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Abstract—The general idea of CPS (Cyber-Physical Systems) 

is integrating information systems with the physical world. Thus, 

CPS require a dynamic global network infrastructure where 

devices are enabled to autonomously adapt to the cyber and 

physical world events. Conversely, devices frequently are mobile 

devices that can be moved or can move by themselves, such as 

sensors and actuators. Current solutions for building CPS do not 

provide the required support to handle changes in the 

cyber/physical context and in particular, deal with the devices’ 

mobility. In this paper, we present an approach that supports 

distributed dynamic software adaptations among mobile devices. 
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I. INTRODUCTION 

A CPS may be defined as a networked information system 

(i.e., cyber world) that is coupled with the physical world 

through a huge number of geographically distributed devices 

(e.g., vehicles and smartphones), sensors (e.g., temperature, 

speed) and actuators (e.g., electro-mechanical, electronic  or 

other controllable devices)[1]. The authors [2] explain that 

CPS should have mechanisms and services to make them 

aware of changes in the cyber and physical contexts with the 

aim of adapting the system´s execution according to these 

contexts. Reasons for adaptation include hardware defects, 

software errors, sudden resource changes, or bursts of 

communication or processing demand. On the other hand, 

many CPS must keep executing while the system is 

dynamically adapted [3]. 

In many applications, the CPS devices are mobile ones, 

such as smartphones, wearable devices, vehicles or 

autonomous robots with specific sensors and actuators. A 

typical scenario is thus the discovery and ad hoc interaction 

among such mobile devices (a.k.a. mobile nodes – MNs) and 

for mutual exchange of sensed data. For example, when a user 

carrying a smartphone enters a vehicle, the mobile application 

on the phone could connect and interact with the vehicle´s 

control system in order to provide some features, such as local 

pre-processing and transmission of the vehicle telemetric data 

or in-vehicle adjustment of equipment and media (e.g. seat 

and mirror position, music selection, etc.), according to user 

preferences. However, there are many challenges to build such 

applications since vehicles have different types of sensors, of 

actuators, general capabilities, and APIs (Application 

Programming Interfaces). Therefore, it is not feasible to 

develop from scratch a mobile application for all possible 

vehicles and passenger customization options. The two main 

reasons are: (i) time and cost of developing the integration 

mechanisms/protocols among the application and the different 

vehicles, and (ii) limitations on the allowable application size. 

The best possible approach is to implement the integration 

software for each vehicle type or model as a component (or 

plug-in). This allows one to independently add the specific 

software component for new sensors and actuators of new 

vehicle models as needed, and even do this dynamically 

during the application´s execution. 

Current solutions for building adaptive mobile systems do 

not provide the required support to handle dynamic changes in 

the cyber/physical context of the devices [2]. The authors of 

[2] also claim that there are few efforts on how to adapt and 

tailor existing software to the specific aspects of CPS (e.g., 

high dynamicity and distribution, real-time reactivity, resource 

constraints, and error/defect-prone environments). One should 

also add scalability, fault-tolerance, mobility and dynamic 

adaptation as further important issues when designing 

software for a “Mobile CPS”. To the best of our knowledge, 

there are no works that cope with all the aforementioned 

aspects. As the main goal of our research is to facilitate the 

development of adaptive software for Mobile CPS, we present 

an approach that supports distributed dynamic adaptation 

among MNs that encompass a CPS. 
The remainder of this paper is organized as follows. 

Section II provides an overview of the key concepts and 
technologies used in our approach. Section III presents our 
proposed approach for mobile dynamic adaptation in Mobile 
CPS. Section IV enlightens the proposed evaluation. Section V 
reviews the most relevant works related to ours. Finally, 
Section VI contains concluding remarks and discusses future 
work on the central ideas presented in this paper. 

II. BASIC CONCEPTS 

This section presents and discusses the main concepts and 
technologies that underlie our approach of dynamic adaptation. 



A. Scalable Data Distribution Layer (SDDL) 

SDDL [4] is a communication middleware that connects 

stationary DDS (Data Distribution Service) [5] nodes in wired 

“core” network to MNs with an IP-based wireless data 

connection. SDDL employs two communication protocols: 

Real-Time Publish-Subscribe RTPS Wire Protocol [5] for the 

wired communication within the SDDL core network, and the 

Mobile Reliable UDP protocol (MR-UDP) [6] for the inbound 

and outbound communication between the core network and 

the mobile nodes. DDS delivers many advantages in 

performance, scalability, availability and QoS (Quality Of 

Service) mechanisms [7] [8].SDDL provides a communication 

infrastructure to interconnect sensor, actuators and other 

mobile devices so to build CPS systems. Thus, we have 

chosen build our work based on the SDDL. 
As part of the SDDL core, the Gateway plays an important 

role concerning our work. It defines a unique point of 
attachment for connections with the mobile nodes. Thus, the 
Gateway is responsible for managing a separate MR-UDP 
connection with each of these nodes, forwarding any 
application-specific message or context information into the 
core network, and in the opposite direction, converting DDS 
messages to MR-UDP messages and delivering them reliably 
to the corresponding Mobile Node(s). 

