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Abstract—Modern datacenters rely heavily on virtualization
technologies to offer customized computing and network re-
sources on demand to a large number of tenant applications.
However, efficiency in resource utilization delivered by virtualiza-
tion technologies that exploit statistical multiplexing of resources
across applications means that predictability in performance
remains a challenge. Allocation of network bandwidth is partic-
ularly difficult, given the variability of traffic flows between the
components of multi-tier applications. Static bandwidth allocation
based on peak traffic rates ensures SLA compliance at the cost
of significant overprovisioning, while allocation based on mean
traffic rates ensures efficient usage of bandwidth at the cost
of QoS violations. We describe MAPLE, a network-aware VM
ensemble placement scheme that uses empirical estimations of the
effective bandwidth required between servers to ensure that QoS
violations are within targets specified in the SLA for the tenant
application. Experimental results obtained using traffic traces
collected from an emulated datacenter show that, in contrast to
the Oktopus network-aware VM placement system, MAPLE is
able to allocate computing and network resources in a manner
that balances efficiency of resource utilization with performance
predictability.

I. INTRODUCTION

Many modern datacenters are composed of a massive
number of networked commodity servers that are virtualized
to provide computing resources on demand to a large number
of users. Without an adequate network infrastructure, datacen-
ters cannot properly support the performance requirements of
many mission critical multi-tier applications. Studies [1], [2]
have identified that the unpredictable network performance in
datacenters had become a bottleneck to many cloud-hosted
applications, with several techniques having been developed
to address this issue [3]-[10].

The prevalent approach in the industry to achieve rela-
tively predictable datacenter networks is to strictly reserve
bandwidths for tenants’ Virtual Machine (VM) ensembles—we
use the term ensemble to refer to the group of VM instances
involved in the delivery of an application’s functionality.
This is the case, for example, in Amazon EC2 [11] and
Rackspace [12] Infrastructure-as-a-Service (IaaS) offerings.
However, strict bandwidth reservation does not efficiently
utilize network resources: unused bandwidth is wasted during
periods when VM traffic demands are below the provisioned
peak rates. Overprovisioning is a pragmatic approach given
that it is extremely difficult for tenants to accurately predict

inter-VM bandwidth requirements for their VM ensembles in
advance. Thus, tenants can be provided with weak statisti-
cal guarantees that QoS targets in their SLAs will be met.
However, VM placement systems relying on overprovisioning
typically lack the capability to adjust the VM bandwidth
allocations following initial placement.

In response to the issues with overprovisioning in dat-
acenters, recent work on datacenter network management
has focused on allocating network resources to tenants’ VM
ensembles at optimal cost by implementing ‘network-aware’
VM placement algorithms and accompanying traffic control
mechanisms [7]-[10]. Typically, these approaches seek to min-
imize bandwidth wastage by reallocating bandwidth not being
used by a VM to other VMs in the same cluster. However,
these approaches largely focus on statistically guaranteeing
the throughput performance of VMs; they do not address
the potential for increased delays due to transient overloads
of network links that may occur as a result of a less strict
bandwidth allocation regime. In this paper, we address the
problem of efficiently utilizing datacenter network resources
while ensuring that QoS delay targets specified in SLAs are
met. In particular, we seek to support probabilistic QoS targets
expressed in the following manner: “no more that 2% of
packets should be delayed by more than 50ms.”

Our approach is to provide a network-aware VM placement
scheme in which VMs within an ensemble that need to be
placed on different servers are placed in a manner that ensures
that the “effective bandwidth” available on the network path
between the servers is sufficient. Kelly [13] defined effective
bandwidth as the “minimum amount of bandwidth required
by a traffic source to maintain specified QoS targets.” We
do not require either the a priori reservation of bandwidth,
or the implementation of traffic control mechanisms in server
hypervisors. Once a VM ensemble is placed, VMs are enabled
to asynchronously reach their peak throughputs. We rely on the
use of empirically computed estimates of effective bandwidth
on the network paths in the admission decision to ensure that
the likelihood of SLA violations is minimal. This approach
allows the datacenter provider to specify QoS targets for hosted
applications in terms of delay, ensuring that network resources
are utilized efficiently.

