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Abstract—The expected huge increase in the number of IoT
data sources (sensors, embedded systems, personal devices etc.)
will give rise to network-edge computing, i.e., data pre-processing,
local storage, and filtering close to the data sources. Specifically,
data reduction at the network edge (e.g., on an IoT gateway device
or a mini-server deployed locally at an IoT area network) can
prevent I/O bottlenecks, as well as dramatically reduce storage,
bandwidth, and energy costs. However, current solutions face
two main obstacles towards achieving this benefits of network-
edge computing. Firstly, the most efficient algorithms for data
reduction of time series (which is one of the prevailing kinds
of data in IoT) are developed to work a posteriori upon big
datasets and they cannot take decisions per incoming data item.
Secondly, the state of the art lacks systems that can apply any of
many different possible data reduction methods without adding
significant delays or heavyweight re-configurations. This paper
presents a solution that automates the switching between different
data handling algorithms at the network edge, including an
analysis of adjusted data reduction methods, as well as three
flavors of a new algorithm that is capable of performing real-time
reduction of incoming time series items based on the concept
of Perceptually Important Points. The potential benefits are
evaluated upon real datasets from street, household, and robot
sensors, showing that our solution achieves accuracies between
76,1 % and 93,8 % despite forwarding only 1/3 of the data items,
without adding significant forwarding delays.

I. INTRODUCTION

Wireless and mobile devices are amongst the main enablers
of what is currently being described as the Internet-of-Things
(IoT). Among others, IoT is supposed to integrate all data
sources that have a tight relationship to natural objects or
people (e.g., measuring or monitoring them) and provide
homogenous and enhanced access to them. Metering sensors
(such as smart meters or medical devices), multimedia sensors
(such as cameras), machines (of industrial systems or home
equipment), mobile phones, cars, planes, people with attached
devices, robots with their sonars and thousands other data
sources, everything could attempt to forward huge amounts
of data points continuously and in real time, so that all kinds
of IoT-based applications (public safely, smart transport, e-
health, industrial optimization, and more) can be built on top
of them. A very high-level view of a typical architecture with
which IoT can function is shown in Figure 1. This high-
level view is in agreement with reference architectures of
related standardization activities (e.g., [4]), but also embraced
by industrial research and products [3], [9]. In this scheme, a
network-edge device (e.g., a gateway or edge router) collects
the data from end devices (usually embedded systems and
sensors), and propagates it through the network core to the
backend system (usually Cloud databases).

Fig. 1. Illustration of data reduction and its four main benefits upon a high-
level view of a typical broadband-based IoT architecture

However, with IoT growing to support billions of devices
[7], which might also send lots of unnecessary data items that
remain unused, it is already becoming clear that network-
edge computing (also referred to as “fog computing” [3],
e.g., by Cisco) is necessary, mainly in order to handle and
reduce data directly at the network edge. Data reduction at the
network edge can relieve four potential bottlenecks of an IoT
system. As shown in Figure 1, these are (1) network bandwidth
(especially if big data sizes are involved, e.g, with multimedia
sensors), (2) network energy consumption (especially if there
are many routers dedicated to or heavily loaded by IoT traffic),
(3) I/O throughput (especially when big numbers of data items
from various sources are reported in short intervals), and (4)
Cloud storage and traffic costs (especially if pay-per-volume
or pay-per-connection schemes apply). For example, an IoT
system that forwards 1 PB per month (ca. 35 TB per day) to
the Google Cloud would probably get a bill of ca. $ 2.6M
per year (computed based on [8], assuming that only “1 year
history” is stored there). These numbers are very realistic even
for moderately big systems, provided that a single IP camera
can forward 2-50 GB per day, while a single building controller
can report Gigabytes of data daily (validated by our test IoT
installation in a football stadium [10]), not to mention extreme
cases like the 10 TB produced every half an hour by the sensors
of a jet.
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As Figure 1 also shows, data in the form of time series
(which are the kind of IoT data that typically causes the
aforementioned problems, and thus are the focus of this
paper), can be reduced with various approaches, e.g., sam-
pling, selective filtering, or compression. However, the most
sophisticated and successful approaches for reducing this kind
of data are designed for “a posteriori” data reduction, i.e.,
once a complete data set is in a database. Such approaches
cannot function upon streams, i.e., they cannot take “filter or
forward”-decisions per incoming data item. Further, even with
many data reduction techniques being known, current systems
still require a big effort from a network-edge developer in order
to apply, evaluate, and customize them for concrete IoT data
sources.

