
Certifying Spoofing-Protection of Firewalls

Cornelius Diekmann, Lukas Schwaighofer, and Georg Carle
Technische Universität München

Email: {diekmann∣schwaighofer∣carle}@net.in.tum.de

Abstract—We present an algorithm to certify IP spoofing
protection of firewall rulesets. The algorithm is machine-verifiably
proven sound and its use is demonstrated in real-world scenarios.

I. INTRODUCTION

In firewalls, it is good practice and sometimes an essential
security feature to prevent IP address spoofing attacks [1]–[6].
The Linux kernel offers reverse path filtering [7], which can
conveniently prevent such attacks. However, in many scenar-
ios (e.g. asymmetric routing [8], failover [3], zone-spanning
interfaces, or multihoming [2]), reverse path filtering must
be disabled or is too coarse-grained (e.g. for filtering special
purpose addresses [9]). In these cases, spoofing protection has
to be provided by the firewall which is configured by the
administrator. Unfortunately, writing firewall rules is prone to
human error, a fact known for over a decade [10].

For Linux netfilter/iptables firewalls [11], we present an
algorithm to certify spoofing protection of a ruleset. It provides
the following contributions; a unique set of features in their
combination:

● It is formally and machine-verifiably proven sound with
Isabelle/HOL.

● It supports the largest subset of iptables features compared
to any other firewall analysis systems.

● It was tested on the largest (publicly-available) firewall
which was ever analyzed in academia.

● It terminates within a second for thousands of rules.

We chose iptables because it provides one of the most
complex firewall semantics widely deployed [12], [13]. Of
course, our algorithm is also applicable to similar or less
complex (e.g. Cisco PIX) firewall systems.

II. RELATED WORK

There are several popular static firewall analysis tools.
The Firewall Policy Advisor [14] discovers inconsistencies
between pairs of rules (e.g. one rule completely overshadowing
the other) in distributed firewall setups. A similar tool is
FIREMAN [12]. It can discover inconsistencies within rulesets
or between firewalls and verify setups against administrator-
defined policies. To represent sets of packets, Binary Decision
Diagrams (BDDs) are used. It does not support matching on
interfaces in a rule. Since interfaces can be strings of arbitrary
length, they may not be ideal for the encoding in BDDs
and adding support to FIREMAN might be complicated or
deteriorate its performance.

Margrave [15] can be used to query (distributed) firewalls.
It is well suited to troubleshoot and to debug firewall configura-
tions or to show the impact of ruleset edits. For certain queries,

it can also find scenarios, e.g. it can show concrete packets
which violate a security policy. This scenario finding is sound
but not complete. Its query language as well as Margrave’s
internal implementation is based on first-order logic. A similar
tool (relying on BDDs), with a different query language and
focus on complete networks, is ConfigChecker [16], [17]. IT-
Val [5] can also be used to query firewalls. It can also describe
the firewall in terms of equivalent IP address spaces [18],
which does not require the administrator to pose specific
queries.

None of these tools can directly verify spoofing protection.
Nor are the tools themselves formally verified, which limits
confidence in their results. In addition, the tools only support
a limited subset of real-world firewalls [19]. If the firewall
under analysis exceeds this feature set, the tools either produce
erroneous results or cannot continue [19].

Jeffrey and Samak [20] analyze the complexity of firewall
analysis and conclude that most questions (for variable packet
models) are NP-complete. They show that SAT solvers usually
outperform BDD-based implementations.

III. MATHEMATICAL BACKGROUND

This work was done completely in the Isabelle theorem
prover [21], [22]. Isabelle is an LCF-style theorem prover.
This means, a fact can only be proven if it is accepted by
a mathematical inference kernel. This kernel is very small
and thoroughly inspected by the formal methods community.
This makes errors very unlikely, which has been demonstrated
by Isabelle’s success over the past 20 years. Our Isabelle
formalization is publicly available [22]. An interested reader
can replay the proofs and results of the evaluation on her
system. For brevity, we only outline a proof’s core idea in this
paper and refer the interested reader to our proof document
for for further mathematical details.