In this paper, we describe the MAPLE system, which
has been developed to accomplish the following objectives:
1) provision of predictable network performance to tenant
VM ensembles, 2) optimal joint-allocation of network and
computing resources, and 3) satisfaction of application QoS



targets. The design of MAPLE needs to address the chal-
lenges in applying effective bandwidth techniques to manage
datacenter networks. First, we design a network-aware VM
placement algorithm that can utilize the effective bandwidth
technique to produce optimal VM placement solutions in a
timely manner. Second, we seek to de-centralize the effective
bandwidth estimations to improve the run-time performance.
Given these considerations, MAPLE comprises two functional
modules: a centralized resource allocation manager that con-
trols VM placement for a server cluster and per-server effective
bandwidth measurement agents.

The paper is structured as follows. §II presents the re-
lated work on network allocation systems in datacenters. The
concept of effective bandwidth is introduced in §III. §IV
and §V describe the MAPLE system design and the network-
aware VM placement algorithm respectively. The experimental
evaluation is presented in §VI, where MAPLE is compared to
Oktopus [6], a well known system described in the literature.
The paper concludes in §VII, where topics for future work
are briefly outlined.

II. RELATED WORK

A number of recent publications have focused on network
resource allocation in datacenters. However, to the best of our
knowledge, effective bandwidth estimation has not yet been ap-
plied for this purpose. Here we focus on recent proposals that
are relevant to our approach. For a more complete overview of
the literature, we refer to Bari et al. [14] as well as Jennings
and Stadler [15].

Guo et al. [16] describe SecondNet, which allows tenants
to select between QoS classes for their applications. Their
proposal focuses on prioritizing traffic, but it does not deal
with specific QoS delay targets of the kind addressed by
MAPLE. In SecondNet, virtual datacenters (VDCs) are leased
to tenants, who are able to specify bandwidth guarantees for
their VDCs by using traffic matrices. The system then applies a
port-switching source routing mechanism to realize bandwidth
guarantee; this moves the bandwidth reservation tasks from
switches to hypervisors.

Ballani et al. [6] proposed Oktopus, in which VM ensem-
bles are placed based on virtual cluster abstractions. In their
work, all VMs are modelled as being connected to a single
virtual switch. A datacenter tenant can choose the abstraction
and the degree of the over-subscription of the virtual cluster
based on the communication patterns of the application VMs
the tenant plans to deploy. Instead of reserving required band-
width, Oktopus applies a greedy algorithm to map a virtual
cluster onto a physical datacenter network in order to save
bandwidth that VM pairs cannot use. The bandwidth required
by each VM to connect to the virtual switch can either be the
expected mean bandwidth of the traffic generated by the VM
or the expected peak bandwidth.

Lam et al. [7] describe NetShare, which assigns bandwidth
by virtualizing a datacenter network using a statistical mul-
tiplexing mechanism. Network links are shared in the level
of services, applications, or corporate groups, rather than via
single VM pairs. In this way, one service, application, or group
cannot consume more available bandwidth by opening more

connections. However, this weight-based bandwidth allocation
approach does not provide bandwidth guarantees to VM pairs.

Popa et al. [9] developed ElasticSwitch, which can ef-
fectively provide bandwidth guarantees to VMs in a work-
conserving way, since it does not require strict bandwidth
reservation. ElasticSwitch comprises two functional layers to
realize its design objectives: the guarantee partitioning layer
ensures that the bandwidth guarantees of each VM pair connec-
tion are met, and the rate allocation layer observes the actual
bandwidth each connection needs and reallocates some unused
bandwidth to the active connection in order to improve link
utilization.

LaCurts et al. [10] describe Choreo, a datacenter network
management system that is based on application profiling.
Choreo has three sub-systems: a measurement component to
obtain inter-VM traffic rates, a component to profile the data
transfer characteristics of a distributed application, and a VM
placement algorithm. The application traffic profiling sub-
system mainly involves profiling the application to find its
network demands and measuring the network to obtain the
available bandwidths between VM pairs. Based on this infor-
mation, VMs can be optimally placed to achieve predictable
network performance. The work presented in [5], [17], [18]
also addresses modelling of VM traffic, in order to attain
optimal VM placement or consolidations that save bandwidth
consumption. However, these works do not directly address
how to ensure that delay based QoS targets of application
SLAs can be satisfied.

