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Abstract—When resources are shared in a virtual machine
environment, providing different performance levels to different
customer applications is a challenging task. In order to sustain
stability, the control solution not only has to take into account the
time-based dynamics, but also has to adapt to various operating
modes. This paper proposes the 4M-Switch supervisory control
system design framework, which takes into account the possible
operating modes and dimension changes of the VM environment
at design time and then adapts the control solution to achieve
required management goals when changes occur at runtime. 4M-
Switch utilizes a piece-wise linear modeling approach to present
the behavior of the system using multiple models and simple
switching logic to change the controller parameters to mitigate
the effects of nonlinearities. The experiment results conducted
under a range of conditions show that 4M-Switch approach
effectively adapts the control solution and provides significantly
more stable performance differentiation compared to the existing
approaches.

I. INTRODUCTION

Compared to the traditional approach of having dedicated
hardware resources for each customer application, the virtual-
ization technology has enabled data centers to obtain economic
benefits by sharing pools of hardware resources between soft-
ware applications of multiple customers. However, managing
physical hardware resources of a server between multiple
virtual machines (VMs) to maintain the performance variables
at different levels under unpredictable workload disturbances
is a challenging task to automate. This is because, firstly, such
virtualized servers often need to provide services to multiple
VMs (i.e., multiple applications) with different performance
objectives that may change overtime. Secondly, the workloads
for these applications (VMs) may vary overtime in an unpre-
dictable fashion. Thirdly, VMs may be in maintenance or idle
for short/long periods of time changing the dimension of the
control problem abruptly.

In order to automate the differentiated performance and
resource management tasks in VM environments, the feedback
control mechanisms have been looked at in the last few
years [13]. However, these control approaches assume that the
time-based state/performance variable signals of the control
problem remain in a certain region of the state space. In
other words, it is assumed that the system always remains
in a single or limited set of operating modes which can
be characterized by a single behavioral model. This means
that these approaches have disregarded many other viable
operating regions/modes, which could invalidate the proposed
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control solution due to mathematical ill-conditioning leading
to significant failures of the control solution. In dynamic
VM environments the operating mode and problem dimen-
sion may change because of the i) idling applications, ii)
applications under maintenance and iii) VM migrations. In
most of these operating modes, time-based dynamics are also
shown due to workload variations and other disturbances faced
by active VMs, requiring dynamic performance differentiation
and resource management. In order to design a safe and
comprehensive control solution, these different modes and
time-based dynamics have to be considered together in the
design.

Furthermore, the performance properties (e.g., response
time) of a VM are nonlinearly related to the shared resource
as shown by many existing works (e.g., [19], [14], [9],
[17]). In addition, the performance differentiation schemes
impose significant nonlinearities on the management system
[7]. Consequently, the existing linear feedback control methods
[6], [7], [10], [9] based on a single dynamic model typically
fail to achieve effective performance differentiation objectives
under changing workload conditions and control objectives.

Many physical systems show a hybrid of discrete-event
(e.g., application maintenance event) and time-based (e.g.,
workload variations) dynamics, so-called hybrid systems [15],
[16]. As opposed to representing the system just with time-
based dynamics, this paper treats the VM environments as
hybrid systems and proposes a new control framework called
Multi-Mode-Multi-Model switching supervisory control (4M-
Switch), which explicitly captures the different operating
modes and dimension changes of the control problem and
adapt the control system dynamically to suite the operating
mode, system conditions and differentiation requirements. In
order to tackle the limitations of a single linear model based
control, a technique is proposed to present the behavior of
the system using multiple models and then a control solution
is implemented with a configuring controller to achieve the
performance differentiation objectives. The novelty of 4M-
Switch is the combination of hybrid and multi-model adap-
tive feedback control to achieve control objectives of a VM
environment for the first time in literature. We show, with a
range of experiments conducted in a VM environment, that
the 4M-Switch approach results in performance and resource
management that is much more comprehensive, stable and safe
compared to the existing approaches.



The structure of this paper is as follows. Section IT describes
the background, followed by related work in Section III.
The details of the VM environment used in this work is
then presented in Section IV. The problem overview and
the approach is covered in Sections V and VI respectively.
Experimental results and comparative analysis are provided in
Section VII.

II. BACKGROUND

This section provides an overview of hybrid systems and
relative differentiation schemes.

