
An Algorithm for Load Balancing in Network
Management Applications Managing Virtualised

Network Functions
Sajeevan Achuthan

Network Management Lab,
Ericsson,

Athlone, Co. Westmeath,
Ireland

sajeevan.achuthan@ericsson.com

John Keeney
Network Management Lab,

Ericsson,
Athlone, Co. Westmeath,

Ireland
john.keeney@ericsson.com

Liam Fallon
Network Management Lab,

Ericsson,
Athlone, Co. Westmeath,

Ireland
liam.fallon@ericsson.com

Abstract—In network management applications, load balanc-
ing has typically been achieved by manually configuring the appli-
cation in-situ or using configuration information generated using
offline tools. As networks increase in scale and heterogeneity,
management applications are being designed to take advantage
of scalable computer hardware and often have multiple instances,
each of which bears a portion of the management load of the
network elements or functions being managed. The communica-
tion between management applications and the network elements
they are managing is often stateful, posing a challenge for load
balancing because connections must be managed if responsibility
for managing some network elements change from one instance
to another during load balancing. In this paper, we describe
an algorithm that enables load balancing of telecommunication
management applications for an arbitrary number of VNFs
(Virtual Network Functions). The algorithm, triggered by NFV
(Network Function Virtualisaton) orchestration, is horizontally
scalable and there is no single point of failure once two or more
management application instances are running.

I. INTRODUCTION

The time honoured approach for load balancing in network
management applications is to configure the parameters ex-
posed by the application offline using guidelines provided by
the application provider. This was an appropriate approach in
GSM systems where the number of network elements was
of the order of hundreds of network elements. In recent years,
there has been an order of magnitude increase in the number of
network elements being managed by mobile network manage-
ment systems; in LTE, networks with hundreds of thousands
of network elements are not uncommon. Networks are increas-
ingly heterogeneous and may be running four or more radio
technologies (such as 2G, WCDMA, LTE, Wireless LAN),
and may have very complex radio architectures with macro,
micro, pico, and even femto cells [1], and may be deployed as
bespoke nodes or using Network Function Virtualization [2].

In parallel, the computers on which management systems
run have evolved from systems with small numbers of mono-
lithic machines to systems where many computing entities run
in a highly distributed manner, often deployed across multiple
machines on blade systems, or increasingly as virtual machines

operating in virtualised environments. Such distributed infras-
tructures often have support for seamlessly adding and remov-
ing computing resources, whether by changing the physical
or virtual machines, or by adding/removing machines on the
fly[3]. The advent of this heterogeneity, the increase in scale
in managed networks, and the distribution of management
applications makes offline tuning of application load balancing
impractical.

Consider a management application that is receiving and
processing streamed events from managed network elements
running in a network deployed in NFV clusters. The appli-
cation runs a number of instances in order to handle the
volume of events being produced by the network, each of
which is deployed on the distributed computing platform.
Each instance receives events from a configured subset of the
network elements in the managed network. When a managed
network element is added to or removed from the network
by NFV orchestration, the configuration of a management
instance is amended and that instance may need to be re-
initialized. Likewise, when the cloud infrastructure on which
the management system is running adjusts the number of
management application instances or changes the resources
available to the management application, the configuration of
a number of instances in the distributed application is amended
and each of those instances must be re-initialized.

In this paper, we describe an approach to enable load
balancing of VNFs of a telecommunication network across an
arbitrary number of distributed processing instances that make
up a management application. The approach is horizontally
scalable and there is no single point of failure once two or
more processing instances are running.

We have applied this algorithm in the collection and pro-
cessing of events from network elements. In such an appli-
cation, network elements (which may be running as VNFs)
may be added to or removed from the network at any time
and many instances of a distributed management system are
used to collect and process events. The number of management
application instances running at any given time varies based

978-3-901882-48-7 c© 2012 IFIP

on the current network size, the current event load, or due
to particular application instances failing. The load balancing
mechanism is used to balance the management load fairly
across all running application instances. New management
instances are added or removed to handle periods of heavy
or light load.

Our algorithm can be applied to any management applica-
tion where state must be managed across distributed instances.