B. Dynamic Software Adaptation 

Dynamic software adaptation does behavioral, functional 

or structural modification of a software component (e.g., class, 

service, module or functionality) at run-time [9]. It allows 

application to act in response to new application requirements 

and/or context changes (e.g., in the physical or virtual world, 

[2] [3]. The two most popular approaches found in the 

literature for software adaptation are parameter and 

compositional adaptations [9]. 

Parameter adaptation is related to the change of software 

parameters (i.e., variables) with the aim of modifying the 

system behavior. However, with parameter adaptation, it is 

impossible to deploy new software components into a running 

system, and hence this type of adaptation is not sufficient for 

changing and extending a system’s functionality. Conversely, 

compositional adaptation enables the exchange/addition of 

components in the system in order to satisfy new requirements 

and context changes that may arise after the software 

deployment [3]. Thus, compositional adaptation deals with 

situations where unforeseen requirements and conditions are 

common [9]. 

III. SYSTEM ARCHITECTURE 

Our approach, illustrated in Fig. 1, supports parameter and 

compositional adaptation. One of the most widespread 

approaches in software engineering is to separate the 

application’s business logic from adaptation logic [10] [11] [9] 

[2]. Thus, inspired by other works [10] [2], we provide an API 

where adaptation engineers can register for, and handle events 

(e.g., new device available, component failure, and events 

defined by the adaptation engineer) so to build their own 

application adaptation policies.  

 
Fig. 1. Overview of the proposed approach 

Adaptations performed at the MNs are driven/orchestrated 

from the SDDL Core Network. That is, the infrastructure is in 

charge of monitoring MNs, and then coordinating the 

execution of the adaptation by the MNs. Thus, the system 

nodes that compose our approach are MN and Adaptation 

Manager, which are explained in the next subsection. 

A. System Nodes 

The Adaptation Managers are responsible for coordinating 

(i.e., initiate and coordinate the execution of all the operations 

that encompass the decentralized adaptation) the system-wide 

adaption process (e.g. deployment of new software 

components or customization of application´s parameters) on 

many MNs. For example, if the global adaptation is the 

deployment of a new functionality to several MNs, which may 

consist of some components, the Adaption Manager will send 

the code that implements the new functionality to all MNs and 

then verify whether all MNs successfully deployed it. 

Our approach further requires a Mobile Client Adaptation 

Service that executes at the MNs. This service executes the 

adaptation at the MN (e.g., deployment of a new functionality) 

and informs the Adaptation Manager whether this operation 

was successfully performed or not. 

B. Management of Distributed Adaptation among Mobile 

Nodes 

We have in mind that adaption is supposed to be atomic in 

some situations (i.e., all adaption is successfully performed or 

it has no effect). While some adaptations affect only a specific 

MN (i.e., there is no impact on other MNs), others may affect 

some (or all) MNs. To illustrate the latter case, we can 

imagine a situation where the adaptation engineer needs to 

update some component responsible for the interaction 

between MNs. In this case, different versions of such 

component may cause a flaw since MNs will communicate 

using different and incompatible versions of a component. 

Thus, the adaptation engineer has to inform that all, or none, 

MNs should perform the component update. We call this sort 

of adaptation as transactional adaptation, in contrast of non-

transactional adaptation. 

Typically, when a component has to be updated, it is 

blocked for new executions, the new component version is 

deployed and all references from the old version are updated 

to the new one. However, the time required to update the 

component may affect the system´s performance since the 

system will be blocked, if it tries to call such component, until 



the update process finishes. To avoid such behavior, we 

propose the concept of asynchronous adaptation in which the 

old component does not need to be blocked while the new one 

is deployed. Thus, the system is able to operate normally 

while the component is updated. After the update process 

finishes, all references are changed from the old version to the 

new one. In some scenario, the adaption engineer may decide 

to asynchronously update the component in charge of 

compressing data sent by the MN to the infrastructure since 

the latter (i.e., SDDL Core Network) is able to decompress 

data using both versions and such behavior does not introduce 

inconsistence on the system. 

A dynamic adaptation may cause some error or side effect 

(e.g., degrading the system´s performance). For such 

situations, we intend to support adaptation rollback. Hence, if 

some adaptation caused any undesirable situation, the 

adaptation engineer is able to restore the system to the 

previous system´s configuration. 

IV. PRELIMINARY PERFORMANCE TESTS 

So far, we have developed and tested only some features of 
our approach. More specifically, we implemented just non-
transactional, synchronous and compositional adaptation into 
our current prototype. Hence, we are currently able to deploy 
new components and update existing components at the MNs. 
In our performance tests, we have measured the time required 
to deploy and to update a component (with non-transactional 
and synchronous adaptation), as well as the overhead of 
invoking (i.e., calling) a component through our component 
wrapper. 

Our hardware test was composed of Dell Laptop Intel i5-
3210M 2.5GHz, 8GB DDR3 1333MHz and Wi-Fi (802.11n) 
interface running Windows 8.1 64 bits, Dell Laptop Intel i5 M 
480 2.66GHz, 8GB DDR3 1333MHz and Fast Ethernet 
interface running Ubuntu 12.04 LTS 64 bits, and a router with 
four Fast Ethernet ports and 802.11n wireless connection. Our 
prototype has been implemented using the Java programing 
language and we have simulated the MNs as a Java 
application. 

