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Abstract—Middleboxes or network appliances like firewalls,
proxies, and WAN optimizers have become an integral part of
today’s ISP and enterprise networks. Middlebox functionalities
are usually deployed on expensive and proprietary hardware
that require trained personnel for deployment and maintenance.
Middleboxes contribute significantly to a network’s capital and
operational costs. In addition, organizations often require their
traffic to pass through a specific sequence of middleboxes for
compliance with security and performance policies. This makes
the middlebox deployment and maintenance tasks even more
complicated. Network Function Virtualization (NFV) is an emerg-
ing and promising technology that is envisioned to overcome these
challenges. It proposes to move packet processing from dedi-
cated hardware middleboxes to software running on commodity
servers. In NFV terminology, software middleboxes are referred
to as Virtual Network Functions (VNFs). It is a challenging
problem to determine the required number and placement of
VNFs that optimize network operational costs and utilization,
without violating service level agreements. We call this the VNF
Orchestration Problem (VNF-OP) and provide an Integer Linear
Programming (ILP) formulation with implementation in CPLEX.
We also provide a dynamic programming based heuristic to
solve larger instances of VNF-OP. Trace driven simulations on
real-world network topologies demonstrate that the heuristic can
provide solutions that are within 1.3 times of the optimal solution.
Our experiments suggest that a VNF based approach can provide
more than 4× reduction in the operational cost of a network.

I. INTRODUCTION

Today’s enterprise networks ubiquitously deploy vertically
integrated proprietary middleboxes to offer various network
services. Examples of such middleboxes include firewalls,
proxies, WAN optimizers, Intrusion Detection Systems (IDSs),
and Intrusion Prevention Systems (IPSs). A recent study shows
that the number of middleboxes is comparable to that of
routers in an enterprise network [29]. However, middleboxes
come with high Capital Expenditures (CAPEX) and Oper-
ational Expenditures (OPEX). They are expensive, vendor-
specific, and require specially trained personnel for configura-
tion and maintenance. Moreover, it is often impossible to add
new functionalities to an existing middlebox, which makes it
very difficult for network operators to deploy new services.

Another problem arises from the fact that most often a
traffic is required to pass through multiple stages of middle-
box processing in a particular order, e.g., a traffic may be
required to go through a firewall, then an IDS, and finally
through a proxy [26]. This phenomenon is typically referred
to as Service Function Chaining (SFC) [27]. Several IETF
drafts demonstrate middlebox chaining use-cases in operator
networks [19], mobile networks [17], and data center net-
works [31]. Currently, this task is performed by manually
crafting the routing table entries. It is a cumbersome and error-

prone process. Moreover, a fixed placement cannot be optimal
for all possible traffic patterns in the long run.

An emerging and promising technology that can ad-
dress these limitations is Network Function Virtualization
(NFV) [13]. It proposes to move packet processing from hard-
ware middleboxes to software middleboxes or Virtual Network
Functions (VNFs). Instead of running hardware middleboxes,
the same packet processing tasks are performed by software
running on commodity servers. This approach does not hamper
performance as many state-of-the-art software middleboxes
have already achieved near-hardware performance [22], [18].
NFV provides ample opportunities for network optimization
and cost reduction. Previously, middleboxes were hardware
appliances placed at fixed locations, but we can deploy a VNF
virtually anywhere in the network.

VNF chains can be orchestrated by dynamically deploying
a composition of VNFs either on a single server or a cluster
of servers. This approach can significantly reduce the OPEX
of a network. However, several issues must be considered
during VNF provisioning: (i) the cost of deploying a new
VNF, (ii) energy cost for running a VNF, and (iii) the cost
of forwarding traffic to and from a VNF. An optimal VNF
orchestration strategy must address these issues during the
cost minimization process. Moreover, it must avoid penalties
for Service Level Objective (SLO) violations and satisfy the
capacity constraints of the physical servers and physical links.
We refer to this problem as the Virtual Network Function
Orchestration Problem (VNF-OP).

Our key contributions can be summarized as follows:

• We identify the VNF orchestration problem and provide
the first quantifiable results showing that dynamic VNF
orchestration can have more than 4× reduction in OPEX.

• The problem is formulated as an Integer Liner Program
(ILP) and implemented in CPLEX to find optimal solu-
tions for small scale networks.

