated with the same application.

Definition 16 (Physical Machine Context of Interest) A
physical machine context of interest CoIPM is a set of observ-
ing data sets {Oz} obtained from the intersection between the
physical machine monitoring slice SPM related to the physical
machine pm and an application cut set CA, with 1≤ z≤ |CA|
satisfying the following constraints:

∃ c′ = (app′, pm,m′), c′′ = (app′, pm,m′′) ∈CoIPM :
c′ ∈ Oz′ ,c

′′ ∈ Oz′′ , z′ 6= z′′ OR

layer(m′) 6= layer(m′′).

The constraints, in this case, guarantee that there will exist at
least 2 metrics associated with the same PM that belong either
to different applications or layers of the cloud environment.
The objective of these constraints is to characterize situations
to coordinate management actions inside the same physical
machine that affect either different applications or entities in
different layers of the cloud for the specific physical machine.

Definition 17 (Context of Interest) A context of interest
CoI is either an application context of interest or a physical
machine context of interest. Multiple CoIs can be defined
for the same cloud monitoring volume. In addition, the same
type of metric can appear in one or more CoIs.

In a cloud environment, the main role played by distinct
CoIs is to support the detecting of specific situations leading
to multiple management actions. In the next section, we use
the WordPress application to provide concrete examples of
how CoIs and management actions are related to each other.

B. Context of Interest and Management Actions

The goal of using the CoIs is to define the set of metrics that
expose situations in which multiple management actions would
be applicable, but not all of them should be actually enforced.
This is because either one of the management actions is not
the most appropriate for the situation or because all of them
applied together will only reinforce the problem experienced
by the application. In this section, we describe how CoIs can



TABLE I
EXAMPLE OF A CoI FOR THE WORDPRESS APPLICATION.

Layer Tuple Description
MPL (app1, pm2, plm cpu) Physical CPU Usage
MPL (app1, pm2, plm mem) Physical Memory Usage
MV L (app1, pm2,vlm cpu) Virtual CPU Usage
MV L (app1, pm2,vlm mem) Virtual Memory Usage
MAAL (app1, pm2,aalm mysql conn) MySQL Num. of Connections
MAAL (app1, pm2,aalm wb pages) Apache Pages per Second
MABLL (app1, pm2,abllm wb perrors) WordPress Pages Errors
MABLL (app1, pm2,abllm response) WordPress Response Time

be used for the WordPress application in a cloud environment.
WordPress is a CMS (Content Management System) for per-
sonal blogs and Web sites. It allows a simple creation of posts
and pages together with a simple comment management. The
WordPress system architecture is composed of the Apache2
Web server, the MySQL DBMS, the Memchached tool, and
the code implementing the functionalities of the CMS itself.
Different cloud deployment configurations can be used for this
application. We assume the simplest deployment alternative
where all components of the WordPress application are de-
ployed inside the same VM. Using the model proposed in
[9], we first identify the possible changes that can be suffered
by the entities in the cloud environment hosting this specific
deployment of the WordPress Application (as illustrated in
Fig 5): (1) increase virtual resources; (2) request a new VM
and move some components of the application to the new VM;
(3) change the Apache Web server configuration; (4) change
the MySQL DBMS configuration.

The above listed management actions can be activated
independently of each other and eventually simultaneously if
no mechanism is used to coordinate their activation. In this
WordPress example, suppose we want to identify the man-
agement actions to be taken before appealing to auto-scaling,
which typically implies some kind of cost either in monetary
or availability terms. Then, we define a CoI for this application
as illustrated in Table I. The CoI in this table is the physical
machine CoIPM for the machine depicted in Fig. 5. The goal of
this example is to identify which management actions can be
activated in respect to application app1 in different entities of
the cloud layers related to this application when these metrics
are observed together. Then, the next step is to define rules
upon the metrics of a CoI that determine when each of the
identified management actions can be applied, as illustrated in
Fig. 4. The joint observation of the metrics in the CoI leads
to the identification of different management actions. For now,
the analysis of the actions is a simple hierarchy of management
actions denoted by if-then-else. However, these actions
could be ranked according to the cost of their enforcement,
and this is planned to be developed as future work.