Thus, this paper presents a solution which includes new
stream-capable equivalents of sophisticated data reduction al-
gorithms, along with mechanisms for easily instantiating, com-
bining, and comparing them with various other data handlers
on IoT network-edge devices. Section II explores the state-
of-the-art, Section III presents details of our solution, while
Section IV evaluates the accuracy and the delay of our solution
upon three data sets from real sensor deployments, showing
that our solution achieves accuracies between 76,1 % and 93,8
% despite forwarding only 1/3 of the data items, and thus
without adding significant forwarding delays (compared to the
standard delay of sending and writing the data into the Cloud
databases, which is anyway part of the communication).

II. RELATED WORK

There are two main categories of approaches that can be
used for (IoT) data reduction at the network edge (although
to-date they are usually applied in different parts of the
architecture): i) time series compression approaches and ii)
event- or policy-based engines.

General time series compression and aggregation tech-
niques intend to reduce time series data by applying techniques
that are based on sampling, summarization, approximation, or
similar. For example, [15] is based on piecewise approximation
(i.e., replacement of every n points with their arithmetic mean),
while [5] and [11] are based on selecting only the “Perceptually
Important Points” (PIP) of the time series (measuring impor-
tance based on the distance from other PIPs and on local min-
ima and maxima, respectively). However, such solutions are
not designed to act upon streams, i.e., per incoming data item,
but rather on already collected data sets (“a posteriori”). This
will be better understood in the next sections. Further, they
are not complemented by data quality control mechanisms,
thus they are often avoided because of the information loss
that selective forwarding or data filtering inherently implies.
Finally, to the best of our knowledge, they have not been
sufficiently applied or evaluated upon modern types of IoT
time series, e.g., sensor data from traffic sensors, smart meters,
industrial automation, or even smartphones.

Data handling solutions that use event- or policy-based
engines have often (implicitly) a similar final goal as the
above, namely data reduction, though they usually rely on
domain-specific rules rather than on time series characteristics.
For example, [13] describes how to use IMS (IP Multimedia
Subsystems) policies in order to perform -among others- a
kind of data aggregation on network-edge (gateway) devices

in Machine-to-Machine (M2M) systems. Also Krikkit [6], an
open-source solution initiated by Cisco, is in the process
of specifying a data format and a mechanism for “telling
the network-edge devices” which data to forward and how.
However, these approaches stop at designing policy engines
and policy languages for data reduction, without developing
or providing actual data reduction techniques. Thus, they
practically require from the network edge developer to imple-
ment the data reduction logic from scratch. A recent solution,
called FlexAnalytics [17], took a step further by providing
flexible placement of analytics for data reduction between
the network edge and the backend system. It also includes
experiments showing how different data reduction techniques
(mainly compression and visualization-based data reduction)
perform when applied at the network edge. However, it does
not enable new data reduction techniques (or ease existing
ones, when they are applied at the network-edge).

III. NECTAR AGENT: A SOLUTION FOR REAL-TIME
PER-ITEM DATA REDUCTION

A. Core innovations
There are two main ideas that differentiate this solution

from the state-of-the-art:

• The idea to “stream-ify” data reduction techniques
that are otherwise not used in real-time scenarios, but
rather on complete data sets.

• The idea to enable “single-click” instantiation of data
handlers which are runnable at the network-edge and
supported by performance indicators, namely indica-
tors of the impact of the data reduction they perform.

However, the solution includes various other differentiating
features, e.g.:

• A combination of local (network-edge) caching with
remote storage (driven by the IoT scenario that mini
data centers can be used close to the data sources).

• A gateway-side library of data reduction handlers
(driven by the fact that different IoT data sources
require different data reduction techniques).

• Various techniques for avoiding delays in pre-
processing and forwarding data items (driven by the
principle of real-time identification of important data
items).

All of the above are explained in the following subsections,
while the “streamified” algorithms and the pre-processing
delays are also evaluated separately in Section IV.