Hybrid control system: Figure 2(a) shows the architecture
of a hybrid control system. The generator converts the time
and event based data from the sensors to plant symbols
when the special conditions are met. Depending on the plant
symbols, the controller makes control decisions. The controller
operates with the plant model, typically described by a finite
automaton. In each state, the system is treated as a discrete
or continuous time system [16] and control policies are
implemented to come up with the control decisions. Finally,
the controller decisions are converted to control inputs by the
actuator.

Relative performance differentiation scheme: In the per-
formance differentiation scheme, the performance attributes of
the classes are maintained proportional to the performance dif-
ferentiation factors derived from the business or system design
requirements. Let P;, QQ; be the specified differentiation factor
and the actual performance attribute of interest respectively
of aclass i (i= 0, ... n — 1), out of n number of classes.
Between the pair of classes ¢ and j, the management objective
is to maintain % = % (i=0...n—1,7 # j) at runtime under
varying workload conditions. For instance, % = 2 means
that the performance attribute of class; has to be maintained
twice as of classp. Lu et al. in [6] proposed a dynamic
propositional resource share allocation approach to achieve the
aforementioned relative performance differentiation scheme.
Depending on the workloads the resource share ratio %
(where, S; and S; are the amount of resources share for ¢ and
j classes respectively) is manipulated at runtime to achieve the
performance differentiation objectives of all the classes under
changing workload conditions.

III. RELATED WORK

In order to manage performance in VM environments, many
control engineering approaches have been proposed in the
past few years. A survey of such approaches can be found
in [13]. The relative performance differentiation scheme with
feedback control has been utilized to manage web servers
[6], [7], [10], storage systems [8] and data centers [9]. These
existing approaches utilize a single linear model or adaptive
model with a feedback controller, limiting the operating range
of the controller to a single operating mode and a narrow
region that can be linearized. As shown by [7], [9], the relative
performance differentiation scheme inherits significant nonlin-
ear behavior due to incorporating the ratio of performance
attributes (e.g., response time, CPU utilization). The linear

approaches face issues under these nonlinearities (see [14],
[12]), while adaptive approaches [9], [8] fail when they face
fast varying workload conditions as shown by [12].

All these approaches also assume that the dimension of
the control problem remains constant over time (i.e., constant
number of classes or VMs). However, in VM environments,
VMs can go into idle or maintenance mode or get migrated,
making certain state variables (e.g., response time) zero, which
could lead to mathematical ill-conditioning of the control
solution due to divide by zero. This means that the mathe-
matical ill-conditioning and changing dimension of the control
problem have been disregarded by existing approaches.

A discrete event system design approach to implement the
hybrid control systems (as in Figure 2(a)) was proposed in
[16], [15] where they use state-space analysis methods to
achieve the control objectives. There is little work that uses hy-
brid control to manage performance in software environments.
The work that exists [5], [1] focuses on the issue of discrete
inputs available in software systems to provide fine grained
control using state-space exploration techniques. As shown in
[4], such exploratory techniques impose high computational
load and time complexities to come up with the decisions.
In [3], a CPU utilization control mechanism is presented by
dividing the state space in to three fixed regions with one being
the desired region for normal operations. However, they do not
use any feedback controller for set point tracking, and if the
control objectives or defined operating regions change, then
their mechanism requires significant redesign.

In this paper we do not utilize complex state exploration
techniques, instead the hybrid control concept is used to
represent and identify the modes based on state variable data
and then to implement different control policies depending
on the state. This is to resolve the aforementioned math-
ematical ill-conditioning issues of the existing approaches.
The finer grained performance differentiation is then achieved
using feedback control. To handle the nonlinear dynamics we
demonstrate a new gain-scheduling [2] approach based on
multiple models.