The CoI and the management actions presented in this paper
still require the human intervention for their configuration.
However we intent to create automatic configuration tools
based on information models [9]; and investigate the use of
correlation techniques to automatically devise CoI.

if ((abllm_response is high)
AND (aalm_mysql_conn is high)
AND (abllm_wb_perrors is high)
AND (aalm_wb_pages is low)
AND (vlm_cpu is high)
AND (vlm_mem is high))
then

Apply management action (4)
...
if ((aalm_mysql_conn is high)

AND (abllm_wb_perrors is low)
AND (vlm_cpu is high)
AND (vlm_mem is high))
then

Apply management action (1)

Fig. 4. Using CoI for specification of management action rules.

V. EXPERIMENTS

In this section, we present the experimental results on ana-
lyzing cloud monitoring information using the 3-D monitoring
model and the CoI concept introduced in this paper. The aim
is to have a simple testbed where we show the data complexity
and the necessity to correctly interpret information monitored
from all the cloud layers. Our goal is to demonstrate that by
using CoIs it is possible to identify and choose more effective
management actions. To achieve this goal, we make use of the
Wordpress application case study described in the previous
section. We introduce three experiments for the same case
study. In the first no management action is activated. The
second one considers the activation of auto-scaling policies.
The third one uses the CoI depicted in Table I and the
management rules in Fig. 4. The experiments show how these
actions behave for the given scenario and demonstrate the
effectiveness of our proposed approach. In Section V-A, we
describe a real testbed and how it emulates the deployment of
the WordPress application in a cloud environment. Section V-B
presents the details about the synthetic load generated to
stress the WordPress application. Section V-C discusses the
numerical results observed during the experiments.

A. Testbed arrangement

Fig. 5 shows the testbed arrangement. We exploited three
PMs. Two of them (PM1 and PM3) are IBM LS21 blade
servers, while the third one (PM2) is an IBM X3630 M3
storage servers. The corresponding hardware configurations
are shown in Fig. 5. On all the PMs, we installed the Scientific
Linux 6.5 distribution. On PM1, we installed an OpenStack
controller node with Keystone, Glance, Nova (but without
Nova-Compute), and Horizon services. On PM2, the Nova-
Compute service was installed in order to be able to instantiate
VMs on top of it. We deployed a single VM (VM1) on
PM2 where we host all the components of the WordPress
application. In VM1, we installed the Apache2 Web server,
the MySQL DBMS, the Memchached tool, and WordPress.
In commercial clouds, a database service is usually purchased
with a limited number of supported concurrent connections.
For example, Amazon Relational Database Service (Amazon



RDS) provides predefined database instances with different
maximum number of concurrent connections, e.g., t1.micro
(with 34 connections at most), or m1.small (with 150 connec-
tions at most). Therefore, we initially configured the MySQL
DBMS to support a maximum of 50 concurrent connections.
On PM3, we installed the Apache Jmeter tool that emulates
clients of the WordPress application as discussed in the next
section. Software configurations and versions are also depicted
in Fig. 5. Finally, we installed a set of monitoring tools. We
exploited: Nagios for retrieving data from the Physical layer
(CPU and memory). Havana OpenStack Ceilometer to collect
information from the virtualization layer (vitual CPU and
memory consumption). AWStats and MyCheckPoint extract
data from the Application Architecture layer, respectively,
collecting the number of pages per second provided by the
Apache Web server and the number of concurrent connections
at the MySQL DBMS. Finally, at the Application Business
Logic layer, Apache Jmeter analysis plug-ins collects the
percentage of errors experienced by users while accessing the
WordPress Web site and the response time of each user action.
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Fig. 5. Testbed arrangement with PMs, VMs, hardware/software configura-
tion, and monitoring tools.

B. Synthetic traffic generation

During the experimentation, the load on the WordPress
Web site is synthetically generated using the Apache Jmeter
tool. It allows to record the actions executed by users when
interacting with the Web site. These actions are saved in terms
of the HTTP requests the users performed and then Jmeter
reproduces such requests according to a certain traffic pattern.
To reproduce such a pattern, we generated the synthetic traffic
according to Table II. We consider five categories of users,
who perform a different set of operations in a specific order.
The users continuously perform their set of actions waiting for

a random time between one set and the next one. We defined
three different scenarios (low, medium, and high) in order to
stress the system. For each scenario, we change the number
of users in each category that are concurrently performing a
set of operations in the WordPress Web site.