ITII. PRELIMINARIES
A. Effective Bandwidth and its Estimation

Effective bandwidth is the minimum amount of bandwidth
required by a traffic source (e.g., a VM or an application) to
maintain specified QoS targets. In a communications network,
the effective bandwidth of traffic sources depends not only on
the sources themselves, but on the whole system, including
link capacity, traffic characteristics, and the QoS target [19].
For example, if a link has capacity of 1 Gbps, given two VMs
that generate traffic with mean throughput of 300 Mbps and
peak throughput of 550 Mbps, where the probability of peak
throughput is 10% for each VM, and the QoS target specifies
that no more than 5% of the traffic suffers delays higher
than 50 milliseconds. The question that arises is whether the
given link can accommodate the two VMs. If the two VMs
reach the peak throughput at the same time, the aggregated
throughput would be 1100 Mbps, exceeding the total link
capacity of 1 Gbps. Assuming there is a shaping policy, the
exceeding traffic would be delayed more than 50 milliseconds.
However, the probability of this situation actually happening
is 1% (assuming VMs are independent), therefore the QoS
target is not violated, and the link can accommodate the VMs.
In order to allow each VM to asynchronously reach its peak,
the allocated bandwidth of each VM should be higher than
its mean throughput. Moreover, it is not necessary to allocate
peak throughput to the VMs as the chance that they both
reach peak is small enough to statistically guarantee that the
QoS target is not violated. This discussion indicates that the
effective bandwidth lies somewhere between the source’s mean
throughput and peak throughput [13].



Effective bandwidth can be estimated analytically through
the application of large deviation theory [19]. However, in
MAPLE, we employ an empirical approach based on analysis
of traffic traces collected at each server. At set intervals we
estimate the effective bandwidth for a given delay based QoS
target for the aggregated traffic generated by the server in
question over the trace duration. This value, plus the peak
rate of the VM that is a candidate to be placed on the
server, is compared to the available bandwidth to assess
whether the VM can be placed on that server. The effective
bandwidth estimation technique is taken from Davy et al. [20]
and is summarised as follows. Let delay,,.. be the nominal
maximum delay and let pge1qy be the percentage of traffic
which can exhibit delay greater than delay,,q... We define the
effective bandwidth R.;; of a traffic source for delay QoS
target (delaymaz, Pdelay) as the minimal rate R such that if we
simulate a FIFO queue with unlimited buffer and processing
rate R, the percentage of traffic which will exhibit delay greater
than delaymq, Will be less than pgeiqy. To estimate the effec-
tive bandwidth of a particular traffic source on the network, we
take a recorded packet trace of that source. We observe that if
we simulate a FIFO queue (initially assumed to be empty) with
the same input traffic trace {T»,} for different process rates
Ry > R, and estimate the percentages p; and p, of traffic
delayed more than delay,,q, for different rates respectively,
then p; < pso. This means that the percentage of traffic, p,
delayed more than delay,,q, is a monotonically decreasing
function of processing rate R. Based on this observation, it
employs a simple bisection algorithm for a recorded packet
trace to find the minimal value of a queue rate such that the
percentage of traffic delayed more than delay,,q, is less than
Ddelay (a full specification of this algorithm is provided in
[20D.

B. Residual Bandwidth Adjustment

Existing network-aware VM placement techniques often
apply the hose model [2] to control the maximum data rates
that the datacenter-hosted VMs can reach. With the hose
model bandwidth is allocated on a per-VM basis. The residual
bandwidth of a server is then calculated as the server’s link
capacity minus the sum of the bandwidths allocated to the VMs
placed on the server. If a server’s outgoing link capacity is C,
with N VMs placed on it, each allocated bandwidth of B, then
the residual bandwidth of this server is taken to be (C'— N-B).
As described above if VM bandwidth allocations are based on
peak expected traffic rates this approach is likely to lead to
significant underutilization of the available bandwidth and the
potential rejection of VM admissions that could be successfully
provisioned in the system.

In contrast, in MAPLE we apply effective bandwidth
estimation to determine the minimum bandwidth required
to provision the allocated VMs whilst meeting QoS targets.
Accordingly, the residual bandwidth of a server is calculated
as (C'— Refy), where R.yy in this case refers to the cor-
responding empirically estimated effective bandwidth of the
aggregated traffic currently transferred across the link. Fig. 1
illustrates the two different methods to calculate the residual
bandwidth of a server that is hosting two VMs and has link
capacity of 1000 Mbps. Static reservation refers to the method
that reserves maximum throughput (940 Mbps) for the VMs
and computes the residual bandwidth accordingly; whereas
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Fig. 1: The residual bandwidths of a server that has link capacity of 1
Gbps. When peak bandwidths are reserved for each VM little residual
bandwidth remains. In contrast, when bandwidth is allocated based on
effective bandwidth the available residual bandwidth is significantly
higher, with the value depending on the stringency of the QoS target.

effective adjustment refers to adjusting the residual bandwidth
based on the effective bandwidth estimates. In this case the
latter determines that an aggregated bandwidth of 640 Mbps
is sufficient for the two VMs for achieving a given QoS target
(0.02s, 0.05)—no more than 5% of packets suffer delay longer
than 0.02s; whereas given a lower QoS target (0.1s, 0.2) the
residual bandwidth is higher.

