
Management of Mobile Dynamic Adaptation in

Cyber-Physical Systems

Rafael Oliveira Vasconcelos, Igor Vasconcelos, Markus Endler

Department of Informatics

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

{rvasconcelos,ivasconcelos,endler}@inf.puc-rio.br

Abstract—The general idea of CPS (Cyber-Physical Systems)

is integrating information systems with the physical world. Thus,

CPS require a dynamic global network infrastructure where

devices are enabled to autonomously adapt to the cyber and

physical world events. Conversely, devices frequently are mobile

devices that can be moved or can move by themselves, such as

sensors and actuators. Current solutions for building CPS do not

provide the required support to handle changes in the

cyber/physical context and in particular, deal with the devices’

mobility. In this paper, we present an approach that supports

distributed dynamic software adaptations among mobile devices.

Keywords—mobile dynamic adaptation; mobile

communication; middleware; adaptability; SDDL

I. INTRODUCTION

A CPS may be defined as a networked information system

(i.e., cyber world) that is coupled with the physical world

through a huge number of geographically distributed devices

(e.g., vehicles and smartphones), sensors (e.g., temperature,

speed) and actuators (e.g., electro-mechanical, electronic or

other controllable devices)[1]. The authors [2] explain that

CPS should have mechanisms and services to make them

aware of changes in the cyber and physical contexts with the

aim of adapting the system´s execution according to these

contexts. Reasons for adaptation include hardware defects,

software errors, sudden resource changes, or bursts of

communication or processing demand. On the other hand,

many CPS must keep executing while the system is

dynamically adapted [3].

In many applications, the CPS devices are mobile ones,

such as smartphones, wearable devices, vehicles or

autonomous robots with specific sensors and actuators. A

typical scenario is thus the discovery and ad hoc interaction

among such mobile devices (a.k.a. mobile nodes – MNs) and

for mutual exchange of sensed data. For example, when a user

carrying a smartphone enters a vehicle, the mobile application

on the phone could connect and interact with the vehicle´s

control system in order to provide some features, such as local

pre-processing and transmission of the vehicle telemetric data

or in-vehicle adjustment of equipment and media (e.g. seat

and mirror position, music selection, etc.), according to user

preferences. However, there are many challenges to build such

applications since vehicles have different types of sensors, of

actuators, general capabilities, and APIs (Application

Programming Interfaces). Therefore, it is not feasible to

develop from scratch a mobile application for all possible

vehicles and passenger customization options. The two main

reasons are: (i) time and cost of developing the integration

mechanisms/protocols among the application and the different

vehicles, and (ii) limitations on the allowable application size.

The best possible approach is to implement the integration

software for each vehicle type or model as a component (or

plug-in). This allows one to independently add the specific

software component for new sensors and actuators of new

vehicle models as needed, and even do this dynamically

during the application´s execution.

Current solutions for building adaptive mobile systems do

not provide the required support to handle dynamic changes in

the cyber/physical context of the devices [2]. The authors of

[2] also claim that there are few efforts on how to adapt and

tailor existing software to the specific aspects of CPS (e.g.,

high dynamicity and distribution, real-time reactivity, resource

constraints, and error/defect-prone environments). One should

also add scalability, fault-tolerance, mobility and dynamic

adaptation as further important issues when designing

software for a “Mobile CPS”. To the best of our knowledge,

there are no works that cope with all the aforementioned

aspects. As the main goal of our research is to facilitate the

development of adaptive software for Mobile CPS, we present

an approach that supports distributed dynamic adaptation

among MNs that encompass a CPS.
The remainder of this paper is organized as follows.

Section II provides an overview of the key concepts and
technologies used in our approach. Section III presents our
proposed approach for mobile dynamic adaptation in Mobile
CPS. Section IV enlightens the proposed evaluation. Section V
reviews the most relevant works related to ours. Finally,
Section VI contains concluding remarks and discusses future
work on the central ideas presented in this paper.

II. BASIC CONCEPTS

This section presents and discusses the main concepts and
technologies that underlie our approach of dynamic adaptation.

A. Scalable Data Distribution Layer (SDDL)

SDDL [4] is a communication middleware that connects

stationary DDS (Data Distribution Service) [5] nodes in wired

“core” network to MNs with an IP-based wireless data

connection. SDDL employs two communication protocols:

Real-Time Publish-Subscribe RTPS Wire Protocol [5] for the

wired communication within the SDDL core network, and the

Mobile Reliable UDP protocol (MR-UDP) [6] for the inbound

and outbound communication between the core network and

the mobile nodes. DDS delivers many advantages in

performance, scalability, availability and QoS (Quality Of

Service) mechanisms [7] [8].SDDL provides a communication

infrastructure to interconnect sensor, actuators and other

mobile devices so to build CPS systems. Thus, we have

chosen build our work based on the SDDL.
As part of the SDDL core, the Gateway plays an important

role concerning our work. It defines a unique point of
attachment for connections with the mobile nodes. Thus, the
Gateway is responsible for managing a separate MR-UDP
connection with each of these nodes, forwarding any
application-specific message or context information into the
core network, and in the opposite direction, converting DDS
messages to MR-UDP messages and delivering them reliably
to the corresponding Mobile Node(s).