TABLE II
CATEGORIES OF USERS AND POPULATION CHARACTERIZATION FOR EACH

OF THE THREE SCENARIOS DESCRIBED IN EACH COLUMN.

User Type and Description Low Load Medium Load High Load
Admin creating new post 1 1 1
Guest reading latest post 1 15 30
Guest reading random post 1 15 30
Guest reading latest post 1 15 30
and leaving a comment
Guest reading random post 1 15 30
and leaving a comment

C. Experimentation

We conducted the experimentation by running each scenario
for 30 minutes on the testbed (Fig. 5) and collected from the
monitoring tools all the metrics specified in the CoI for the
WordPress application, as illustrated in Table I. In this experi-
ment we are interested in the Physical Machine Monitoring
Slice for PM2. There is one main reason for this choice:
all the components for the WordPress application and their
respective monitoring information are deployed only on this
machine. In a more complex scenario, where the application
is using multiple VM, we could focus, for instance, on the
Application Monitoring Slice for the WordPress application.
This would give us all the monitoring metrics associated with
this application throughout all the machines where it is hosted.
Figs. 6(a), 6(b), and 6(c) show the monitored information
observed for the WordPress application CoI. In all these
figures, the first 30 minutes of experimentation from 00:00 to
00:30 represent the low load scenario; the interval from 00:30
to 01:00 depicts the medium load scenario; and the high load
scenario corresponds to the interval from 01:00 to 01:30.

Fig. 6(a) corresponds to the initial deployment of the Word-
Press application: 6 CPUs are assigned to the VM1, and the
maximum number of concurrent connections in the MySQL
DBMS is 50. In this case, there is no CoI and management
rules configured. In Fig. 6(a), we observe that during the
low and medium load scenarios the users experience a good
quality of service (with response time below 500 ms) and no
errors are present. However, during the high load scenario, the
system is overloaded and both the number of errors and the
response time increase considerably. Without using the models
proposed in this paper, the administrator of the WordPress
Web site would have to look in different monitoring graphics
(not necessarily clustered together) and manually relate the
information to determine the best management action.

A natural reaction to the situation illustrated Fig. 6(a)
would be the activation of traditional auto-scaling policies.
This means that typically the metrics from Physical and
Virtualization layers would be observed in order to activate the
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(a) Without Management Actions

 0

 20

 40

 60

 80

 100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

C
P

U
 %

Time [h:m]

PM
VM

 0

 20

 40

 60

 80

 100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

M
e

m
 (

u
s
e

d
) 

%

Time [h:m]

PM
VM

 0

 20

 40

 60

 80

 100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

M
y
S

q
l 
c
o

n
n

e
c
ti
o

n
s
 (

#
)

Time [h:m]

 0

 10

 20

 30

 40

 50

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

A
p

a
c
h

e
 p

a
g

e
s
/s

e
c

Time [h:m]

 0

 20

 40

 60

 80

 100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

W
P

 e
rr

o
rs

 %

Time [h:m]

 0

 20

 40

 60

 80

 100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

Time [h:m]

(b) Applying Scaling Policies
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(c) Applying CoI Support

Fig. 6. Monitored metrics in the case of (a) 6 virtual CPUs and a maximum of 50 MySQL connections, (b) 8 virtual CPUs and a maximum of 50 MySQL
connections, and (c) 6 virtual CPUs and a maximum of 100 MySQL connections.

scaling of resources. Using these metrics, one could conclude
that a good management action to solve the overload situation
would be to increase the number of virtual CPUs associated
with VM1. This conclusion could be reached because of three
factors: First, the memory occupation for both PM2 and VM1
is always below 60%, and this indicates that memory is not
the problem in this situation. Second, the VM1 reaches 100%
of CPU usage during the medium load scenario and remains
overloaded also during the high load scenario. Third, the PM2
CPU load stays below 80% during both the medium and high
load scenarios. This suggests the possibility of applying a
management action related to increasing the number of virtual
CPUs associated to VM1 to solve the overload situation. Of
course, adding more virtual CPUs to VM1 could affect the
contention on top of PM1 if multiple VMs were deployed on
top of it influencing the QoS of the co-hosted VMs.