IV. SYSTEM DESCRIPTION

Figure 1 illustrates the architecture of the virtual machine
environment under consideration in this paper. It consists of
three physical machines (M, M, and Ms)'. Server (M) is
running on CentOS and acts as the shared resource infrastruc-
ture. It is also equipped with Xen 2.6 hypervisor to manage
virtual machines (VMs). Using the Xen hypervisor, n VMs can
be deployed inside the server machine. Each VM also runs on
CentOS and has Apache Httpd 2.2 server installed, in order
to deploy customer software applications. To represent the
client application, the RUBIiS benchmark was used. As shown
in Figure 1, client simulators (so-called workload generators)
were deployed in Mo, while the database of RUBIS benchmark

' M7: CPU is a Intel Core(2) Duo 2.33 GHZ processor with 4 GB memory,
Mao: CPU is a Intel Core(2) Duo 2.33 GHZ processor with 2 GB memory
and M3: CPU is a Intel Core(2) Duo 2.33 and 2.99 GHZ processor with 3
GB memory.
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Fig. 1. Virtual machine environment

was deployed in M3. All three machines were connected using
a network switch, creating an isolated network between the
three machines.

The management objective of this system is to control the
average response time of each customer application. In order to
measure the response time (Ry, Ry, ..., R,—1) a background
(sensor) program was implemented in Java and deployed to
intercept the incoming and outgoing requests and compute
the response time of each application (i.e., VM) in regular
intervals (20 sec). The CPU capacity allocated to each VM
(Co, C4, ..., Cp—1) by the hypervisor is the manipulated
resource. Xen Hypervisor provides a credit-based scheduling
mechanism, which enables users to adjust the CPU capacity
of each VM dynamically. Using this functionality, an actuator
was implemented in Java and deployed inside the server. In
order to isolate the VMs from the hypervisor (Dom-0), the
hypervisor was pinned on to a single core of the CPU of M;,
while VMs were pinned to the other CPU core’. Each VM
was allocated with 1 GB of dedicated memory.

V. PROBLEM OVERVIEW AND ANALYSIS

In this section, we present an overview of the performance
differentiation problem of a VM environment with multiple
VMs.

A. Assumptions

For the purposes of this paper we have made a number of
working assumptions:

1) The CPU capacity is considered as the shared and main
bottlenecked resource that has to be managed depending on
the workload conditions?’.

2) Performance differentiation is practical only if there is
more than one VM in the server. In the case of there is only
one VM the designer specifies the CPU allocation policies for

2In a server where there are more than two cores the same approach can
be used by pining VMs to share multiple cores

3In the system studied in this paper, the RUBIS benchmark has been
modified to simulate CPU bound operations.

that VM after considering the number of VMs that could be
migrated to the server.

3) In the case where there are two or more active VMs,
we assume that each VM deployed in the server is guaranteed
a fixed minimum limit of CPU capacity (C; min, Where ¢ =
0,1,...n — 1) during the entire operation. This is to avoid
starvation of resources under heavy workloads of other VMs.

4) When a migration takes place, we assume that hy-
pervisor registers/deregisters the particular VM and con-
nects/disconnects its sensors to the control system.

B. Management Problem Definition

The main control objective is to share the available CPU
capacity in an effective way to maintain the response times
of VMs depending on the specified differentiation levels.
In addition, the control system should be able to self-adapt
when the operating mode changes at runtime to avoid failures
and mathematical ill-conditioning. Furthermore, the nonlinear
dynamics have to be tackled effectively to handle changing
control objectives.

As discussed above, we adopt the relative performance man-
agement scheme combined with a feedback controller to solve
the management problem described previously. Therefore, the
control objectives are now specified based on the relative
performance differentiation scheme.

Control objectives: According to the business requirements
let us assume the differentiation factors for n VMs are deter-
mined statically or dynamically as P;(k),i = 0...n—1. Then,
the control objective according to the relative performance dif-
ferentiation control scheme becomes maintaining the response
time ratio of (i — 1)** and (i)"* VMs RR_EIZL) , around Pi(ﬁ;ﬁ)
while computing the CPU caps C;(k),i =0,1...n — 1. Fur-
thermore, the management system should honor the following
constraints, related to total resource availability and per VM
CPU reservations at all times.