B. Dynamic Software Adaptation

Dynamic software adaptation does behavioral, functional

or structural modification of a software component (e.g., class,

service, module or functionality) at run-time [9]. It allows

application to act in response to new application requirements

and/or context changes (e.g., in the physical or virtual world,

[2] [3]. The two most popular approaches found in the

literature for software adaptation are parameter and

compositional adaptations [9].

Parameter adaptation is related to the change of software

parameters (i.e., variables) with the aim of modifying the

system behavior. However, with parameter adaptation, it is

impossible to deploy new software components into a running

system, and hence this type of adaptation is not sufficient for

changing and extending a system’s functionality. Conversely,

compositional adaptation enables the exchange/addition of

components in the system in order to satisfy new requirements

and context changes that may arise after the software

deployment [3]. Thus, compositional adaptation deals with

situations where unforeseen requirements and conditions are

common [9].

III. SYSTEM ARCHITECTURE

Our approach, illustrated in Fig. 1, supports parameter and

compositional adaptation. One of the most widespread

approaches in software engineering is to separate the

application’s business logic from adaptation logic [10] [11] [9]

[2]. Thus, inspired by other works [10] [2], we provide an API

where adaptation engineers can register for, and handle events

(e.g., new device available, component failure, and events

defined by the adaptation engineer) so to build their own

application adaptation policies.

Fig. 1. Overview of the proposed approach

Adaptations performed at the MNs are driven/orchestrated

from the SDDL Core Network. That is, the infrastructure is in

charge of monitoring MNs, and then coordinating the

execution of the adaptation by the MNs. Thus, the system

nodes that compose our approach are MN and Adaptation

Manager, which are explained in the next subsection.

A. System Nodes

The Adaptation Managers are responsible for coordinating

(i.e., initiate and coordinate the execution of all the operations

that encompass the decentralized adaptation) the system-wide

adaption process (e.g. deployment of new software

components or customization of application´s parameters) on

many MNs. For example, if the global adaptation is the

deployment of a new functionality to several MNs, which may

consist of some components, the Adaption Manager will send

the code that implements the new functionality to all MNs and

then verify whether all MNs successfully deployed it.

Our approach further requires a Mobile Client Adaptation

Service that executes at the MNs. This service executes the

adaptation at the MN (e.g., deployment of a new functionality)

and informs the Adaptation Manager whether this operation

was successfully performed or not.

B. Management of Distributed Adaptation among Mobile

Nodes

We have in mind that adaption is supposed to be atomic in

some situations (i.e., all adaption is successfully performed or

it has no effect). While some adaptations affect only a specific

MN (i.e., there is no impact on other MNs), others may affect

some (or all) MNs. To illustrate the latter case, we can

imagine a situation where the adaptation engineer needs to

update some component responsible for the interaction

between MNs. In this case, different versions of such

component may cause a flaw since MNs will communicate

using different and incompatible versions of a component.

Thus, the adaptation engineer has to inform that all, or none,

MNs should perform the component update. We call this sort

of adaptation as transactional adaptation, in contrast of non-

transactional adaptation.

Typically, when a component has to be updated, it is

blocked for new executions, the new component version is

deployed and all references from the old version are updated

to the new one. However, the time required to update the

component may affect the system´s performance since the

system will be blocked, if it tries to call such component, until

the update process finishes. To avoid such behavior, we

propose the concept of asynchronous adaptation in which the

old component does not need to be blocked while the new one

is deployed. Thus, the system is able to operate normally

while the component is updated. After the update process

finishes, all references are changed from the old version to the

new one. In some scenario, the adaption engineer may decide

to asynchronously update the component in charge of

compressing data sent by the MN to the infrastructure since

the latter (i.e., SDDL Core Network) is able to decompress

data using both versions and such behavior does not introduce

inconsistence on the system.

A dynamic adaptation may cause some error or side effect

(e.g., degrading the system´s performance). For such

situations, we intend to support adaptation rollback. Hence, if

some adaptation caused any undesirable situation, the

adaptation engineer is able to restore the system to the

previous system´s configuration.