II. BACKGROUND AND RELATED WORK

Management systems have evolved to use distributed ar-
chitectures that allow the processing power of a distributed
system of cooperating computing entities to be harnessed to
manage large modern heterogeneous mobile networks. Such
architectures are designed to allow management applications
to scale horizontally; many instances of the application are
run in parallel in separate processes and threads with each
instance carrying the load of a small portion of the managed
network. In this way, increasing or decreasing the number of
instances of an application that is running at any given moment
can adjust the capacity of an application. The network load is
distributed in such a management application using methods
such as dividing the bespoke and virtualised network elements
evenly across all instances or by measuring the load being
produced by each network element and planning distribution
based on those measurements.

Current approaches for load balancing in distributed com-
puting (cloud) platforms focus on providing support in the
distributed computing infrastructure that allows applications to
elastically increase and decrease the number of instances they
are running [4][5], or to add or remove resources available to
already running instances. Such approaches do not consider
handling of shared state that applications may have, that
applications may have interrelationships that must be managed
when instance counts change, or that load may need to be
transferred between instances.

In contrast to most stateless distributed/cloud architectures
such as RESTful web services [6], management applica-
tions generally use stateful session semantics to interact with
network elements. A management application establishes a
management session with a network element, carries out
some operations, and then closes the session. Such sessions
may be used to collect statistical information [7], carry out
configuration operations [8] or receive event streams [9]. Such
management sessions, particularly those used for alarm or
event collection, are often very long lived; often lasting weeks
or even months if no change is needed. A particular instance
of a management application using such a stateful long-lived
session towards a particular network element must manage the
session state for the duration of that session. It is, therefore,
inherently difficult to exploit flexible distributed architectures
such as cloud platforms for load balancing in network man-
agement applications because network element session state
must be managed when the number of management instances
change. In order to change the allocation of a network element
from one management application instance to another, the

TABLE I
COMPARISON OF APPROACHES TO LOAD BALANCING

Manual Centralised Automatic
Planned Yes Yes No
Central Control Yes Yes No
Co-Ordination Human Central Application Autonomic
Adaptive No No Yes
Reset in Deployment Yes Yes No

management session between the network element and the old
management instance must be torn down and a management
session must be established between the managed element and
the new management instance.

In existing solutions, network elements are either manually
allocated to management application instances, or are allo-
cated using centralised algorithms. To ensure that manage-
ment sessions with network elements are properly handled,
each amended management application instance must be shut
down, its new configuration must be set, and the management
application instance must be restarted. It is, therefore, difficult
to automate redistribution of load because shutdown of man-
agement instances must be coordinated across all amended
network elements. There are a number of issues with this
approach: configuration is centrally planned and pushed to
network elements; redistribution must be coordinated and
executed as a single operation across all concerned network
elements; redistribution of load is static; complex load bal-
ancing algorithms, such as those based on the current load on
management application instances are difficult to apply (round-
robin allocation are more typical); and, if an instance of a
management application fails, the load being carried by that
instance is not automatically reallocated to other instances.

Table I presents an assessment of Manual, Centralised, and
Automatic approaches to load balancing. While manual and
centralised approaches allow planning and central control, we
chose an automatic approach because it provides autonomic
co-ordination, adaptiveness to changes in the NFV infrastruc-
ture, and eliminates of the need to carry out resets on existing
NFV instances during the load balancing procedure.

ETSI has introduced the NFV (Network Function Virtu-
alisation) architectural framework [2] shown in Fig.1. This
framework allows virtual network functions to run on com-
modity IT hardware and networks. VNFs can be spun up and
down by the orchestrator on demand as network conditions
vary. The introduction of NFV facilitates load balancing in
network management applications because the Orchestrator
is a single point of contact for determining when nodes
deployed as VNFs appear and disappear or when the resources
allocated to such nodes change. A load balancing function in a
network management application can use the Os-Ma interface
to determine whether it should load balance its deployment to
adjust to the changed network configuration.

III. THE ALGORITHM

This section introduces a general method that allows dy-
namic load balancing of a distributed management application.

Fig. 1. The ETSI NFV Reference Architectural Framework [2]

Fig. 2. Distributed Management Application Managing NFVs

The management application runs as a cluster of applica-
tion instances as shown in Fig.2. The management load is
distributed across the application instances. The management
application uses the NBI (NorthBound Interfaces) of the VNFs
for functional communication with virtualised network ele-
ments. Operations such as alarm reception or event collection
are executed over the NBI, just as they are towards bespoke
nodes. The management application uses the Os-Ma interface
to communicate with the NFV orchestrator. The orchestrator
informs the management application when it adds or removes

TABLE II
CLUSTER AND INSTANCE INFORMATION

Cluster Information
State Parameters (PC)

5% imbalance
running deactivate at 40%

activate at 80%

Instance Information
ID State Parameters (PI) Metrics (MI)
1 running 24GB NE1:100/s,NE2:35/s
2 suspended 16GB NE3:0/s,NE4:0/s
...
3 running 32GB NEx:72/s,NEy:68/s

Fig. 3. Cluster State and instance State

virtualised network elements or when it amends the resource
allocation to virtualised nodes.