In order to evaluate the time required to deploy or update a 
component, we did two experiments. One experiment 
measured the elapsed local time on the MN to complete the 
deployment/update of the component. In each case, we 
repeated the experiment 10 times. The JAR (Java ARchive) file 
that encapsulates the deployed component has 1.5KB 
(kilobytes) and the Java class that represents the component 
has 51 lines of code. While the first experiment measured a 
local time, the second experiment measured the Round-trip 
Delay (RTD), which encompasses the time interval from the 
instant of time the Adaption Manager sends a message until it 
receives an acknowledgment informing that the MN completed 
the deployment/update. We repeated the latter experiment with 
1, 10 and 100 MNs. With the aim of assessing the invocation 
overhead that our wrapper imposes, we measured the time of 
50,000 calls using direct invocation (i.e., calling the 
component’s method without our wrapper) and invocation 
through the wrapper that represents the component. 

The deployment of a component on the MN took 2.03 ms 
on average, while the process of update a single component 
instance took 0.05 ms on average. While the number of MNs 
was increased in a ratio of 100 times, the RTD increased less 
than two times for the deployment RTD and 2.3 times for the 
update RTD. 

The time elapsed to execute 50,000 times the component´s 
method was 467.36 ms using the wrapper and 452.76ms 
calling directly the component´s method. Thus, the overhead 
imposed by our wrapper was 3.22%, which seems to be 
reasonable for the most of the applications considering the 
functionality provided by the wrapper. 

V. RELATED WORK 

Although not exhaustive, the works discussed in this 

section are the most relevant ones we encountered with 

respect to our approach. The work by [13] proposes a mobile 

application – Mobile Sensor Hub (MoSHub) – that allows a 

variety of different sensors to be connected to a mobile phone. 

The authors developed an architecture to dynamically 

interconnect sensors to a mobile application by generating a 

wrapper class. While the MoSHub approach is tailored for 

generating wrappers class for sensor devices, our approach is 

more general and intends to perform generic dynamic 

adaptation on mobile applications. Hence, dynamic 

configuration of sensor would be one use case for us. Authors 

[13] also do not discuss about features such as scalability, 

fault tolerance and distributed adaptation, for instance. 

Another relevant work to us is the one proposed by [14]. 

The authors present an architectural model addressing flexible 

and adaptive composition of services in Very Large Scale 

(VLS) IoT systems by exploiting the concepts of service 

orchestration (i.e., centralized approach) and choreography 

(i.e., decentralized approach). While the authors follow a 

service orchestration/choreography model, which seems to be 

more adequate for web applications, we chose following a 

service-oriented component model [11]. Although the authors 

address VLS IoT systems, there is no information about how 

the architecture achieves scalability, and how the adaptation 

engineer defines the service composition. 

MADAM (mobility- and adaptation-enabling middleware) 

[15] is a middleware to facilitate the development of adaptive 

mobile applications. MADAM employs an architecture-centric 

approach to allow parametric and compositional adaptations. 

It allows the adaptation engineer to implement utility 

functions that helps the MADAM to reason about the most 

appropriate application variant (i.e., application adaptation). 

One of the main differences between MADAM and our work 

is that the former runs only locally on the MNs without 

exchanging information among them (i.e., it is not 

distributed), whereas the latter employs a distributed 

architecture where the Adaption Manager, which is deployed 

within the SDDL core network, manages the adaptions 

performed by the MNs. One advantage of such approach is 

that we are able reason about the entire system, not only about 

a MN. Other differences are that our approach can 



dynamically deploy new functionalities on the MNs, and 

manage distributed adaptation among MNs. 

VI. CONCLUSION AND DISCUSSION 

In this paper, we propose an approach to manage the 

complexity of building adaptive mobile application. Instead of 

managing low-level adaptation techniques (i.e., how to 

dynamically deploy new components or change parameters), 

we are focused in providing management of distributed 

dynamic adaptation and facilitating the development of 

adaptation policies. Hence, the main contribution of this paper 

is the proposal of (non-) transactional and (a) synchronous 

distributed adaptation for IoMT scenarios. We also present 

some preliminary performance results. Several studies have 

been conducted in the field of middleware for adaptive 

applications; however, most current efforts does not take into 

account problems such as mobility, scalability and 

manageability. There are many research challenges in this 

field; however, problems such as parametric variability, 

adaptation reasoner and adaptation mechanisms are not 

covered by our research. 

We are aware that much work and research is needed, but 

we are confident that our approach is suitable to build CPS 

systems and will facilitate the development of such systems. 

However, we expect the following contributions in this and 

the next years: (i) an API tailored to develop mobile adaptive 

applications; (ii) the design of an interface to decompose the 

system in small and independent components; (iii) a 

mechanism to enable adaptation engineers to receive and 

handle events generated by the MNs; (iv) the design of (non-) 

transactional distributed adaptation; and (v) the design of 

asynchronous adaptation. 
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