IV. MAPLE SYSTEM ARCHITECTURE

MAPLE is designed to manage the joint allocation of
network and computing resources in datacenter clusters in
order to provision VM ensemble requests from tenants in a
manner that provides statistical guarantees that QoS targets
specified in SLAs are satisfied. Based on the design objectives
described in §I, MAPLE has two main components. As illus-
trated in Fig. 2, these are: 1) the MAPLE Controller, which is
deployed on a cluster management server and interacts with a
cluster manager such as VMware vCenter [21]; and 2) effective
bandwidth estimation agents (EB Agents) deployed on each
server, which analyse outgoing aggregated traffic to estimate
its effective bandwidth and periodically send this information
to the MAPLE Controller. We now describe these components
in more detail.

A. EB Agents

EB Agents are installed on every server on which MAPLE
can place VMs. They are responsible for collecting traces
of traffic emanating from the server using utilities such as
tshark (a command line version of the Wireshark network
analyser [23]). The traces are then used to estimate effective
bandwidth using the approach outlined in §III. EB Agents
collect traces at K minute intervals, each time storing S minute
long traces. The effective bandwidth for the QoS target(s)
specified by the MAPLE controller is estimated for each trace.
Whenever the MAPLE controller requests an effective band-
width estimate the EB agent selects the maximum estimate
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Fig. 2: The MAPLE system architecture. MAPLE is comprised of
Effective Bandwidth agents (EB Agents) residing in each server and a
MAPLE Controller residing in a management server. EB Agents send
effective bandwidth estimates upon request to the MAPLE Controller.
The MAPLE Controller processes VM placement requests from
tenants and instructs the Cluster Manager, which in turn configures
VMs on the selected servers. Whilst the figures illustrates a Fat Tree
datacenter topology (see Portland [22]), MAPLE is agnostic of the
topology since it collects bandwidth estimates at servers only.
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Fig. 3: The MAPLE Controller. Incoming requests for VM ensemble
placement are first pre-processed to account for VMs that need to
be placed together. VM placement decisions are then made taking
into account the estimated available residual bandwidth at each
server. Identified placements are passed to a Cluster Manager for
configuration.

from the last five stored estimates. As all of the trace analysis
is done locally on the server there is minimal overhead incurred
in EB Agent to MAPLE Controller communications.

B. MAPLE Controller

The MAPLE controller handles incoming requests for VM
ensemble placement, deciding if the request can be accepted
and computing the placement if it can. As depicted in Fig. 3
it is comprised of three functional entities, which we now
describe.

1) Request Pre-processor: The Request Pre-processor re-
ceives VM ensemble placement requests which specify one
of a small number of QoS classes offered by the datacenter
provider. These QoS targets are specified in terms of packet
delays rather than simply in terms of overall throughput
levels. As depicted in Fig. 4 VM ensemble placement requests
prescribe a topology of VMs that comprise an application and
indicate peak traffic flow rates between VMs on a pairwise
basis. For simplicity we assume in this paper that the same
amount of bandwidth is utilized in both directions between a
VM pair; thus the total peak traffic rate for a VM in a server
is simply the sum of the rates in the relevant row of the traffic
matrix.

The Request Pre-processor also performs some preprocess-
ing aimed to optimise the subsequent VM placement. It allows
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Fig. 4: A tenant VM ensemble topology specification indicating
the expected peak traffic rates between VMs comprising the tenant
application, together with the corresponding traffic matrix. In cases
where VMs are to be co-located on the same server the request pre-
processor in the MAPLE Controller groups these VMs and generates
a simplified traffic matrix.

placement requests to specify that particular VM sets should be
placed together on the same server given the expectation that
they will interact heavily with each other. Given this, the pre-
processor and MAPLE Controller treat such VMs as a single
VM, and simplify the traffic matrix accordingly.