CO(k) 2 CO,miny Cl(k) 2 Cl,min, ey Cnfl(k) 2 Cnfl,min
Co(k) + Ci(k) + ...+ Cr1(k) = Crotar(k) 1)

Example: Let us consider the VM environment described
in Section IV having two VMs (VM and VM;), with the
possibility of VM, to be active or migrated at anytime.
Ry(k) and Ry (k) are the response times of two existing VMs
respectively at the k" sample. Furthermore, the CPU caps are
Co(k) and C (k) where Cy(k)+Ci (k) < Ciotar = 100% and
Co,min> C1,min = 20%. According to the definition in Section
I1, the control input is the ratio of CPU caps, represented by

g‘zgg and the output variable is the ratio of average response
time of the workloads, represented by g;gg

simplicity let us denote g?g:; and g;gg as u(k) and y(k)
respectively. The control objective of this control system is
to maintain the response time ratio y(k) of V. My and VM,

around ﬁ;g:g (i.e. the set point) depending on the performance

differentiation factors of the VMs Py(k), Py (k). When VM,

. For notational




is added, the above differentiation problem changes to main-

taining variables gi(z) and gfgg around IP;;EZ) and gfgg
respectively. See [6], i7] for formulation for n number of VMs.

C. Analysis of Operating Modes

To indicate the different operating modes and different
control policies needed, in this section the following limited
number of cases will be considered from all possible permu-
tations.

Case I: when Ry (k), Ry(k) > 0. Here, the system is in nor-
mal operating mode, which means performance differentiation
can be implemented safely.

Case 2: when Ro(k), R1(k) = 0. The applications in both
VMs are idling or under maintenance simultaneously. The per-
formance differentiation is not viable in this mode. Therefore,
suitable CPU allocations policies have to be implemented by
the control solution.

Case 3: when Ro(k}) =0, Rl(k) > 0or Ro(k) > 0, Rl(k}) =
0. This means one of the VMs is idling or under maintenance.
These two modes have to be identified by the control solution
and other CPU allocation policies have to be implemented in
order to avoid mathematical ill-conditioning and maintain the
integrity of the control system.

Case 4. when Ry(k), R1(k) > 0 and VM3 has been added
to the system making Rg(k) > 0. In this mode, the control
solution has to be reconfigured with new state variables, set
points and controllers to manage performance dedifferentiation
and resource allocation between three VMs.

The existing literature assumes that the system is in normal
operating mode (Case 1) during the entire operation, which
is clearly invalid when the above cases are investigated.
Therefore, control solution should self-adapt based on the state
variable data and number of active VMs and then provide
appropriate CPU allocation decisions to sustain the system
stability and continuity of the control solution.

D. Analysis of nonlinearity

The output y(k) (ﬁ—;) of the VM environment exhibits
highly nonlinear behavior because of the division operation.
For instance, if Ry = 0.4 (sec) and Ry = 1 (sec) then

g— = 25. If Ry = 1 (sec) and Ry :R 0.4 (sec) then
1

1
g—z = 0.4. Therefore, when R; increases T
high rate. In contrast, when R, increases g—; decays at a high
rate. This means that behavior of the output is significantly
different in y > 1 region compared to y < 1 region. However,
in a dynamic VM environment, the control objectives and
workload conditions can vary overtime forcing the control
system to operate in these highly nonlinear regions. Such
nonlinear behavior may also cause performance degradation
in a linear controller as shown in [14]. Hence, considering
such nonlinear behavior at design time is also a requirement
for a control solution.

increases at a

VI. 4M-SWITCH FRAMEWORK

Figure 2(b) illustrates the high-level architecture of the
4M-Switch supervisory control system. The VM environment
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Fig. 2. Architecture of hybrid control and 4M-Switch

under study is the target system and Supervisor component is
the decision making unit. The supervisor operates similar to
hybrid control system introduced in Section II. The following
subsections cover the design details of its subcomponents.

A. Generator

Upon receiving the state variable and other event data
from the target system, the data is analyzed by the generator
to detect the special events that may have occurred in the
target system or its environment. These event occur when
the state variable data has crossed some predefined threshold
in a certain direction [15]. This threshold that divides the
state space into two regions is called as hyperplane [16]. The
hyperplane is formally defined by a function of ith discrete
time-based state variable z;(k) (i.e., h(x;(k)), where k is
the time sample). The generator is defined by a set of such
functions. The generated event is then represented as a plant
symbol as follows,

€; if h(zi(k)) <0 and h(z;(k — 1)) > 0.
Ei(k)y=1<¢ if h(zi(k)) > 0 and h(z;(k—1)) <0. (2)
null  otherwise.