Our notation is close to Isabelle, Standard ML, or Haskell:
Function application is written without parentheses, e.g. f a
denotes function f applied to parameter a. For lists, we denote
cons and append by ‘∶∶’ and ‘∶∶∶’, e.g. ‘x ∶∶ [y, z] ∶∶∶ [a]’. Linux
shell commands are set in typewriter font.

Iptables Semantics: To define and prove correctness
of our algorithm, one must first define the semantics (i.e.
behavior) of an iptables firewall. We rely on the semantics
specified by Diekmann et al. [19]. The semantics defines the
following common actions (also called “targets” in iptables
terminology): Accept, Drop, Reject, Log, calling to and
Returning from user-defined chains, as well as the “empty”
action. Matching a packet against match conditions (e.g. IP
source or destination addresses) is mathematically defined with
a “magic oracle” which understands all possible matches.

978-3-901882-77-7 © 2015 IFIP

Obviously, semantics with a “magic oracle” cannot be
expressed in terms of executable code. Nevertheless, the algo-
rithm we present in this paper is both executable and proven
sound w. r. t. these semantics.

IV. SPOOFING PROTECTION – MATHEMATICALLY

To define spoofing protection, two data sets are required:
The firewall ruleset rs and the IP addresses assignment
ipassmt . ipassmt is a mapping from interfaces to an IP address
range. Usually, it can be obtained by ip route. We will
write ipassmt[i] to get the corresponding IP range of interface
i. For the following examples, we assume

ipassmt = [eth0↦ {192.168.0.0/24}]
Definition 1 (Spoofing Protection). A firewall ruleset provides
spoofing protection if for all interfaces i specified in ipassmt ,
all packets from i which are accepted by the ruleset have a
source IP address contained in ipassmt[i].

For example, using pseudo iptables syntax, the following
ruleset implements spoofing protection:

-i eth0 --src !192.168.0.0/24 Drop
any Accept

firewall

Spoofing Protection with Unknowns: iptables supports
numerous match conditions and new ones may be added
in future. It is practically infeasible to support all match
conditions in a tool [19]. As we don’t want our algorithm
to abort if an unknown match occurs, we will refine Def. 1
to incorporate unknown matches. This is motivated by the
following examples.

We assume that --foo is a match condition which is
unknown to us. Therefore, we cannot guarantee that

-i eth0 --src !192.168.0.0/24 --foo Drop
any Accept

firewall

implements spoofing protections since --foo could prevent
certain spoofed packets from being dropped. Also, the follow-
ing ruleset might neither implement spoofing protection since
--foo might allow spoofed packets:

--foo Allow
-i eth0 --src !192.168.0.0/24 Drop
any Accept

firewall

However, the following ruleset definitely implements spoofing
protection; Independently of the meaning of --foo and
--bar, it is guaranteed that no spoofed packets are allowed:

--foo Drop
-i eth0 --src !192.168.0.0/24 Drop
--bar Accept

firewall

This motivates Def. 2.

Definition 2 (Certifiable Spoofing Protection). A firewall
ruleset provides spoofing protection if for all interfaces i
specified in ipassmt , all packets from i which are potentially

accepted by the ruleset have a source IP address in the IP range
of i.

This new definition is stricter than the original one: Def. 2
implies Def. 1.1 Therefore the new definition is sound and can
be used to prove that the last example implements spoofing
protection.

However, depending on the meaning of --foo, some of
the previous examples might also implement spoofing protec-
tion. This cannot be shown with Def. 2, so the new definition
is not complete. However, as long as we anticipate unknown
matches to occur, it is impossible to obtain completeness.

V. SPOOFING PROTECTION – EXECUTABLE

A straight forward spoofing protection proof of a firewall
ruleset using Def. 2 would require iterating over all packets,
which is obviously infeasible. We present an efficient exe-
cutable algorithm to certify spoofing protection.

We assume the ruleset to be certified is preprocessed.
For this, we rely on the semantics-preserving ruleset sim-
plification [19], which rewrites a ruleset to a semantically
equivalent ruleset where only Accept and Drop actions occur.2
A preprocessed ruleset always has an explicit deny-all or
allow-all rule at the end; it can never be empty. This rule
corresponds to a chain’s default policy.