B. Method of operation
The middleware of the NECtar agent is normally deployed

on a network-edge IoT device (e.g., a gateway) close to the
monitored data sources. The middleware provides an API
to the gateway applications that collect this data. Although
the rest of the paper focuses on time series, the NECtar
agent and its data handler switching mechanisms can be used
simultaneously for many data sources of different types, e.g.,
multimedia or semantically-enriched data. With the help of the
mentioned API, the gateway applications can instantiate and
customize different kinds of data handlers for the data source
that they are monitoring, customize the data pre-processing,



Fig. 2. Overview of the architecture and the operation method of the NECtar agent

and compute information about the reconstructability of the
data that is being forwarded.

Figure 2 illustrates how the overall solution operates, pro-
viding also some examples of simple instantiated data handlers.
It depicts, for example, how certain instances of “sampling”,
“important points”, or “selective forwarding” handlers would
reduce a given sample of a time series. The data reduction
algorithms that are enforced by the handlers, as well as our
respective contributions, are discussed in the two following
subsections. However, independently of the logic of the data
handlers, the given compilation of modules and the chain of
actions that takes place upon the instantiation of a data handler
enables a gateway application to enforce a data reduction logic
in a single line of code.

Further, Figure 2 shows also that for every instantiated data
handler, a respective entry is added to a Reconstructability Ta-
ble, i.e., a table which stores information about how accurately
the original time series can be reconstructed based on the items
forwarded by the given handler. Support for reconstructability
information is part of the framework. However, the details
about the definition, the computation, and the way of using
reconstructability information in order to select appropriate
handlers are hot research topics but out of scope for this
paper. Figure 2 depicts also the time series cache, which
has multiple functions, namely it is used for (i) potential
late retrieval of any data items that were not forwarded, (ii)
keeping the history which is required by sophisticated data

reduction algorithms, (iii) computing reconstructability degrees
based on cache samples. Finally, Figure 2 includes some
configurations and policies, which are used for customizing
the instantiated data handlers, providing additional forwarding
rules, communicating requirements about the reconstructability
degree of the forwarded data, and more.

C. Developed or adapted data reduction algorithms

As explained in the previous subsection, the target is to
equip the NECtar agent with different handlers that perform
data reduction techniques which can be useful in the Internet of
Things. Although most of these handlers are based on existing
approaches about time series reduction and compression tech-
niques, the NECtar agent faces three additional requirements
for its handlers:

• Being applicable in real-time and per item.

• Not delaying the data item forwarding.

• Performing well for important Internet-of-Things sce-
narios, e.g., safety monitoring, industrial automation.

Therefore, both the adjustment of existing data reduction
algorithms and the development of new ones come into play.
The latter is especially interesting in the case of domain-
specific rule-based selective forwarding algorithms.

However, even without going deep into the specifics of
concrete domains and applications, algorithmic work is needed



TABLE I. NECTAR DATA HANDLERS

Name of Handler Variations Summary Sources and new elements

Sampling
Handler

Rate = 1:2 This handler performs regular sampling
without looking into the data, e.g., for rate
1:2 it forwards every second data item that
it receives.

Sampling is very simple and it has been analyzed in numerous works, e.g., [1].
The only thing that needs to be taken care of when applying sampling to a
time series stream is the consistent keeping of state (in order to know when its
forwarding time), as well as the decision if sampling should be also based on
timestamps or simply on the data item sequence.

...

Rate = M:N

Piecewise
Approximation
Handler

Window size = 2 This handler forwards an average value for
every N values (depending on the used
window size), potentially taking variation
into account.

This technique is also quite simple and its state-of-the-art form is described in
[15]. Its version for IoT data streams should just take care to update the average
iteratively upon every incoming item in order to avoid delays when window
sizes are too big. Further, it needs to carefully exclude non-numeric values from
the process (and maybe forward).

...

Window size = N

Selective
Forwarding
Handler

GEQ Forwards values greater than a threshold. Selective forwarding is also an obvious technique but it is included here because
its operators and their combinations can be used to implement more sophisticated
domain-specific rule- or event-based forwarding techniques which are of interest
for IoT applications. [16] gives a good example of how selective forwarding
could work in the logistics domain.

LEQ Forwards values lower than a threshold.

IN Forwards values in specific ranges.

LIST Forwards values from a concrete list.

ALL Forwards everything.