Equation (2) produces a plant symbol (E;(k)) when
h(xz;(k)) crosses zero form positive to negative side or vise
versa. In all other cases a null symbol is returned. In the VM
environments, the response time (R;) or CPU caps of VMs
can be used as the state variable to trigger events when the
operating region changes. For instance, h(R;(k)) = a— R;(k)
can be used to generate plant symbols R; and R; denoting
idle and active regions respectively when the response time
crosses a limit from either of the directions (i.e. a = 0 or
small value). At least these regions have to be incorporated



in the design to adapt the control system safely and avoid
mathematical ill-conditioning. The above function is sufficient,
in the cases where R;(k) can also be used to detect the
maintenance activities and migration of the VM; based on
the assumptions in Section V-A. In other cases, alternative
functions have to be implemented based on the state variables.

B. State-space Analyzer

The state-space analyzer consists of a deterministic finite
automaton defined as (S, E, R, 0, ¢), where S, E, R are
set of states or operating modes, plant symbols and control
symbols respectively. 6 : S x E — S is the state transition
function, while ¢ : S — R is the output function. Given the
initial or previous mode and the plant symbol, the automaton
reaches the current operating mode using the ¢ function.
Finally, using the current operating mode, the output function
¢ generates the control symbol.

At this design stage, all possible events have to be listed
and possible unique operating modes have to be identified. For
instance, if only VM, and VM; are deployed in the physical
machine and we use R; and RZ plant symbols, where i = 0, 1
four unique operating modes can be defined. They are Ro_Ry,
RO_Rl, RO_Rl and Ry_R,. The same approach can be used
for VM environment with n VMs. Although all n VMs may
not be involved at runtime at once, the design can be done for
n VMs. This approach helps us to implement a comprehensive
control solution considering all possible operating modes at the
design time. As the control symbol a unique identifier can be
used representing each state (i.c., ¢).

C. Control Policy Handler

Given the control symbol, this component evaluates the
most suitable control policy for system’s operating mode.
The control policies could be static (i.e. constant values or
decisions based on If-Then rules) or dynamic (i.e., decisions
generated by feedback control systems). The static control
policies are most suitable when the performance differentiation
is not possible or heuristic based logic needs to be imple-
mented using historical data. As an example for the Case 2 in
Section V-C, if the designer wants to allocate minimum CPU
limit for each VM, this can be implemented as a static control
policy.

However, in the normal operating mode under unpredictable
workload variations resource allocation decisions cannot be
predetermined, which means that the static control policies
cannot achieve the required differentiation objectives or be-
come significantly complex. In such modes, effective control
can be implemented by using a feedback control system as
shown by the existing literature [6], [9], [14]. The control
policies composed of feedback control systems can be classi-
fied as dynamic control policies. In addition to executing the
required control policy, control policy handler is responsible
for (i) state management, (ii) computing required variables
for the control solution and (iii) specifying control objectives
when control systems switch from one to another subsequent
to an operating mode change in the system.

One of the major issues of switching control system is large
transient responses during and short after a switch has occurred
[18]. In this proposed control technique, when mode switching
takes place, a control system could be switched abruptly as
well leading to such large transient responses. Therefore, in
the design of feedback control solutions (i.e. dynamic policies)
necessary techniques have to be incorporated to avoid such
transient responses also called as bumpless transfers [18]. In
the following sections we present feedback control system
design details for such dynamic policies.

D. Dynamic Policy Design

In this section, we use the same control system architecture
that has been utilized by the existing works [6], [10], [14]
for performance differentiation between n VMs. However,
the analysis in Section V-D revealed that there are signifi-
cant nonlinearities in the relative performance differentiation
system. Due to consideration of ratio, when the output is
in region (y = g—';) > 1, the system behaves differently to
that in the region (y = ﬁ—;) < 1. As a consequence, if the
control objective (set point) is changed dynamically between
these regions a controller designed with a single model fails
to achieve the performance differentiation goals (see [12]
for experimental evaluations). This section shows a design
methodology to implement dynamic policies using a control
system with two models one representing y > 1 region and
other representing y < 1 region.

1) Model Identification: In order to model the system
behavior, system identification is used [2]. Select two VMs.
From their input set, select a subset of CPU ratios and
workloads that would force the system to operate in y > 1
output region. Using this input subset design a pseudo random
signal and apply it as the input of the system while sending
a constant workloads for those two VMs. Then, the gathered
data samples (y(k) — u(k)) are used to estimate an autore-
gressive exogenous input (ARX) model [2] with a sufficient
accuracy (say modely). Following the same process derive an
ARX model by maintaining the system output in y < 1 region
(say models).