Each running instance of a management application is a
member of a distributed application cluster and, in a cluster, all
management application instances are peers. The overall state
of the application is represented by the overall cluster state,
and any common parameters required to trigger load balancing
are held as cluster parameters, see Table II. Cluster parameters
may include the level of imbalance in the load being borne
by instances that may be tolerated before a rebalancing is
triggered, the level of load below which instances may be
deactivated, or the level of load above which instances may be
activated. Each management instance in the cluster also shares
its own state, parameters and application metrics with all
other instances of the cluster. A record for each management
instance is held as shared information, visible to all instances.
Examples of instance parameters and metrics are the memory
available on an instance and the data rate on the connection
between a management instance and its VNFs respectively.

A. State Management

A single cluster instance is nominated Cluster Master and
assumes the role of monitoring and updating the cluster state.
All other cluster instances follow the cluster state as shown
in Fig.3. Periodically, the Cluster Master determines whether
load balancing should be activated and, if so, it carries out the
series of state transitions in cluster state required to execute
the load balancing operation using the procedure shown in

Fig.4. Each instance periodically checks if the cluster state has
changed and, if so, begins transition to the observed cluster
state using the procedure shown in Fig.5. In a new transition,
each application instance executes the actions required to
change to that new state. In this way, cluster instances follow
the state changes of the cluster, allowing the state of all
cluster instances to be led through the state transitions of
the load balancing operation in a decentralised way. Each
cluster instance manages its state asynchronously; monitoring
the cluster state without any reference to or synchronisation
with other instances. As long as the cluster state does not
change, cluster instances need not carry out any actions.

The manner in which cluster state influences instance state is
shown in Fig.3. The cluster state leads the state of all instances;
it is set as the desired next state of all cluster instances.

Consider a set of cluster states S where
{s1, s2, ...sx, sy,sn} ∈ S. If the cluster state transitions
from s2 → sn, all instances in the cluster will also transition
from s2 → sn, executing whatever particular operations are
necessary to execute that transition. In normal operation, the
cluster state will not transition from sx → sy until all cluster

Fig. 4. Cluster State Management

Fig. 5. Cluster instance State Management

Fig. 6. Load Balancing State Transitions

instances have the initial state sx. Therefore, if a cluster state
transition occurs from s1 → s2 and onto sn, the cluster state
will not transition to state sn until all cluster instances have
reached state s2. In abnormal cases such as resetting to clear
errors, the cluster state may transition to an initial state s1,
forcing all cluster instances to also reset.

The Cluster Master rules used to trigger load balancing may
include virtualised node addition, modification, or removal
notified over the NFV Os-Ma interface, addition or removal
of application cluster instances by the OSS distribution mech-
anism, or an imbalance in the load being borne by cluster
instances as reported by cluster instances in their metrics.

The Cluster Master may be selected in any manner that
uniquely identifies it among its peer instances; such as by
being the oldest instance of the cluster or selecting the cluster
instance with the lowest unique identity. If this instance is
shut down, another instance takes up the role of monitoring
and updating the cluster state on its next periodic run.

B. Load Balancing State Transitions
The state transitions of a load balancing operation are shown

in Fig.6. When the Cluster Manager decides to initiate load
balancing, it sets the cluster state to Suspended (Transition
1) and waits for all instances to reach that state. Each in-
stance observes the new cluster state and transitions to state
Suspended. Typically, during this transition, an instance would
then gracefully complete its ongoing management operations
towards VNFs and close connections over the NBI interface
to VNFs in an orderly manner.

When all cluster instances have reached state Suspended, the
Cluster Manager sets the cluster state to Balanced (Transition
2). All cluster instances independently execute an identi-
cal asynchronous load balancing function, redistributing the
management load across the instances. Cluster instances can
execute the asynchronous function independently to determine
what their load should be because the cluster state and metrics
of all active instances is shared and available to all cluster
instances.