Important
Points
Handler

Based on distance These algorithms forward so-called Per-
ceptually Important Points. For general-
purpose solutions, importance is judged
based on one of various possible statis-
tical criteria (time series minima-maxima
etc.), though the combination of these crite-
ria with domain- or application-specifically
important points is also very promising for
future IoT data handlers.

This is the most characteristic class of algorithms that normally works upon
entire time series and requires new solutions when it comes to data streams. For
example, [5] orders the data items iteratively in order of importance based on
their distance to previously selected (important) items. This cannot be applied
as such for an incoming item of a stream, firstly because an incoming item is
always the last point of a series and would always be selected as most important,
and secondly because it might be a bad idea to perform the process for the
entire series for every item. [11] and [14] judge importance based on local
minima/maxima and on a lattice (layers of important points), respectively. For
streams, they face similar issues like [5]. Therefore, new data handlers have been
developed for the NECtar agent, based on similar concepts. The next subsection
provides details.

Based on local extremes

Based on a lattice

Change
Detection
Handler

Lossless Forwards every data item that is different
from the previous one in the series.

The threshold-based version of this handler can become complicated when the
change is measured with complex metrics, e.g., for images or other binary data,
if one of the possibilities described in [12] is used. However, implementing these
solutions for streams does not involve any particular new challenges until new,
IoT-specific metrics are investigated.

Threshold-based Forwards items for which the difference
from the previous one in the series exceeds
a threshold.

also for general-purpose handlers. Thus, Table I describes
the handlers that have been developed in the NECtar agent,
summarizing which of their respective data reduction algo-
rithms include novel elements. For most algorithms, the trick
lies in making them capable of handling data streams (i.e.,
real-time time series). From now on, this is referred to as
“streamification” of the algorithms. Next subsection explains
streamification in more detail by focusing on variations of the
“Important Points Handler”.

D. “Streamification” of data reduction algorithms

This subsection explains the idea of streamification by
focusing on the algorithm used by the distance-based variant
of the Important Points Handler.

The concept of measuring importance based on the distance
to already selected Perceptually Important Points (PIP) stems
from related approaches, e.g., [5]. Therefore, the following
description focuses more on the parts that have been conceived
for the efficient handling of the “per-item”, “real-time” aspect
of the solution, namely the “cache projection” and “cache
reduction” methods. At the same time, the presented algorithm

helps to understand better a core idea of the NECtar agent,
namely the idea of having a uniform handleData() interface
method which must be implemented by every data handler.
With that, switching between different data handling solutions
for an incoming stream can be achieved “with a single click”,
because it is possible to have a watcher in the NECtar agent,
which sees a “change request” in a policy file and the only
thing it has to do is replace the current handler object with
an object that a different implementation of the handleData()
method.

The data handling logic of the “Important Points Handler”
is shown as pseudocode in Algorithm 1. Note that this is
the method which is called for every incoming item of the
data series as soon as this item is retrieved by the gateway
application. First, the information about the new data item is
gathered in order to create a storable data item. This item is
unconditionally stored into the cache like every other incoming
item. Then, a copy of the cache is made1 and it is “projected”

1This copy can, of course, be maintained, in order to avoid creating it
from scratch at each invocation of the handleData method. However, this
optimization is hidden from the pseudocode for the sake of simplicity.



to the future with one of three possible strategies:

• by appending a copy of the current item (CLONE),
• by appending a duplicate of the entire cache (TWIN),
• by appending an item with an average value (AVG).

These strategies correspond with different notions of the im-
portance of the future and the past (e.g., the CLONE strategy
does not assume that patterns will repeat or does not care much
if they will) and can lead to different results (as will be shown
in the evaluation). As soon as this cache projection is in place,
the items of the projected cache are sorted in descending order
of importance according to a PIP ordering process, and the
position of the current item in the sorted list determines if it
will be forwarded or not. The following steps take place in the
following order:

• The first and the last item of the projection are selected
as the first two PIPs.

• The line that connects them is drawn and the item
with the biggest distance to this line will be the third
PIP.

• The item with the biggest distance to the line that
connects its two adjacent PIPs will be the fourth PIP
and so on.

• If the current item is in the top X% of the sorted
PIPs list, then it is forwarded to the backend. X
is a configurable parameter of the Important Points
Handler.