To demonstrate the effect of auto-scaling policies, we

conducted a second phase of experimentation for the same
WordPress application, increasing the number of virtual CPUs
associated with VM1 to 8 without changing any other pa-
rameter. Fig. 6(b) shows the monitoring information collected
in this case. We observe that the VM1 CPU load with the
new configuration is no more at 100%. However, there are no
significant improvements in terms of quality of service (i.e.,
response time) and the number of errors experienced by the
users. As depicted in Fig. 6(b), these numbers remain high,
despite the fact that in the medium load scenario the Apache
Web Server is able to deal with more pages per second. Thus,
this experiment demonstrates that the management action
consisting of increasing the number of virtual CPUs associated
with VM1 does not solve the situation.

However, when we apply our approach, as illustrated in
Fig. 6(c), management actions are taken considering infor-
mation also at the Application Architecture and Application



Business Logic layers. In Fig. 6(c), we present the monitoring
information for the WordPress application when deployed
using 6 CPUs and this time a number of 100 maximal
concurrent connections to the MySQL DBMS, as an effect
of the management action activated according to Fig 4. The
components of applications and the cloud infrastructure related
to each other and the CoI as well as the management rules
help express these relationships. In the case of the WordPress
application illustrated in Fig. 6(a), the actual problem is related
to the maximum number of concurrent connections at the
MySQL DBMS. In the high load scenario this number is
reached and the MySQL DBMS starts to reject connections,
and this generates the Web Page errors. This also limits the
number of pages per second that the Apache Web server
is able to provide to the users. In Fig. 6(c), we show the
results when the situation is analzyed according to the CoI
and the management rules discussed Section IV-B. As it can
be observed, the quality of service experienced by the users
has been greatly improved and the errors have been eliminated.

The knowledge of information coming from different layers
allows for a different management action to be considered as
a possible solution to the overload situation. The management
action taken in Fig. 6(c) was to keep the same amount of
virtual resources but increase from 50 to 100 the maximal
number of concurrent connections. Such a management action
has the additional advantage of not influencing other applica-
tions in other VMs on top of the same PM, contrary to the case
where the number of virtual CPUs is increased. Therefore,
the analysis of the monitoring information using CoI and
management rules shows that it is possible to achieve more
effective management actions. These experiments demonstrate
the practical necessity to relate and model information at all
layers of the cloud environment in order to act and solve the
overloaded situation in a more informed way.

VI. CONCLUSION

Usually, several management mechanisms are available in
cloud environments, allowing dynamic adaptations to be per-
formed at different cloud layers. However, the complexity
of the scenario may cause such multiple adaptation actions
to interfere with each other, canceling their benefits and
negatively affecting both the infrastructure and applications
QoS. In this paper, we deal with this challenge by proposing
a new 3-D monitoring model and by formalizing the innovative
concept of context of interest (CoI). Such tools allow to
analyze the huge quantity of cloud monitoring information that
is usually available in a cloud environment and to identify
situations in which multiple adaptations are possible, coor-
dinating them and selecting the most appropriate. A set of
experiments performed on a real OpenStack cloud testbed
and taking into consideration a WordPress application have
been performed. The obtained results demonstrate that when
information at the higher layers of the cloud environment is
taken into consideration adaptation actions can be chosen in
a more reasoned way, thus minimizing their interferences and
optimizing cloud resources utilization and the overall cloud

and applications QoS. Future work will deal with: (i) the
analysis and experimentation of the framework supporting the
proposed model, (ii) automation of the deployment of the
monitoring tools based on the context of interests (CoIs), (iii)
formalization of the adaptation actions and their relationship
with the 3-D monitoring model and with the concept of CoI,
(iv) ranking of management actions according to QoS and cost
principles, (v) implementation of more complex scenarios with
multiple VMs, PMs, and applications in order to demonstrate
the advantages of our approach in a more realistic context.
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