2) Controller Design: To make dynamic control decisions,
here we use a Propositional Integral (PI) controller [2]. The
control equation of the PI controller is shown in equation (3).
The controller calculates u(k) for k > 0, given u(0). e(k)
represents the control error, computed by y(k) — r(k), where
r(k) is the set point of the system. K, (propositional gain)
and K, (integral gain) are called gains of the PI controller
decided by the designer using formal methods [2].

As mentioned, the existing works use a single linear model
to represent the system, consequently gains of the controller
remains static over the entire operation. However, in this work
we use two models therefore gains have to be calculated at
runtime or switched at runtime depending on a switching
logic. The second approach is preferred because as the model
parameters are known at the design time we can pre-calculate
the gains and store them with the control policies. Therefore,
it is a gain-scheduling technique [2], [13].



u(k) =ulk — 1) + (Kp + Ki)e(k) — Kpe(k — 1) 3)

In order to switch between gains we use a simple If-Then
rule as follows.
prp_ilzll) > 1 Then use gains computed from model,

Else use gains computed from models.

The above PI control system is then used to manage i@
and ¢« — 1 VMs. It adapts to the workload variations and
adjusts the CPU caps to achieve the control goals, as well as
handles the aforementioned nonlinear behavior and adapts the
control parameters accordingly. It also implements bumpless
transfers by using the velocity form of the PI algorithm. The
velocity/incremental form of the PI law illustrated in equation
(3) is an established approach for implementing bumpless
transfers in the case of mode and controller switching systems
[18]. In addition, if a switching occurs due to changes made
to the performance differentiation factors (i.e. set point) by
the designer/user, we use the same controller with all state
data. The only change is the gains of the controller. The
user requirements typically change infrequently, hence more
stable switching can be achieved compared to using stochastic
variables like workload rates.

E. Actuator

This component communicates the control decisions gener-
ated by the control policy handler to the effectors.

VII. EXPERIMENTATION

This section first covers the design and implementation
details of the 4M-Switch control system before presenting
the experiment results. Here, the environment described in
Section IV will be setup with maximum of three VMs (n = 3).
The control objective is to provide performance differentiation
between these VMs. However, the operating modes could
change abruptly due to idling applications, VMs under main-
tenance or VM migrations*. If application is idling we specify
a constant CPU of 10% to that specific VM, which we as-
sume is sufficient to expect sudden incoming workloads. This
percentage could be adjusted depending on the requirement
and environment. Cj s, i set at 20%, when performance
differentiation is implemented between VMs ¢ = 0, 1, 2.

A. Control system Implementation

The state space variables Ro(k), Ri(k) and Ro(k) are
the main drivers of operating modes. When idling and VMs
migrated in and out these variables can be used to define the
states. Now, using these variables we specify the generator
functions as follows A(R;(k)) = 0.001 — R;(k), which
generates R;, Ri and null symbols, where i = 0,1,2 (see
equation 2). From the experiments we observed that response
time of the applications drops below 0.001 (sec) when there

“In this environment we simulate VM migrations by workloads, i.e. if
workload increases from zero to some value, we assume that as VM being
migrated to the system.

is no or only few requests. Consequently, we assume that if
the applications response time is below 0.001 (sec) it is idling.
Otherwise the application is in active mode.

The next step is to implement the finite automaton. The
operating modes or states were selected as Init, RO, R1, R2,
RO_R1, RO_R2, R1_R2, and RO_RI1_R2. Each R; symbol
represents that the corresponding VM is in the system or in
active mode in that particular state. The init mode represents
when none of the VMs exist in the system or all VMs are
inactive.

The control policies have to be then determined for each
of these modes. In this implementation, we used both static
and dynamic policies. For init state we allocated all VMs
equal CPU caps (33%), which is a static policy. Similarly,
in RO, R1 and R2 modes, we allocated 80% of CPU cap
for the active VM, leaving 10% for each inactive VM. In
all other modes we can implement performance differentiation
using dynamic policies in an adaptive manner. As the dynamic
policy, the aforementioned relative differentiation feedback
control system can be implemented.