We call our algorithm sp (“spoofing protection”). It certi-
fies spoofing protection for one interface i in ipassmt . Using
sp to certify all i ∈ ipassmt for a ruleset implies spoofing
protection according to Def. 2.

We assume the global, static, and fixed parameters of sp
are an interface i and the ipassmt . Then, sp has the following
type signature:

rule list × ipaddr set × ipaddr set → B

The first parameter (rule list) is the preprocessed firewall
ruleset. A rule is a tuple (m,a), where m is the match
condition and a the action. The action is either Accept or
Drop. For a packet p, there is a predicate matches m p which
tells whether the packet p matches the match condition m.

The second parameter (ipaddr set) is the set of poten-
tially allowed source IP addresses for i. The third parameter
(ipaddr set) is the set of definitely denied source IP addresses
for i.

The last parameter (B) is a Boolean, which is true if
spoofing protection could be certified.

Before we present the algorithm, we first present its cor-
rectness theorem (which will be proven later).

Theorem 1 (sp sound). For any ruleset rs , if
∀i ∈ ipassmt . sp rs {} {}

then rs provides spoofing protection according to Def. 2.

The algorithm sp, presented in Fig. 1, is implemented
recursively. It iterates over the firewall ruleset.

1Formally proven; It follows from [19, Thm 3]
2The correctness of this preprocessing is also verified with Isabelle.

sp [] A D = (A ∖D) ⊆ ⋃ ipassmt[i]
sp ((m,Accept) ∶∶ rs) A D = sp rs (A ∪ {ip ∣ ∃p from interface i with src address ip. matches m p}) D

sp ((m,Drop) ∶∶ rs) A D = sp rs A (D ∪ ({ip ∣ ∀p from interface i with src address ip. matches m p} ∖A))

Figure 1. An algorithm to certify spoofing protection.

The base case is for an empty ruleset. Here, A and D are
the set of allowed/denied source IP addresses. The firewall
provides spoofing protection if the set of potentially allowed
sources minus the set of definitely denied sources is a subset
of the allowed IP range.

The two recursive calls collect these sets A and D. If the
rule is an Accept rule, the set A is extended with the set of
sources possibly accepted in this rule. If the rule is a Drop rule,
the set D is extended with the set of sources definitely denied
in this rule, excluding any sources which were potentially
accepted earlier.

As Theorem 1 already states, sp can be started with any
ruleset and the empty set for A and D.

We will now describe how the ipaddr set operations are
implemented. In general, we symbolically represent a set of
IP addresses as a set of IP range intervals. Since IP ranges are
commonly expressed in CIDR notation (e.g. a.b.c.d/n), the
interval datatype proves to be very efficient.

Next, the set {ip ∣ ∃p from interface i with src address ip.
matches m p} requires executable code. Obviously, a straight-
forward implementation which tests the existence of any packet
is infeasible. We provide an over-approximation for this set,
the correctness proof confirms that this approach is sound. First
we check that i matches all input interfaces specified in the
match expression m. If this is not the case, the set is obviously
empty. Otherwise, we collect the intersection of all matches on
source IPs in m. If no source IPs are specified in m, then m
matches any source IP and we return the universe.

The set {ip ∣ ∀p from interface i with src address ip.
matches m p} can be computed similarly. However, we need
to return an under-approximation here. First, we check that
i matches, otherwise the set is empty. Next, we remove all
matches on input interfaces and source IPs from m. If the
remaining match expression is not unconditionally true, then
we return the empty set. Otherwise, we return the intersection
of all source IP addresses specified in m, or the universe if m
does not restrict source IPs.

Note that after preprocessing we always have an explicit
allow-all or deny-all rule at the end of the firewall ruleset.
Thus, A ∪ D will always hold the universe after consuming
the last rule.

VI. EVALUATION – MATHEMATICALLY

We outline the main idea of the correctness proof. Since
sp operates on a fixed interface, we define certifiable spoofing
protection for a fixed interface i. Showing Def. 3 for all
interfaces is equivalent to Def. 2.

Definition 3.