2) Residual Bandwidth Estimator: This entity manages
and queries the EB Agents deployed on the compute servers
under the control of the MAPLE system. Whenever a VM
ensemble placement request arrives the Residual Bandwidth
Estimator queries a number of servers, who inform it of
their effective bandwidth estimate. A number of options are
possible to govern which servers are queried. For example, a
number of servers can be sampled at random, with the number
being calculated as a function of the overall occupancy of the
datacenter clusters—in lightly loaded clusters fewer servers
would need to be queried in order to find a viable placement.
Alternatively, only servers already hosting VMs could be
sampled initially so that VMs are consolidated for energy
purposes. When effective bandwidth estimates are received the
residual bandwidth as seen by the servers is calculated and
the server ids and associated residual bandwidth estimates are
passed to the VM Placement entity.

3) VM Placement: This entity takes as input the pre-
processed VM ensemble placement requests. It requests the
Residual Bandwidth Estimator to provide it with a set of can-
didate servers for the placement and the estimates of residual
bandwidth available on the egress links of those servers. It then
executes the MAPLE network-aware VM placement algorithm
specified in §V. If the VM ensemble can be safely placed the
placement details are passed to the Cluster Manager which
applies configurations on the servers accordingly.

V. NETWORK-AWARE VM PLACEMENT ALGORITHM

The MAPLE Controller seeks to minimize both the nomi-
nally allocated network bandwidth and the number of servers
in which VMs are placed, such that QoS targets are met.
As multi-objective VM placement problems are known to
be NP-hard [5], [17], [18], in this work, MAPLE uses the
heuristic algorithm specified in Alg. 1 and Alg. 2 to produce
VM ensemble placement results in a timely manner.

The MAPLE algorithm applies the First Fit Decreasing
(FFD) approach to search for VM placement solutions—FFD
has been widely applied to VM placement problems, (see,
inter alia, [17], [18], [24]). The algorithm first sorts the
servers in decreasing order of their 5 values using Eqn. 1 and



commences searching. The approach is known as “first fit” as it
stops searching once it founds the first feasible placement. FFD
approaches generally give sub-optimal results, but are able to
find feasible solutions in a timely manner. In our algorithm,
VM placements are optimized in the sense that since servers
are sorted in decreasing order of residual bandwidth, the first fit
placements are most likely found on servers that have relatively
smaller residual bandwidths. In this way, VMs are placed
into servers until there is no available computing capacity
or sufficient residual bandwidth to meet the QoS target. This
serves to both minimize the number of servers used and to
ensure that the overall bandwidth nominally allocated to VMs
is minimized.

The [ metric, computed using Eqn. 1, is used to ensure
that the MAPLE algorithm sorts servers in decreasing order
of residual bandwidth. The coefficient g € [0,1) is applied to
reduce the influence of residual VM level. For example, when
g = 0 the residual number of VM slots in the servers will
have no effect; otherwise, when servers have the same level
residual bandwidths, those with fewer remaining VM slots will
be searched first.

2 M

total BW

g=( residual_BW )2 ( [residual_slots|
o |all_slots|

Note that both the residual bandwidth level and residual slot
level are expressed as proportional values. This reflects the fact
that the absolute values of the residual bandwidth and number
of slots can vary significantly, leading one to dominate the
other.

The input to the MAPLE algorithm is a VM ensemble
request < N, B >, where N is a set of VM in request and B
is the set of associated expected peak bandwidth utilization.
To simplify the presentation of the algorithm and without loss
of generality, we assume here that all VMs expect the same
peak bandwidth utilization. The algorithm assumes that the
datacenter topology can be represented by a tree structure,
which is the case for fat-tree topologies typically used in
datacenter networks [1], [22], [25]. When there are n requests
arriving at a time ¢, they will be sorted based on their 3 values
using Eqn. 1, and then processed one by one. The algorithm
handles three cases:

1)  Case I, shown in lines 2-8 — When a given node is a
server (the lowest subtree that has no further subtree
as shown in line 2), MAPLE attempts to allocate the
entire VM ensemble placement request into a same
server;

2) Case II, addressed in lines 10-16 — If a node has
subtrees, the subtrees will be sorted decreasingly
based on their § values, and MAPLE attempts to
allocate the entire VM ensemble placement request
into the same subtree. Note that here we assume that
the routing cost is relatively less expensive when VMs
are located in the same subtree;