Following the design methodology in Section VI-D2, the
control system is designed as follows. To represent the behav-
ior of the system iny > 1 and y < 1 regions, two experiments
were conducted maintaining the output in each region. Without
loss of generality, VM, and VM, were selected for this
experiment. For the first region, a pseudo random input signal
composed with the points in region where V' M, gets more
CPU were used while simulating 100 users for both VMs
simultaneously. Gathered input-output data was then used to
derive an ARX model. A similar experiment was conducted
in the y < 1 region as well to derive the second model. Using
the model parameters and pole-placement design methodology
[2], gains for PI controller were then computed for each region.
The controller gains for region (y > 1) are (K, = 0.05,
K; = 0.06) and for region y < 1 gains are (K, = 0.15,
K, = 0.20).

The name of the operating mode was used as the control
symbol for simplicity. Based on the control symbol, we
implemented additional logic in the control policy handler to
compute the required feedback variables, control objectives
and structure of the control system. For instance, we can
manage (EEZ;) by adjusting g?gg using a dynamic policy
in state RO_R1. Similarly, in RO_R2 mode, we can manage
(gjg:;) by adjusting gggg In RO_R1_R2 mode on the other
hand, two control systems can be used in tandem to manage
performance differentiation between (VMy, VM) and (VM;,
VMs) pairs [6]. Subsequent to a control symbol change,
control policy handler executes the corresponding control
policy or control system and continues to do so till the next
control symbol change.

B. Experiment Results

In this section, we present experiments conducted to in-
vestigate the performance differentiation capability of 4M-
Switch. The first one investigates the behavior under operating
mode transitions and workload variations, while the second
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changes the performance differentiation factors investigating
the issues under nonlinearities. Lastly, 4M-Switch control
system is forced to operate under frequent transitions between
operating modes in short time intervals to examine the issues
of chattering. More experiment results can be found in [11],
covering the performance management capabilities of this
approach in large scale environments.

1) Operating Mode Transitions: We set performance dif-
ferentiation factors of VMg : VM; : VMy =1 : 2 : 4 and
start with no workload assuming all three VMs are idling. At
the 10th sample V' M, receives a workload from 100 users.
At the 30 to 35th samples workload of VM increases to
100 users gradually. In order to investigate the disturbance
rejection capabilities, at the 60th sample workload of V M,
again increases by 50 users. At the 85th to 100th samples
V' My workload gradually increases to 200 users. Finally, V M
goes in to idle mode at the 140th sample. This experiment
simulates several operating mode changes, which necessitate
the 4M-Switch to autonomously implement required control
policies. As existing approaches do not have this ability to
reconfigure, in order to compare the performance we use the
same control system implemented by the 4M-Switch in each
mode separately and execute them in corresponding sample
periods as if that control system faced the workload at that
point of time and thereafter till the next mode change. Figures
3 and 4 show the outputs of the control systems.

During the entire experiment the response time of V' M has
been maintained lower than other two VMs under operating
mode and significant workload changes, which is the specified
performance differentiation objective. When a new VM is
added to the environment (i.e. operating mode change), the
generator has detected the change and fired an event to change
the operating mode of the state-space analyzer (at 10th, 30th,

85th and 140th samples in Figure 3). Subsequently, the control
policies have changed autonomously implementing appropri-
ate control system safely with no instabilities. Although there
are response time spikes at the beginning of the mode change
due to sudden workload encountered by the applications, the
response time settles down soon after because of the efficient
CPU allocations implemented by 4M-Switch (see Figure 3(b)).
When V M is removed from the environment at the 140th
sample performance differentiation between V' M; and V M,
has been implemented by the 4M-Switch showing adaptabil-
ity and continuity of operation, with no instabilities which
could have arisen from the aforementioned mathematical ill-
conditioning issues of the existing works. In addition, even
under operating mode switches, 4M-Switch has managed to
implement bump-less transfers with no significant long term
effects on the VM environment. Figure 4 shows a comparative
performance of 4M-Switch and other control systems which
operated individually in RO_R1 and RO_R1_R2 operating
modes between 30th to 85th and 85th to 140th samples
respectively. The individual control systems show significant
performance degradation at the start up compared to 4M-
Switch. This is because they were executed manually at
the start of each mode, as opposed to automated transitions
implemented by 4M-Switch. In fact, 4M-Switch shows smooth
transactions for the highest priority class in all comparisons
indicating that abrupt control system switches do not affect
the performance of the control system.