∀p ∈ {p ∣ p from i and potentially accepted by the firewall} .
p.src-ip ∈ ⋃ ipassmt[i]

The correctness proof of sp is done by induction over the
firewall ruleset. Theorem 1 does not lend itself to induction,
since it features two empty sets which would generate unusable
induction hypotheses. To obtain a strong induction hypothesis,
we generalize. The ruleset is split into two parts: rs1 and rs2.
We assume that the algorithm correctly iterated over rs1. For
this lemma, we use the following notation:
Aexact = {ip ∣ ∃p. p from i with src ip and accepted by rs1}
Dexact = {ip ∣ ∀p. p from i with src ip and denied by rs1}

Lemma 1. If Aexact ⊆ A and D ⊆ Dexact and sp rs2 A D
then Def. 3 holds for rs1 ∶∶∶ rs2

Proof: The proof is done by induction over rs2 for
arbitrary rs1, A, and D.

Base case (i.e. rs2 = []): From sp [] A D we conclude
(A ∖ D) ⊆ ⋃ ipassmt[i]. Since A is an over-approximation
and D an under-approximation: Aexact ∖ Dexact ⊆ A ∖ D.
Since no IP address can be both accepted and denied we
get Aexact ∖Dexact = Aexact . From transitivity we conclude
Aexact ⊆ ⋃ ipassmt[i], which implies spoofing protection for
that interface according to Def. 3.

The two induction steps (one for Accept and one for
Drop rules) follow from the induction hypothesis. The over-
and under- approximations were carefully constructed, such
that the subset relations continue to hold. The executable
implementations of these sets also respect the subset relation;
hence, the induction hypothesis solves these cases.

Proof of Theorem 1: Lemma 1 can be instantiated where
rs1 is the empty ruleset and A and D are the the empty set. For
this particular choice, it is easy to see that the preconditions
hold. Thus, for any rs , we conclude sp rs {} {} implies
Def. 3. Since this holds for arbitrary interfaces, we conclude
Def. 2.

Thus, our algorithm is proven sound according to Def. 2.
This means, if the algorithm certifies a ruleset, then this ruleset
is guaranteed to implement spoofing protection.

Note that our algorithm only certifies; debugging a ruleset
in case of a certification failure remains manual. To debug,
the proof of Lemma 1 suggest to consider the first rule where
(A ∖D) ⊆ ⋃ ipassmt[i] is violated.

Standards such as Common Criteria [23] require for-
mal verification for their highest Evaluation Assurance Level
(EAL7), for example with Isabelle [23, §A.5]. Therefore, any
ruleset certified by Isabelle to provide spoofing protection

could also be certified by Common Criteria EAL7. Since we
provide an executable algorithm, this can be done automati-
cally – without the need for a user with formal background or
manual proof.

The algorithm is not complete. This means, there may be
rulesets which implement spoofing protection but cannot be
certified by the algorithm. This is bought by the approxima-
tions and by the support for unknown match conditions. For
example, the following ruleset cannot be certified:

-i eth0 --src !192.168.0.0/24 --foo Drop
-i eth0 --src !192.168.0.0/24 --!foo Drop
any Accept

firewall

This is a reasonable decision for a completely unknown
--foo, since it might update an internal state and the
mathematical equation “foo ∨ !foo = True” may not hold.
However, if foo is replaced by the known and stateless match
condition --protocol tcp, the ruleset can be shown to
correctly implement spoofing protection. The algorithm, how-
ever, cannot certify it, since it does not track this match con-
dition. However, this is a made-up and bad-practice example,
and we never encountered such special cases in any real-world
ruleset. The evaluation —in which vast amounts of unknowns
occurred— shows that the algorithm certified all rulesets which
included spoofing protection and correctly failed only for those
rulesets which did not (correctly) implement it. Thus, the
incompleteness is primarily a theoretical limitation.

VII. EVALUATION – EMPIRICALLY

Often, firewalls start with an ESTABLISHED rule. A
packet can only match this rule if it belongs to a con-
nection which has been accepted by the firewall previously.
Hence, the ESTABLISHED rule does not contribute to the
access control policy for connection setup enforced by the
firewall [12]. Likewise, spoofed packets can only be allowed
by the ESTABLISHED rule if they are allowed by any of
the subsequent ACL rules. Therefore, as done in previous
work [19, §6.4], we either exclude this rule from our analysis
or only consider packets of state NEW.