3) Case III, addressed in lines 18-23 — When the al-
gorithm cannot find any subtree that can host the
entire VM ensemble, it attempts to allocate the
requested VMs into different subtrees. VMs are
divided into two groups, head and tail. Function

Algorithm 1 MAPLE VM Ensemble Placement
Input: N, B, node
Output: True or False
1: done=False, subtrees=node.subtrees
if sizeof(subtrees) = 0 then

3:  if node.remainSlots > sizeof(/N) and
node.remainBW > sizeof(N)*B then

N

4: allocate N to node
5: return True

6: else

7: return False

8: end if

9: else

10:  sort subtrees based on the [ values eq.1
11:  for subtree in subtrees do

12: done = MAPLE(N,B,subtree)
13: if done = True then

14: return done

15: end if

16:  end for

17: end if

18: if done == False then

19:  tail = allocBetweenNodes(N,B,subtrees)
20: end if

21: if tail '= N then

22:  done = MAPLE(tail, B,node)

23: end if

24: return done

Algorithm 2 allocBetweenNodes function
Input: N, B, nodes
Output: tasl
1: tail=N
2: sort nodes based on the 3 values eq.1
3: for node in nodes do
4 if node.remainSlot = O then
5 continue
6: end if
7.
8

m=node.remainSlot, n=sizeof(/N), t=min(m,n — m)
. if node.remainBW > ¢*B then
9: head=N|0 : m], tail=N[m : n]

10: if MAPLE(head,B,node) = True then
11: return tail

12: else

13: continue

14: end if

15:  end if

16: end for

17: return tail

allocBetweenNodes () (specified in Alg. 2) re-
turns tail, which is the group of VMs not yet allocated
after it successfully allocated the VMs in the head
group; otherwise, Alg. 2 returns the original input,
indicating that the input VMs cannot be allocated into
different subtrees.

In an approach similar to that taken by Oktopus [6],
whenever a VM request cannot be entirely placed into one
subtree (case III), the requesting VMs will be divided into
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Fig. 5: The virtualized datacenter has a single root vSwitch and
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OS is rewritten to forward the packets of the specific IP addresses
(192.168.1**.*) into the corresponding guest VMs.

two groups. The aggregate bandwidths needed by each group
is determined as the minimum aggregated bandwidths between
the two groups. As illustrated in algorithm 2 in lines 7-8,
the head group has m VMs, and the tail group has n — m
VMs. The algorithm will only allocate min(m,n — m) X B
as the aggregated bandwidths needed by each VM group,
respectively. However, unlike Oktopus, MAPLE estimates the
residual bandwidth of a server based on effective bandwidth.
The variable node.remain BW (line 3) in Alg. 1 is calculated
by (C;—R! 7 f), where C}; is the link capacity available at server
i, and R! 77 1s the aggregated effective bandwidth (for the QoS
target sought by the request under consideration) of the VMs
already allocated to server 4, as discussed in §III.

VI. EVALUATION
A. Experimental Setup

We emulated a virtual datacenter network using a single
Dell R720 machine with 16 cores running at 2.6GHz, 128GB
of RAM and two 600GB hard disks. Within this machine
we instantiated a virtualized datacenter, as depicted in Fig. 5,
comprising VMs (each having a statically assigned IP address)
and virtual switches, all configured to emulate a simplified
datacenter tree topology (without multiple paths between
switches). In the arrangement VMs are grouped together in
groups of 5 within a virtual subnet that has 1 Gbps data
rates for both upstream and downstream traffic, thus emulating
the scenarios of 5 VMs within a server that compete for the
server’s link capacity of 1 Gbps. We instantiate 20 such virtual
subnets. Every 5 subnets is connected to one virtual switch
(denoted as vSwitch in Fig. 5) with 10 Gbps upstream and
downstream capacity. There are 4 virtual switches connecting
subnets and one root virtual switch connecting those 4 virtual
switches. The machine is initially installed with a Ubuntu
12.04 system (the host OS), with the libvirt library being used
to manage the 100 guest VMs.

To emulate bulk data transfers within a datacenter network,
we created a program (installed on host OS) that randomly

asks multiple VMs to simultaneously upload, via the SCP
utility, a dataset of size 300MB to a specified set of other
VMs. For the tenant requests, we created a program that
randomly generate tenant requests specified in the hose model
< N,B >, where N € [2,10] is an integer value randomly
drawn from a Gaussian distribution A/ (5,1) with mean 5 and
standard deviation 1. Because we use a mean of 5 each request
will, on average, ask for 5 VM instances. In turn we know the
emulated datacenter which has 100 VM slots can more or less
accept 20 requests, and in each experimental run we generate
30 requests to ensure that the datacenter will be (almost) fully
loaded.