However, such computations (for identifying important
points) are traditionally performed only once, i.e., upon a
complete data set. It can be very resource intensive to perform
them for each incoming item. This is handled by maintaining
the size of the cache at a level that does not cause significant
delays in the pre-processing and forwarding of items (last
lines of the pseudocode). It is challenging to find a cache
size that can give good results and avoid delays at the same
time. Therefore, the cache reduction is performed in order to
reduce the number of points analyzed in each step in a way
that does not harm the quality of the analysis but makes the
delay insignificant compared to the transmission delay. Our
evaluation will give some further insights into this aspect.
Finally, note that this cache reduction does not actually mean
deleting items from the cache of the network edge device, but
simply reducing the size of the cache that is considered by the
data handling method (i.e., kept in the “cache” variable of the
pseudocode).

Algorithm 1. Pseudocode of the algorithm of the handleData method of the
distance-based Important Points Handler

DEFINITIONS

tsName: The time series name, provided before calling handleData
cache: The cache, initialized upon instantiation of the data handler
projStrategy The cache projection strategy (CLONE, TWIN, or AVG)
threshold: Configuration parameter (between 0.0 and 1.0),

which implicitly enforces the filtering ratio
-------------------------------------------------------------
// Inputs: value (a value of the time series that has just been received)
// timestamp (the timestamp for this value, captured by the GW application)
// Output: - (none)

currentItem.name = tsName;
currentItem.value = value;
currentItem.timestamp = timestamp;

cache.add(currItem);

// Create cache projection (NOTE: Maintaining a copy of the cache can be optimized.
This is skipped here for easier understanding)

for each cacheItem in cache) {
cacheProjection.add(cacheItem);

sum = sum + cacheItem.getValue;
}
currItemCopy = currItem;
if (projStrategy == CLONE) {

cacheProjection.add(currItemCopy);
} else if (projStrategy == TWIN) {

for (i = 1 : cache.size) {
cacheProjection.add(cache[i]);

}
} else if (projStrategy == AVG) {

currItemCopy.setValue(sum/cache.size);
cacheProjection.add(currItemCopy);

}

order = [] // list that will store the indices of the cached items in descending
order of item importance

// Now the first and the last item of cacheProjection can be included as PIPs
order.add(0);
order.add(cacheProjection.size-1);

// iterate as many times as the (rest of the) items that need to be ordered
for (int j=1; j<cacheProjection.size-1; j++) {

selection = j; // the item currently selected to become the next PIP
// iterate over all items (ignoring the already selected ones) in order to find

the one with the maximum distance to its adjacent PIPs
for (int i=1; i<cacheProjection.size-1; i++) {

if (order.contains(i)) continue; // item has already been selected as a PIP
previously. Ignore it.

tmpItem = cacheProjection[i];
// get the line to which the distance of the currently examined item should be

measured, i.e., the line that connects the two closest PIPs between
which the currently examined item is located

currItemRelevantLine = getLineOfAdjacentPIPs(tmpItem); // details of this
subroutine are omitted, functionality is obvious

distance = currItemRelevantLine.getDistance(tmpItem); // details of this
subroutine are omitted, functionality is obvious

if (distance > maxDistance) {
maxDistance = distance;
selection = i;

}
}
// add the item with the maximum distance to its adjacent PIPs to the already

selected ones, thus making it the next PIP
order.add(selection);

}

currItemNormalizedImportance = 1.0 - itemPositionInOrder/order.size;

if (currItemNormalizedImportance > threshold) {
sendToCloud(currItem);

}

if (cache.size == cache.maxSize) {
cache.remove(0);

}

return;

IV. EVALUATION

A. Scope and setup

This evaluation focuses on two main aspects, which are
related to core features that differentiate the NECtar agent from
the state of the art.

• Firstly, it is investigated to which extent the NEC-
tar agent mechanisms achieve to eliminate the data
forwarding delays caused by the extra pre-processing
involved in “streamified’ data reduction algorithms.

• Secondly, it is investigated how well our “streamified”
data reduction algorithms perform in terms of accu-
racy of the forwarded data compared to the respective
“a posteriori” solution, i.e., the one that performs the
reduction upon the complete data set (note: “accuracy”
will be defined in the following).

Evaluated approaches: Stream-capable solutions of the
Important Points Handler of NECtar agent, namely NECtar-
IPH-Clone, NECtar-IPH-Twin, and NECtar-IPH-Avg2, are
compared with PIP-post (the “a posteriori” version of the
important points-based solution, described in [5]).