IV. PRELIMINARY PERFORMANCE TESTS

So far, we have developed and tested only some features of
our approach. More specifically, we implemented just non-
transactional, synchronous and compositional adaptation into
our current prototype. Hence, we are currently able to deploy
new components and update existing components at the MNs.
In our performance tests, we have measured the time required
to deploy and to update a component (with non-transactional
and synchronous adaptation), as well as the overhead of
invoking (i.e., calling) a component through our component
wrapper.

Our hardware test was composed of Dell Laptop Intel i5-
3210M 2.5GHz, 8GB DDR3 1333MHz and Wi-Fi (802.11n)
interface running Windows 8.1 64 bits, Dell Laptop Intel i5 M
480 2.66GHz, 8GB DDR3 1333MHz and Fast Ethernet
interface running Ubuntu 12.04 LTS 64 bits, and a router with
four Fast Ethernet ports and 802.11n wireless connection. Our
prototype has been implemented using the Java programing
language and we have simulated the MNs as a Java
application.

In order to evaluate the time required to deploy or update a
component, we did two experiments. One experiment
measured the elapsed local time on the MN to complete the
deployment/update of the component. In each case, we
repeated the experiment 10 times. The JAR (Java ARchive) file
that encapsulates the deployed component has 1.5KB
(kilobytes) and the Java class that represents the component
has 51 lines of code. While the first experiment measured a
local time, the second experiment measured the Round-trip
Delay (RTD), which encompasses the time interval from the
instant of time the Adaption Manager sends a message until it
receives an acknowledgment informing that the MN completed
the deployment/update. We repeated the latter experiment with
1, 10 and 100 MNs. With the aim of assessing the invocation
overhead that our wrapper imposes, we measured the time of
50,000 calls using direct invocation (i.e., calling the
component’s method without our wrapper) and invocation
through the wrapper that represents the component.

The deployment of a component on the MN took 2.03 ms
on average, while the process of update a single component
instance took 0.05 ms on average. While the number of MNs
was increased in a ratio of 100 times, the RTD increased less
than two times for the deployment RTD and 2.3 times for the
update RTD.

The time elapsed to execute 50,000 times the component´s
method was 467.36 ms using the wrapper and 452.76ms
calling directly the component´s method. Thus, the overhead
imposed by our wrapper was 3.22%, which seems to be
reasonable for the most of the applications considering the
functionality provided by the wrapper.

V. RELATED WORK

Although not exhaustive, the works discussed in this

section are the most relevant ones we encountered with

respect to our approach. The work by [13] proposes a mobile

application – Mobile Sensor Hub (MoSHub) – that allows a

variety of different sensors to be connected to a mobile phone.

The authors developed an architecture to dynamically

interconnect sensors to a mobile application by generating a

wrapper class. While the MoSHub approach is tailored for

generating wrappers class for sensor devices, our approach is

more general and intends to perform generic dynamic

adaptation on mobile applications. Hence, dynamic

configuration of sensor would be one use case for us. Authors

[13] also do not discuss about features such as scalability,

fault tolerance and distributed adaptation, for instance.

Another relevant work to us is the one proposed by [14].

The authors present an architectural model addressing flexible

and adaptive composition of services in Very Large Scale

(VLS) IoT systems by exploiting the concepts of service

orchestration (i.e., centralized approach) and choreography

(i.e., decentralized approach). While the authors follow a

service orchestration/choreography model, which seems to be

more adequate for web applications, we chose following a

service-oriented component model [11]. Although the authors

address VLS IoT systems, there is no information about how

the architecture achieves scalability, and how the adaptation

engineer defines the service composition.

MADAM (mobility- and adaptation-enabling middleware)

[15] is a middleware to facilitate the development of adaptive

mobile applications. MADAM employs an architecture-centric

approach to allow parametric and compositional adaptations.

It allows the adaptation engineer to implement utility

functions that helps the MADAM to reason about the most

appropriate application variant (i.e., application adaptation).

One of the main differences between MADAM and our work

is that the former runs only locally on the MNs without

exchanging information among them (i.e., it is not

distributed), whereas the latter employs a distributed

architecture where the Adaption Manager, which is deployed

within the SDDL core network, manages the adaptions

performed by the MNs. One advantage of such approach is

that we are able reason about the entire system, not only about

a MN. Other differences are that our approach can

dynamically deploy new functionalities on the MNs, and

manage distributed adaptation among MNs.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose an approach to manage the

complexity of building adaptive mobile application. Instead of

managing low-level adaptation techniques (i.e., how to

dynamically deploy new components or change parameters),

we are focused in providing management of distributed

dynamic adaptation and facilitating the development of

adaptation policies. Hence, the main contribution of this paper

is the proposal of (non-) transactional and (a) synchronous

distributed adaptation for IoMT scenarios. We also present

some preliminary performance results. Several studies have

been conducted in the field of middleware for adaptive

applications; however, most current efforts does not take into

account problems such as mobility, scalability and

manageability. There are many research challenges in this

field; however, problems such as parametric variability,

adaptation reasoner and adaptation mechanisms are not

covered by our research.