When all cluster instances have reached state Balanced, it
sets the cluster state to Running (Transition 3) and waits for all
instances to reach that state. Each instance transitions to state
Running. Typically, an instance would open connections over
the NBI interface to VNFs and initiate management operations
during this transition.

C. Asynchronous Load Balancing Function
The load balancing function to distribute VNF instances to

a single management application instance must operate asyn-

Fig. 7. Operation of the Algorithm in a Cluster with Six Instances

chronously and independent of other management application
instances or their state.

Given V , a set of n VNF instances (|V | = n;Vi ∈ V) to
be partitioned among a set management instances M of size
m (|M | = m;Mj ∈ M), function f(j, . . .) must derive a
subset of V for processing by Mj . L is a set of subsets of V :
(|L| = m;Lx ∈ L;Ly ∈ L;Lx ⊂ V ;Ly ⊂ V ;Lx 6= Ly 6=
∅;Lx ∩ Ly = ∅; {L0 ∪ · · · ∪ Lx ∪ · · · ∪ Lm} = V ;Lx :=
f(x, V, PC, PIx,MIx)).

Therefore, given function f(. . .), the subset of VNFs Lj to
be processed by management application cluster instance Mj ,
can be derived asynchronously and independently.

IV. OPERATIONAL SCENARIO

A typical operational scenario of the approach is shown
in Fig.7. Here a management application is executing, and
is using six autonomous instances, M1 to M6 to process the
management load.

At time t0, the cluster and all instances have state stopped.
The application starts at time t1.

The Cluster Master sets the cluster state to running at time
t1 (see Fig.4). The periodic operations of instances M1 to M6

read the cluster state change and trigger execution of their
operations to transition from state stopped to state running
(Fig.5). In this example, the load balancing function (See
§III-C) is executed in each instance, which allocates a subset
of the managed network elements to each instance. Following
execution of the load balancing function, each instance estab-
lishes management sessions towards their allocated network
elements and begins execution of management tasks towards
those network elements and sets its state to running. By time
t2, all instances have state running.

From time t2 to time t3, the application executes as normal;
no load balancing is performed. At time t3, the Cluster Master
detects that new network elements have been added to the
network and sets the cluster state to suspended. The periodic
operations of instances M1 to M6 read the cluster state

change and trigger execution of their operations to transition
from state running to state suspended. Each instance orders
completion of management tasks and suspends initiation of
any new tasks. Once all tasks have stopped, each instance sets
its state to suspended. By time t4, all instances have state
suspended.

The Cluster Master again sets the cluster state to running
at time t5. The periodic operations of instances M1 to M6

once again read the cluster state change and trigger execution
of their operations to transition from state suspended to
state running. Load balancing is again executed and sessions
towards network elements are established again. By time t6,
all instances have state running.

From time t6 to time t7, the application executes as normal;
no load balancing is performed. At time t7, The Cluster Master
detects that the cluster load is unbalanced, and sets the cluster
state to suspended. The periodic operations of instances M1

to M6 runs the operations described above to transition to state
suspended. By time t8, all instances have state suspended.

The Cluster Master again sets the cluster state to running
at time t9; by time t10, all instances have again transitioned
to state running.

V. INDICATIVE PERFORMANCE

The time to initiate or terminate a VNF is likely to be of
the order of minutes. Any load balancing algorithm should
execute in the order of tens of seconds so as not to significantly
increase the time taken for a NFV to come into service.

We carried out measurements of the duration of load bal-
ancing operations in our lab to ensure that the performance
of the algorithm is adequate for use in a NFV deployment
and did not significantly add to the duration of a NFV start.
We triggered load balancing by introducing groups of network
elements and observed the time taken for the application itself
and all instances to transition from state running back to state
running (see Fig.6). We executed 10 runs for each network
element group size, giving a total of 100 experimental runs.

For these measurements, we deployed 30 instances of the
event loading application in 10 JVMs with each JVM running
three instances of the application. We ran all the JVMs on a
HP DL 380 G8 server with 32 CPUs and 250 GB of memory
running Red Hat Enterprise Linux 6.3. Each instance collected
event files using secure copy (scp) from simulated WCDMA
and LTE network elements.