Metrics: Firstly, the delay (in milliseconds) caused by the
pre-processing at the network edge is measured and presented

2Corresponding with the three strategies of the Important Points Handler
described in the previous section



for the different approaches. This delay must be evaluated in
terms of its significance compared to the network and server-
side delays for forwarding the data items to the Cloud. These
delays (i.e., the time needed for sending a data item to a server,
storing it into a database, and confirming the action) would
be common for all approaches and they are usually in the
order of a few hundreds of milliseconds (for Internet-based
connections). Then, the achieved data reduction (in number
of items and as percentage of the incoming items) has been
regulated to be similar for all approaches (although PIP-post
performs the reduction at the backend), so that we could focus
on comparing the accuracies of the algorithms. Accuracy is
defined as the similarity of the forwarded data set to the
original time series, after interpolation has been applied on
the forwarded data set in order to reconstruct a set that has the
dimension of the original one. More concretely:

If TSo = [(to1 , vo1), (to2 , vo2), ..., (ton , von)] is the original
time series and TSf = [(tf1 , vf1), (tf2 , vf2), ..., (tfm , vfm)]
is the forwarded time series (m < n, TSf ∈
TSo), then the reconstructed time series is TSr =
[(to1 , vr1), (to2 , vr2), ..., (ton , vrn)], for which:

(tox , vrx) =


(tox , vox), if tox ∈ [tf1 , tf2 , ..., tfm ]

(tox , v
′
ox),

otherwise, where v′ox is given by:
(tox , v

′
ox) is on the line that con-

nects its two adjacent items

Then, accuracy a is defined based on the Jaccard coefficient
as:

a =

∑n
i=1 min(voi , vri)∑n
i=1 max(voi , vri)

∗ 100%

Datasets: The used datasets are publicly available real
periodic measurements of three different kinds of IoT data
sources. Time Series 1 (TS1) stems from a highway ramp
loop sensor that measures the number of cars passing3, Time
Series 2 (TS2) stems from a home-installed smart meter that
measures power, and Time Series 3 (TS3) stems from the sonar
of a robot. All of the above are available through [2].

Environment and measurement details: Data reduction
and accuracy depend only on the data sets and therefore no
repetitions of the experiments are needed. Delay measure-
ments have been repeated 1000 times and only averages are
presented. The variations were insignificant and are omitted
for the sake of simplicity, but also because the delays are
not strictly compared to each other, but rather evaluated in
terms of their relative significance when added upon the
standard (network- and server-side) delay. Provided that the
evaluated algorithms are designed for running at the network
edge (i.e., on IoT gateways, edge routers, or mini-servers
that are deployed to control an IoT area, e.g., a factory or a
street), the experiments were run on a Virtual Machine (VM)
which simulated the capabilities of a lightweight Gateway (700
MHz CPU / 512 MB RAM, e.g., Raspberry Pi), a modern
residential or M2M Gateway (1.5 GHz CPU / 1.5 GB RAM),
and a commodity PC (2.6 GHz CPU / 8 GB RAM). The
simulation was done by using the CPU execution cap and the

3These loop sensor measurements were obtained from the Freeway Perfor-
mance Measurement System (PeMS, http://pems.dot.ca.gov/)

RAM regulation features of the Virtual Box VM execution
environment.

B. Results and discussion
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Fig. 3. Additional delays caused by the pre-processing of the Important
Points handlers of the NECtar agent

The additional delays caused by the pre-processing at the
network edge (before the forwarding or filtering) are shown
in Figure 3 for various sizes of the (reduced) cache, i.e., by
varying the amount of (previous) items that are considered in
the data analytics process of computing the important points.
Note that, even if optimizations for this specific algorithm are
possible, the results are indicative for any algorithm that has
a similar complexity such as this one, i.e., a complexity that
rises sub-exponentially with the number of items considered
in the analytics (no matter if these analytics are for finding
important points or for doing anything that involves sorting,
comparing etc.).

What we actually want to learn from the measurements of
Figure 3 is:

• If we can use cache reduction to make the pre-
processing delay small enough compared to the stan-
dard end-to-end delay of sending the item to the back-
end, without getting down to too big cache reductions,
i.e., reductions that severely affect the quality of the
algorithm.