We are aware that much work and research is needed, but

we are confident that our approach is suitable to build CPS

systems and will facilitate the development of such systems.

However, we expect the following contributions in this and

the next years: (i) an API tailored to develop mobile adaptive

applications; (ii) the design of an interface to decompose the

system in small and independent components; (iii) a

mechanism to enable adaptation engineers to receive and

handle events generated by the MNs; (iv) the design of (non-)

transactional distributed adaptation; and (v) the design of

asynchronous adaptation.

REFERENCES

[1] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E.

Chang, “Web-of-things framework for cyber-physical

systems,” Concurr. Comput. Pract. Exp., vol. 23, no.

9, pp. 905–923, Jun. 2011.

[2] L. Gurgen, O. Gunalp, Y. Benazzouz, and M.

Gallissot, “Self-aware cyber-physical systems and

applications in smart buildings and cities,” in

Proceedings of the Conference on Design, Automation

and Test in Europe, 2013, pp. 1149–1154.

[3] A. J. Ramirez and B. H. C. Cheng, “Design patterns

for developing dynamically adaptive systems,” in

Proceedings of the 2010 ICSE Workshop on Software

Engineering for Adaptive and Self-Managing Systems

- SEAMS ’10, 2010, pp. 49–58.

[4] R. O. Vasconcelos, L. D. N. e Silva, and M. Endler,

“Towards Efficient Group Management and

Communication for Large-Scale Mobile

Applications,” in 5th International Workshop on

Pervasive Collaboration and Social Networking

(PerCol), co-located with Percom, 2014.

[5] OMG, “OMG Data Distribution Portal,” 2012.

[Online]. Available: http://portals.omg.org/dds/.

[Accessed: 08-Nov-2012].

[6] L. David, R. Vasconcelos, L. Alves, R. Andre, G.

Baptista, and M. Endler, “A Communication

Middleware for Scalable Real-Time Mobile

Collaboration,” in IEEE 21st International Workshop

on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), 2012, pp. 54–

59.

[7] G. L. B. Baptista, M. Roriz, R. Vasconcelos, B.

Olivieri, I. Vasconcelos, and M. Endler, “On-line

Detection of Collective Mobility Patterns through

Distributed Complex Event Processing,” Monografias

em Ciência da Computação - MCC 12/2013, Dep. de

Informática, PUC-Rio, ISSN 0103-9741, 2013.

[8] R. O. Vasconcelos, M. Endler, B. Gomes, and F.

Silva, “Autonomous Load Balancing of Data Stream

Processing and Mobile Communications in Scalable

Data Distribution Systems,” Int. J. Adv. Intell. Syst.,

vol. 6, no. 3&4, pp. 300–317, 2013.

[9] K. Kakousis, N. Paspallis, and G. A. Papadopoulos,

“A survey of software adaptation in mobile and

ubiquitous computing,” Enterp. Inf. Syst., vol. 4, no. 4,

pp. 355–389, Nov. 2010.

[10] G. Jacques-Silva, B. Gedik, R. Wagle, K.-L. Wu, and

V. Kumar, “Building user-defined runtime adaptation

routines for stream processing applications,” Proc.

VLDB Endow., vol. 5, no. 12, pp. 1826–1837, 2012.

[11] C. Escoffier, P. Bourret, and P. Lalanda, “Describing

Dynamism in Service Dependencies: Industrial

Experience and Feedbacks,” in Proceedings of the

2013 IEEE International Conference on Services

Computing, 2013, pp. 328–335.

[12] R. O. Vasconcelos, M. Endler, B. de T. P. Gomes, and

F. J. da S. e Silva, “Design and Evaluation of an

Autonomous Load Balancing System for Mobile Data

Stream Processing Based on a Data Centric Publish

Subscribe Approach,” Int. J. Adapt. Resilient Auton.

Syst., vol. 5, no. 2, 2014.

[13] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen,

and D. Georgakopoulos, “Dynamic configuration of

sensors using mobile sensor hub in internet of things

paradigm,” in IEEE Eighth International Conference

on Intelligent Sensors, Sensor Networks and

Information Processing, 2013, pp. 473–478.

[14] K. Dar, A. Taherkordi, R. Rouvoy, and F. Eliassen,

“Adaptable service composition for very-large-scale

internet of things systems,” in Proceedings of the 8th

Middleware Doctoral Symposium on - MDS ’11,

2011, pp. 1–6.

[15] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K.

Lund, and E. Gjorven, “Using architecture models for

runtime adaptability,” IEEE Softw., vol. 23, no. 2, pp.

62–70, Mar. 2006.