We tested the algorithm on several real-word rulesets [24].
Most of them either did not provide spoofing protection or had
an obvious spoofing protection and could thus be certified. In
this Section, we present the results of certifying the largest and
most interesting ruleset.

First of all, for all rulesets, our algorithm was extremely
fast: Once the ruleset is preprocessed (few seconds) the certi-
fication algorithm only takes fractions of seconds for rulesets
with several thousand rules. We omit a detailed performance
evaluation since these orders of magnitude are sufficient for a
static/offline analysis system.3

We present the certification of a firewall with about 4800
rules, connecting about 20 VLANs. Every VLAN has its
own interface. Trying the certification, it immediately fails.
Responsible was a work-around rule which should only have
existed temporarily but was forgotten. This rule is now on the

3Certification runs of our algorithm were usually faster than reloading the
ruleset on the firewall system itself.

administrator’s “things to do the right way” list and we exclude
it for further evaluation. Certifying spoofing protection for
the first VLAN interface succeeds instantly. However, trying
to certify all other VLANs fails. The reason is an error in
the ruleset. For every VLAN n, the firewall defines three
custom chains: mac_n, ranges_n, and filter_n. The
mac_n chain verifies that for hosts with registered MAC
addresses and static IP addresses, nobody (with a different
MAC address) steals the IP address. This chain is primarily to
avoid manual IP assignment errors. Next, the ranges_n chain
should prevent outgoing spoofing. Finally, the filter_n
chain allows packets for certain registered services. The main
error was that a spoofed packet from VLAN m could be
accepted by filter_n before it had to pass the ranges_m
check. The discovery of this error also discovered that the
mac_m chains were not working reliably. We verified these
findings by sending and receiving such spoofed packet via
the real firewall. Finally, we fixed the firewall by moving all
mac_n and ranges_n chains before any filter_n chains.
The certification for all but one4 internal VLAN interfaces
succeeds. Next, the interfaces attached to the Internet are
certified. The IP address range was defined as the universe
of all IPs, excluding the IPs owned by the institute. Here,
certification failed in a first run. Responsible were some ssh
rate limiting rules. These rules were originally designed to
prevent too many outgoing ssh connections. However, since
spoofing protection did not apply to them, an attacker could
exploit them for a DOS attack against the internal network:
The attacker floods the firewall with ssh TCP SYN packets
with spoofed internal addresses. This exhausts the ssh limit
of the internal hosts and it is no longer possible for them
to establish new ssh connections. This flaw was fixed and
certification subsequently succeeds. The improved and certified
firewall ruleset is now in production use.

After this, another administrator got interested and wanted
to implement spoofing protection for his firewall. To compli-
cate matters, he was in Japan and the firewall in Germany. It
was a key requirement that he would not lock himself out. Our
tool could certify both: His proposed changes to the firewall
correctly enforce spoofing protection and he will not lose ssh
access. To provide a sound guarantee for the latter, we applied
the same idea as in our algorithm, but in reverse: the ruleset is
abstracted to a stricter version (i.e. a version that blocks more
packets) and we consequently certify that it still allows NEW
and ESTABLISHED ssh packets from the Internet.

VIII. CONCLUSION

We present an easy-to-use algorithm. It is fast enough to be
run on every ruleset update. It discovered real problems in a
large, production-use firewall. Both, the theoretical algorithm
as well as the executable code are proven sound, hence if the
algorithm certifies a firewall, the ruleset is proven to implement
spoofing protection correctly. Sources and raw data: [22], [24].

Acknowledgments: This work has been supported by
the German Federal Ministry of Education, EUREKA
project SASER, grant 16BP12304, and project SURF, grant
16KIS0145, and by the European Commission, project Safe-
Cloud, grant 653884.