• Up to what cache sizes we can go on different kinds
of edge devices (light GW, standard GW, commodity
PC) without adding big delays.

The results for cache sizes up to 400-500 items are very
encouraging for standard GWs and commodity PCs, while they
can be acceptable even for lightweight GWs if the applications
have no strict real-time (or “freshness”) requirements. To give
some examples, the additional average delays for a cache size
of 100 items are 1.8 ms (for commodity PC), 4.6 ms (for a
standard GW), and 37.5 ms (for a light GW), which are nor-
mally insignificant compared to the hundreds of milliseconds
which will be needed anyway until the backend receives and
stores an item that shall be provided to applications. With a
cache size of 500, the measured times rise up to 83.2 ms,
176.3 ms, and 829.5 ms, respectively for PCs, GWs, and light
GWs. These delays can be significant for applications with
strict time requirements, showing that cache reduction can be



very useful in practical situations. It remains to be analyzed if
the reduced cache sizes can still “do the job”. This is discussed
in the following.

Tables II - IV summarize the results of the algorithms for
the three datasets, respectively, using a reduced cache size of
100 items. Table V summarizes the results of the algorithms
for the robot sonar dataset using a reduced cache size of 500
items. The cache size of 100 items have been chosen because
we have already shown in the delay measurements that no
significant additional delays appear for this size. Note that the
results of PIP-post show (in brackets) how many items are kept
in the database after the backend (a posteriori) reduction, in
addition to the items that have been forwarded (which, in the
case of PIP-post, are always all incoming items).

The first thing that can be noted in the results is that the
NECtar algorithms achieve accuracies in the range 76,1 % -
93,8 %, although they have always been configured to forward
approximately one third of the original data, namely ca. 33 %
- 35 % in most of the cases. Although the achieved accuracies
are by far not as high as the ones that are achieved if the
reduction is performed later at the backend (PIP-post accuracy
ranges between 91,5 % and 99,6 %), it might be good enough
depending on the application, because the desired accuracy
depends on the application indeed. Finally, the accuracy of
PIP-post is provided only in order to give a feeling and
cannot be compared to the accuracy of other algorithms. The
algorithms are not comparable, because PIP-post does not filter
any data at all.

Another key observation is that the three different cache
projection strategies of the streamified Important Points Han-
dler (CLONE, TWIN, and AVG) lead to different results
depending on the dataset. TWIN seems to deliver the best
results thanks to its assumption of “long-term repetition of
history”, but the other strategies might also make sense for
different datasets. Note that the TWIN strategy is not using
a bigger cache than the others, because the size of 100 items
is counted together with the “projected” items. This is a very
important observation because it proves that the conception
and development of the different projection strategies makes
sense and provides the operator with a variety of choices that
can prove very beneficial in terms of accuracy.

Finally, Table V (cache size = 500) shows that different
accuracies might be achieved indeed by fine-tuning the cache
reduction. In this case, increasing the cache size brought
enhancements in the range of +0,4 % to +6,5 % (comparing
Table V with Table IV). Thus, if the additional delays caused
by the increased cache size (refer to Figure 3) are not critical
for the application, then this technique can be considered.
However, the accuracy enhancements do not seem to be very
high and it becomes clear that no matter how big caches sizes
are used, the accuracies cannot get close to the accuracies that
can be achieved with “knowledge of the future” (PIP-post).
Similar experiments, i.e., with a cache size of 500, have been
performed for TS1 and TS2, as well, showing even smaller
accuracy enhancements. It must be clear that bigger cache sizes
do not necessarily always mean significant enhancements in
accuracy. The reader should simply think of the extreme case
of a dataset where all values are almost equal. All algorithms
would give ca. 100% accuracy no matter the cache size.

TABLE II. COMPARISON OF NECTAR DATA HANDLERS FOR TS1
(HIGHWAY RAMP LOOP SENSOR) USING A REDUCED CACHE OF 100 ITEMS

Time Series 1 - loop sensor

Data Handler Incoming
items

Forwarded items

AccuracyAmount
(No.)