We compared the performance of MAPLE with two vari-
ants of Oktopus [6]: Oktopus allocating network resources
based on expected mean throughput and Oktopus allocating
network resources based on expected peak throughput. The
mean throughput (176 Mbps) and peak throughput (480 Mbps)
were the average values measured on the SCP traffic traces
collected at the initial experiments. After that, at each exper-
imental run, all the algorithms were given with the same sets
of VM ensemble placement requests; only the corresponding
bandwidth requirements were changed to (176 Mbps, 480
Mbps) according to the respective Oktopus algorithms. We
have 20 runs of experiments, along which we sampled traffic
traces summed up to ~ 100 GB. QoS target violation rates
were calculated offline, using these collected traffic traces.

In the following analysis of experimental results QoS
targets are represented in the format (delay, proportion)—
we use the following QoS targets: (0.02s,0.05), (0.02s,0.1),
(0.045,0.05), and (0.2s,0.1). We note that QoS delay require-
ments vary depending on the hosted applications, but delays
of up to 200ms are generally considered acceptable [26].

B. Residual Bandwidth Required to Place New VMs

Our first experiment seeks to illustrate how an effective
bandwidth technique can lead to more efficient utilization
of computing resources in comparison to allocation of peak
expected bandwidth when hosted VMs heavily use a server’s
egress bandwidth. We emulate the scenario where 5 VMs
share a egress bandwidth of 1Gbps. Given a QoS target of
(0.02s,0.05), with more VMs arriving (recall that all VMs
generate SCP traffic) it will be, as illustrated in Fig. 6,
impossible to place more than 2 VMs on the server if the
peak bandwidth of each VM must be strictly provisioned for
their use. However, using MAPLE it is possible to place up
to 3 VMs on the server without violating the QoS target
(0.025,0.05). Given a lower QoS target of (0.2s,0.1), it is
even possible to host up to 5 VMs on the server, as shown in
Fig. 6. Placing VMs on the basis of strictly provisioning for
VM’s mean throughput would allow the placement of more
VMs on the server; however, as discussed below, this would
be at the cost of a significant level of QoS violation.

In Fig. 7 we depict the change in the level of additional

bandwidth to be allocated when a new VM is placed on the
server. This is calculated as f,—lv’[i‘, i.e. the aggregated effective
bandwidth, ., divided by the number of allocated VMs,
|V M s|. Here, we can see clearly the nonlinear nature of effec-
tive bandwidth—reflecting the statistical multiplexing of traffic

from numerous sources which means that less incremental
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the statistical multiplexing effect captured by th effective bandwidth
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bandwidth need be provided to attain the same level of QoS.
These results are consistent with the detailed experimental
results and theoretical proofs that can be found respectively
in Davy et al. [20] and Kelly [13].

C. Analysis of QoS Violations

We analyse QoS violations in the emulated datacenter
incurred by the VM placement algorithms. Firstly, note that the
QoS violation rate is calculated based on individual server’s

egress links. Namely, the violation rate is the proportion of a
server’s egress packets that experience delay longer than that
specified in the QoS target. To examine the QoS violation
at the overall datacenter scale, we employ two metrics: the
overall violation rate as defined in Eqn. 2, and the averaged
violation rate, as defined in Eqn. 3. The overall violation rate
is the sum of violation rates of all links divided by the total
number of all links in the datacenter. However, this metric
only shows the overall performance; it does not reflect the
situation that the violations are very localized: most of the
links have none (or tiny) QoS violation levels, while links that
face QoS violations suffer with frequent, strong violations. In
this case, the averaged violation rate can indicate how strong
the violations are on the links that suffer violations. It is
important to have these complementary metrics, since both
the MAPLE and Oktopus algorithms attempt to allocate VMs
in a same subtree with small residual bandwidths in order to
saving routing costs, which will frequently result in scenarios
where VMs are densely co-located around some links.