2) Changes to Differentiation Objectives: The differenti-
ation factors which drive the differentiation schemes could
change over time because of differentiation requirement of
the migrated VM. In this experiment, differentiation factors
are changed at runtime, which will also enable us to in-
vestigate the issues of having a controller tuned to operate
in a narrow region against the multi-model gain-scheduling
control approach taken by 4M-Switch. Till the 60th sample
performance differentiation ratio between V My and VM, is
1:2, which changes to 2:1 soon after. These requirements force
the control system to operate in (y > 1) and (y < 1) regions
respectively. At the start V My and V M; receive workloads
from 100 users, however at the 15th sample workload of
V' M; increases by another 100 users. At the 45th sample
V M7 workload drops to 100 users again. At the 75th sample
workload of V' My increases to 200 users. To compare the
performance of 4M-Switch, here we execute controllers tuned
for y > 1 (say controller-1) region and y < 1 (say controller-
2) region separately. Figure 5 shows the outputs of the control
systems.

When the control systems are operating in y > 1 region,
controller-1 and 4M-Switch show similar performance. This
is because 4M-Switch is also running the controller-1 during
that period. Both control systems have settled down efficiently
after the disturbance at 15th and 45th samples. In contrast,
controller-2 has shown unstable behavior and high steady state
errors. This is because in region y > 1, output changes at a
high rate due to aforementioned nonlinearities (see Section
V-D) generating high controller errors, which has been treated
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Fig. 4. Comparison between outputs of 4M-Switch and other control systems in (RO_R1) and (RO_R1_R2) modes

aggressively by the high gains applied in controller-2. It is
evident that controller tuned for y < 1 region cannot provide
stable control in region y > 1 (see Figure 5(c)). Similarly,
controller-2 and 4M-Switch has settled down under workload
and performance differentiation objective variations compared
to controller-1 after the 60th sample (see Figures 5(f), 5(d)).
Controller-1 has smaller gains compared to controller-2, which
means that controller-1 is not aggressive enough to handle
the smaller output variations in y < 1 region. Compared to
both controller-1 and controller-2, 4M-Switch has smoothly
transitioned to y < 1 region and handled workload distur-
bances efficiently establishing most stable and safe control. It
is therefore evident that the multi-model based gain-scheduling
approach taken by 4M-Switch shows better control compared
to the existing single model and controller based approaches.

3) Frequent Operating Mode Switches: In this experiment,
we simulate sudden workload bursts and operating mode
transitions in short time intervals, which could lead to sig-
nificant performance issues in switching control systems. The
experiment starts with workloads from 100 users for V M and
V M. In 25th sample V M, workload increases to 200 users
from 100 users. At the 30th sample, the application in V M,
suddenly becomes inactive. It becomes active again with 100
users at the 35th sample. V M receives workload from 125
users at the 45th sample which again goes to idle mode at
the 60th sample. Soon after at the 70th sample workload of
V' M, becomes zero. The performance differentiation factors
are VMo : VM, : VMs = 1 : 2 : 4. Figure 6 shows the
outputs of the system.

It is evident that 4M-Switch has provided stable perfor-
mance differentiation, under sudden workload bursts and oper-
ating mode switches. The response time of the highest priority
class has remained lower than other active VMs with much
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Fig. 6. Performance of 4M-Switch under frequent operating mode switching

lower priority. Although the response time at 25th, 30th, 45th
samples is high because of the large disturbances (see Figure
6), no instabilities have been detected due to switching of the
control systems. This indicates successful bump-less transfers
and state management implemented by the 4M-Switch.

VIII. CONCLUSIONS

In this paper we have proposed the 4M-Switch supervisory
control system design methodology to achieve performance
differentiation and resource management objectives in VM
environments. This new approach combines the capability
of hybrid system design to capture the operating mode
changes and feedback control mechanism to achieve the fine
grained performance differentiation objectives. With this de-
sign methodology, a complex control system implementation
can be divided into manageable operating modes and then
corresponding control polices can be designed to achieve
the required management objectives at the design time. At
runtime, automatic switching between the modes and control
systems provide self-adaptability with less or no human inter-
vention. In addition, this paper provides a performance evalu-
ation of 4M-Switch supervisory control system under a range
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of conditions, which has shown significant improvements in
relation to performance, system stability and safety compared
to the existing approaches.
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