% of
incoming

PIP-post 41851 41851 100 % 91.5 %

(14689) (35.1 %)

NECtar-IPH-Clone 41851 13044 31.2 % 78.7 %

NECtar-IPH-Twin 41851 14384 34.4 % 85.7 %

NECtar-IPH-Avg 41851 14391 34.4 % 81.8 %

TABLE III. COMPARISON OF NECTAR DATA HANDLERS FOR TS2
(HOUSEHOLD SMART METER) USING A REDUCED CACHE OF 100 ITEMS

Time Series 2 - smart meter

Data Handler Incoming
items

Forwarded items

AccuracyAmount
(No.)

% of
incoming

PIP-post 44642 44642 100 % 99.6 %

(16813) (37.7 %)

NECtar-IPH-Clone 44642 15038 33.7 % 93.8 %

NECtar-IPH-Twin 44642 15199 34.0 % 92.9 %

NECtar-IPH-Avg 44642 16813 36.7 % 80.1 %

TABLE IV. COMPARISON OF NECTAR DATA HANDLERS FOR TS3
(ROBOT SONAR) USING A REDUCED CACHE OF 100 ITEMS

Time Series 3 - robot sonar

Data Handler Incoming
items

Forwarded items

AccuracyAmount
(No.)

% of
incoming

PIP-post 2324 2324 100 % 99.3 %

(802) (34.5 %)

NECtar-IPH-Clone 2324 830 35.7 % 75.4 %

NECtar-IPH-Twin 2324 786 33.8 % 84.3 %

NECtar-IPH-Avg 2324 781 33.6 % 76.1 %

TABLE V. COMPARISON OF NECTAR DATA HANDLERS FOR TS3
(ROBOT SONAR) USING A REDUCED CACHE OF 500 ITEMS

Time Series 3 - robot sonar

Data Handler Incoming
items

Forwarded items

AccuracyAmount
(No.)

% of
incoming

PIP-post 2324 2324 100 % 99.3 %

2324 (802) (34.5 %)

NECtar-IPH-Clone 2324 815 35.1 % 81.9 %

NECtar-IPH-Twin 2324 787 33.8 % 84.7 %

NECtar-IPH-Avg 2324 833 35.8 % 77.6 %



C. Lessons Learned

Based on the above, the main achievements and limitations
shown by our evaluation can be summarized as in the follow-
ing.
Achievements:

• Algorithms that are based on the PIP concept can now
be applied for streams and forward data that have
accuracies much higher than the forwarding ratio.

• The newly developed cache projection strategies can
lead to different results for different datasets, thus
providing a further tool for fine-tuning and enhancing
the accuracy of the forwarded data depending on the
application.

• Reduced cache sizes can help to make the additional
forwarding delay insignificant without reaching so
small sizes that would seriously affect the accuracy
of the forwarded data.

Limitations:

• Independently of the used cache sizes, the accuracy
of the forwarded data can usually not get close to the
accuracy of a posteriori data reduction.

• The required accuracies depend on the application
so that our algorithms would be unusable in certain
domains.

V. CONCLUSION

This paper has presented the NECtar agent, a solution for
network-edge data reduction (for time series data, focusing on
IoT data), which has the following three main differentiators
from the state-of-the-art:

• Streamification: it includes new data reduction algo-
rithms that work upon data streams, i.e., per incoming
item, based on concepts of solutions that were until
today designed to compress a posteriori, i.e., upon
entire data sets.

• One-click data handler instantiation: Network-edge
devices can select one of many possible algorithms
and simply instantiate a handler that enforces the
respective data reduction logic.

• IoT-specific analysis: To the best of our knowledge,
this is the first time that network-edge data reduction
is evaluated specifically for IoT devices (cf. time
measurements in Section IV) and IoT datasets (cf.
accuracy measurements in Section IV).

The “streamification” of algorithms that are based on
identifying PIPs (Perceptually Important Points) has been eval-
uated upon time series collected from three real IoT testbeds
(street sensor, smart meter, robot sonar), showing that the
NECtar agent can achieve accuracies between 76,1 % and
93,8 % despite forwarding only 1/3 of the data items, and
thus without adding significant forwarding delays, because the
pre-processing delays at the edge can be orders of magnitude
smaller than the standard delay of sending and writing the
data into the Cloud databases. The low delays are achieved
both due to the lightweightedness of the data handlers and
due to the appropriate application of the cache projection and

cache reduction techniques. The streamification of further data
reduction algorithms and the customization of the algorithms
for specific IoT Use Cases are important items for further
investigation.
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