4This one VLAN where the certification fails is only for internal testing
purposes and deliberately features no spoofing protection

REFERENCES

[1] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address
Spoofing,” RFC 2827 (Best Current Practice), Internet Engineering
Task Force, May 2000, updated by RFC 3704. [Online]. Available:
http://www.ietf.org/rfc/rfc2827.txt

[2] F. Baker and P. Savola, “Ingress Filtering for Multihomed Networks,”
RFC 3704 (Best Current Practice), Internet Engineering Task Force,
Mar. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3704.txt

[3] T. J. Wagner, “Disabling reverse-path filtering in complex networks,”
Jul. 2009, retrieved Mai 2015. [Online]. Available: https://www.tolaris.
com/2009/07/13/disabling-reverse-path-filtering-in-complex-networks/

[4] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in IEEE Symposium on Security and Privacy.
IEEE, 1999, pp. 17–31.

[5] R. M. Marmorstein and P. Kearns, “A tool for automated iptables
firewall analysis.” in USENIX Annual Technical Conference, FREENIX
Track, 2005, pp. 71–81.

[6] A. Wool, “The use and usability of direction-based filtering in firewalls,”
Computers & Security, vol. 23, no. 6, pp. 459–468, 2004.

[7] “ip-sysctl,” Linux Kernel 4.0 Documentation, 2015. [Online]. Available:
$Linux/Documentation/networking/ip-sysctl.txt

[8] J. Engelhardt, “Towards the perfect ruleset,” May 2011. [Online].
Available: http://inai.de/documents/Perfect_Ruleset.pdf

[9] M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, “Special-
Purpose IP Address Registries,” RFC 6890 (Best Current Practice),
Internet Engineering Task Force, Apr. 2013. [Online]. Available:
http://www.ietf.org/rfc/rfc6890.txt

[10] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, IEEE, vol. 37, no. 6, pp. 62–67, Jun. 2004.

[11] T. netfilter.org project, “netfilter/iptables project.” [Online]. Available:
http://www.netfilter.org/

[12] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“FIREMAN: a toolkit for firewall modeling and analysis,” in IEEE
Symposium on Security and Privacy, May 2006, pp. 199–213.

[13] S. Pozo, R. Ceballos, and R. M. Gasca, “Model-based development of
firewall rule sets: Diagnosing model inconsistencies,” Information and
Software Technology, vol. 51, no. 5, pp. 894–915, 2009.

[14] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in dis-
tributed firewalls,” in INFOCOM 2004. Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies, vol. 4,
March 2004, pp. 2605–2616 vol.4.

[15] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The margrave tool for firewall analysis.” in 24th USENIX Large
Installation System Administration Conference (LISA), 2010.

[16] E. Al-Shaer and M. Alsaleh, “ConfigChecker: A tool for comprehen-
sive security configuration analytics,” in Configuration Analytics and
Automation (SAFECONFIG), 2011 4th Symposium on, Oct 2011, pp.
1–2.

[17] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in 17th IEEE International Conference on
Network Protocols, (ICNP), Oct 2009, pp. 123–132.

[18] R. M. Marmorstein and P. Kearns, “Firewall analysis with policy-
based host classification.” in Large Installation System Administration
Conference (LISA), vol. 6. USENIX, Dec. 2006, pp. 41–51.

[19] C. Diekmann, L. Hupel, and G. Carle, “Semantics-Preserving Sim-
plification of Real-World Firewall Rule Sets,” in 20th International
Symposium on Formal Methods (FM), Jun. 2015.

[20] A. Jeffrey and T. Samak, “Model checking firewall policy configura-
tions,” in Policies for Distributed Systems and Networks. IEEE, Jul.
2009, pp. 60–67.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, last
updated 2015, vol. 2283.

[22] “Isabelle formalization,” accompanying material. [Online]. Available:
https://github.com/diekmann/Iptables_Semantics

[23] Common Criteria, “Security assurance components,” Common Criteria
for Information Technology Security Evaluation, vol. CCMB-2012-09-
003, Sep. 2012. [Online]. Available: http://www.commoncriteriaportal.
org/files/ccfiles/CCPART3V3.1R4.pdf

[24] “Analyzed firewall rulesets (raw data),” accompanying material.
[Online]. Available: https://github.com/diekmann/net-network