The measurement results shown with box plots in Fig.8
show that all load balancing operations execute in less than 80
seconds, the average load time was 41 seconds. The red line in
Fig.8 fits the load balancing time median values as the number
of network elements increase, and shows a slowly increasing
trend from just over 30 seconds at 1000 NEs to 50 seconds at
10,000 NEs, a desirable characteristic for such an algorithm.

The large spread in load balancing times are caused by
the implementation of the algorithm in the application. As
explained in §III-B, when load balancing commences, each
instance completes its ongoing operations. In measurement
runs where large load balancing times are observed, the

Fig. 8. Load Balancing Times: State running to State running

application instance was executing a batch of file copies from
network elements, resulting in a longer time to transition
from state running to state suspended. However, this clearly
shows that ongoing operations gracefully complete without
data loss and all connections were gracefully terminated.
Fairer measurements of the algorithm’s performance would
measure the time taken to transition from state suspended to
state balanced as such measurements eliminate the application
specific aspects of load balancing.

VI. IMPLEMENTATION AND DEPLOYMENT

A proof of concept implementation of the algorithm has
been developed and verified as an extension to the event
processing module of the Ericsson Network IQ ENIQ) Events
system [10]. The algorithm is used to balance the event
collection load from nodes in mobile telecommunications
networks, replacing the statically provisioned collection de-
ployment described in [11].

The algorithm implementation has been deployed in two
customer networks, one in the Americas and another in East
Asia; Fig.9 shows a typical such deployment. Each instance
periodically collects files containing events using secure copy
(scp) from WCDMA and LTE network elements and a mod()
function is used as the load balancing function (see §III-C).
In both networks, prior to deployment of the algorithm,
redistribution of the load across application instances required
a restart of the collection system, which was performed
in the maintenance window. Deployment of the algorithm
allowed balancing of the file collection load across instances
automatically; the need for system restarts was removed.

VII. SUMMARY

The algorithm presented here solves the key problem of
state aware load balancing of application instances controlling
network elements running as or in VNFs. The algorithm is
scalable in the management system and in NFV virtualisation
because it runs across an arbitrary number of application
instances and can load balance across any number of VNFs

Fig. 9. Typical Deployment

deployed using NFV. Rules that specify the application load
conditions that trigger the algorithm can be modified at run
time. An asynchronous load balancing function executes inde-
pendently in each application instance to balance the load. This
allows the algorithm to balance the current application load
fairly across all application instances and to allow application
instances to spin up or spin down as application load increases
and decreases.

REFERENCES

[1] S. Landstrom, A. Furuskar, K. Johansson, L. Falconetti, and F. Kronest-
edt, “Heterogeneous Networks – Increasing Cellular Capacity,” Ericsson
Review, no. 2, pp. 34–38, 2011.

[2] ETSI, “Network Functions Virtualisation (NFV); Architectural Frame-
work,” ETSI, Tech. Rep. NFV 002, October 2013.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010.

[4] J. A. Wickboldt, L. Z. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “Rethinking Cloud Platforms: Network-aware Flexible Re-
source Allocation in IaaS Clouds,” in Integrated Network Management
(IM), 2013 IFIP/IEEE International Symposium on, May 2013.

[5] B. B. Nandi, A. Banerjee, S. C. Ghosh, and N. Banerjee, “Dynamic
SLA Based Elastic Cloud Service Management: A SaaS Perspective,”
in Integrated Network Management (IM), 2013 IFIP/IEEE International
Symposium on, May 2013.

[6] L. Richardson and S. Ruby, RESTful Web Services, 1st ed. O’Reilly
Media, Inc., 2007.

[7] IETF, “An Architecture for Describing Simple Network Management
Protocol (SNMP) Management Frameworks,” RFC 3411, IETF, Tech.
Rep. RFC 3411, Dec. 2002.

[8] ——, “NETCONF Configuration Protocol,” RFC 4741 (Proposed Stan-
dard), IETF, Tech. Rep. RFC 4741, Dec. 2006.

[9] P. Gustas, P. Magnusson, J. Oom, and N. Storm, “Real-time Performance
Monitoring and Optimization of Cellular Systems,” Ericsson Review,
no. 1, pp. 4–13, January 2002.

[10] Ericsson, Ericsson Network IQ Events, Ericsson, 2014.
[11] S. Achuthan and J. O’Meara, “A System for Monitoring Mobile Net-

works using Performance Management Events,” in Integrated Network
Management, 2013. IM ’13. IFIP/IEEE International Symposium on.
IM 2013, May 2013.