sum(QoS_violation_rates)
|all_links|

@)

overall_violation_rate =

sum(QoS_violation_rates)

averaged_violation_rate =
sec- - [links_with_violations|
3

Fig. 8 depicts the QoS violations where the QoS target
is (0.02s,0.05). The results compared the QoS violations
incurred by two different sets of VM placements given by
MAPLE and Oktopus when allocating based on mean through-
out (denoted as Oktopus (mean) in the figure). Since the VM
placements given by Oktopus allocating using peak throughput
result in no QoS violations or tiny violation rates, Fig. 8 only
presents results for the other two algorithms. We can clearly
see that when allocating using mean throughputs to all VMs,
Oktupus tends to have high probability (> 40%) that packets
will suffer with packet delay more than 0.02s. In particular, for
the links where QoS violations actually occurs, we observe
very strong violation rates, on average > 60%. In contrast,
MAPLE, which allocates on the basis of effective bandwidth
estimates, succeeds in keeping QoS violations within the target
range.

For a QoS sensitive network, it is also important to be able
to control the level of QoS violation, being flexible to allocate
just enough resources to maintain the QoS targets. Given
with three different QoS target (0.02s,0.1), (0.04s,0.05), and
(0.2s,0.1), Fig. 9 depicts that MAPLE is always able to meet
the target, keeping the violation rates at an acceptable level,
whereas Oktopus results in violation rates varying depending
on the different delay targets; it never succeeds in keeping the
rates within the acceptable range.

D. Analysis of Allocated Bandwidths and VMs

During each of 20 experimental runs, the emulated dat-
acenter was populated with VMs until it was almost fully
loaded, i.e., when it could not accept new VM ensemble
placement requests. Fig. 10 depicts the total bandwidth allo-
cations made by the three placement algorithms. On average,
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and Oktopus. Oktopus over allocates network resources resulting in
significant overall and localised levels of QoS violation. MAPLE’s
used of effective bandwidth estimates means that QoS violations are
within the acceptable range.

and regardless of the QoS targets, Oktopus allocating based
on mean throughputs, produced the most resource-conserving
approach, as it managed to placed more VMs (approximately
100) while allocating a smaller amount of bandwidth (sum up
to 16,938 Mbps), as shown in Fig. 11 and Fig. 10. In contrast,
MAPLE requires more aggregated bandwidths for the placed
VMs. Yet, it still managed to place as many VMs as Oktopus
using mean throughput places. At a first glance, Oktopus
allocating peak throughput allocates aggregated bandwidth of
18,576 Mbps—apparently similar performance of MAPLE.
However, from Fig. 11, we see that peak throughput approach
placed a significantly smaller number of VMs, compared to
the other algorithms. Overall, we conclude that MAPLE is
relatively resource-conserving, compared to Oktopus allocating
peak throughput, which used more aggregated bandwidths yet
placed smaller number of VMs.
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Fig. 10: Total allocated network bandwidth. Oktopus (mean) allocates
the least bandwidth, but at the cost of significant QoS violation rates.
MAPLE and Oktopus allocate similar levels of overall bandwidth, but
MAPLE accommodates significantly more VM placements.

VII. CONCLUSION

We have demonstrated that the Oktopus variant that al-
locates bandwidths to tenant VMs based on mean throughput
tends to suffer with low QoS performance, whereas the variant
based on allocating peak throughput tends to waste resources.
The optimal amount of bandwidth for provisioning should lie
between the mean throughput and peak throughput. Existing
network-aware VM placement schemes do not determine this
optimal value; they are designed to maximise throughput of
datacenter networks, but not to deliver predictable performance
in terms of the latency experienced by users of datacenter
hosted applications. Our proposed system, MAPLE, provides
this form of predictability by placing the VMs in a tenant
application’s VM ensemble based on ensuring that there is
sufficient effective bandwidth available between all pairs of
VMs in the ensemble when they are placed on datacenter
servers. Experimental results based on an emulated datacenter
network suggest that MAPLE succeeds in meeting QoS targets
whilst simultaneously allocating both computing and network
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Fig. 11: Total numbers of placed VMs. MAPLE and Oktopus (mean)
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resources in an efficient manner.

Future work will focus on evaluating MAPLE in larger
scale deployments with multiple application types with mul-
tiple QoS targets. We will explore different approaches for
selecting subsets of servers as candidates for placement of
incoming VM ensemble requests, with taking into account
that anti-colocation is a constraint. Finally, we plan to extend
MAPLE to allow it to support elastic VM ensembles in
which constituent VMs can be instantiated on-the-fly to handle
growing demand.
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