• Finally, we propose a fast heuristic algorithm that finds
solutions within 1.3 times of the optimal for real-world
topologies and traffic traces.

The rest of the paper is organized as follows: we start by
explaining the mathematical model used for our system and by
formally defining the VNF Orchestration Problem (Section II).
Then the problem formulation is presented (Section III).
Next, a heuristic is proposed to obtain near-optimal solutions
(Section IV). We validate our solution through trace driven
simulations on real-world network topologies (Section V).
Then, we provide a literature review (Section VI). Finally, we
conclude in Section VII.
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II. MATHEMATICAL MODEL AND PROBLEM DEFINITION

A. Physical Network

We represent the physical network as an undirected graph
Ḡ = (S̄, L̄), where S̄ and L̄ denote the set of switches and
links, respectively. We assume that VNFs can be deployed
on commodity servers located within the network. The set N̄
represents these servers, and the binary variable h̄n̄s̄ ∈ {0, 1}
indicates whether server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄.

h̄n̄s̄ =

{
1 if server n̄ ∈ N̄ is attached to switch s̄ ∈ S̄,
0 otherwise.

Let, R denote the set of resources (CPU, memory, disk, etc.)
offered by each server. The resource capacity of server n̄ is
denoted by crn̄ ∈ R+, ∀ r ∈ R. The bandwidth capacity and
propagation delay of a physical link (ū, v̄) ∈ L̄ is represented
by βūv̄ ∈ R+ and δūv̄ ∈ R+, respectively. We also define a
function η(ū) that returns the neighbors of switch ū.

η(ū) = {v̄ | (ū, v̄) ∈ L̄ or (v̄, ū) ∈ L̄}, ū, v̄ ∈ S̄

B. Virtual Network Functions (VNFs)

Different types of VNFs (e.g., firewall, IDS, IPS, proxy,
etc.) can be provisioned in a network. Set P represents
the possible VNF types. VNF type p ∈ P has a specific
deployment cost, resource requirement, processing capacity,
and processing delay represented by D+

p , κrp ∈ R+(∀r ∈ R),
cp (in Mbps), and δp (in ms), respectively. Each VNF type has
a set of servers on which it can be provisioned. The following
binary variable represents this relationship:

dn̄p =

{
1 if VNF type p ∈ P can be provisioned on n̄,
0 otherwise.

C. Traffic Request

We assume that the network operator is receiving path
setup requests for different kinds of traffic. A traffic request
is represented by a 5-tuple t = 〈ūt, v̄t,Ψt, βt, δt〉, where
ūt, v̄t ∈ S̄ denote the ingress and egress switches, respectively.
βt ∈ R+ is the bandwidth demand of the traffic. δt is
the expected propagation delay according to Service Level
Agreement (SLA). Ψt represents the ordered VNF sequence
the traffic must pass through (e.g., Firewall � IDS � Proxy)
and lΨt denotes the length of the VNF sequence Ψt.

Ingress 

Firewall IDS Proxy 

Egress 

Fig. 1. Traffic Model
We represent a traffic request t by a directed graph

Gt = (N t, Lt), where N t represents the set of traffic
nodes (switches or VNFs) and Lt denotes the links between
them. Fig. 1 represents a traffic that requires to pass through
the VNF sequence: Firewall � IDS � Proxy. Modeling the
traffic in this way makes it easy for the provisioning process
to ensure that it passes though the correct sequence of VNFs.
We also define ηt(n1) to represent the neighbors of n1 ∈ N t:

ηt(n1) = {n2 | (n1, n2) ∈ Lt}, n1, n2 ∈ N t

Next, we define a binary variable gtnp ∈ {0, 1} to indicate
the type of a node n ∈ N t

gtnp =

{
1 if node n ∈ N t is of type p ∈ P,
0 otherwise.

D. VNF Orchestration Problem (VNF-OP)

Here, we are given a physical network topology, VNF
specifications, network status, and a set of traffic requests.
Our objective is to minimize the overall network OPEX by
(i) provisioning optimal number of VNFs, (ii) placing them at
optimal locations, and (ii) finding optimal routing paths, while
respecting the capacity constraints (e.g., physical servers, links,
VNFs), delay constraints, and ensuring proper VNF sequence.

III. INTEGER LINEAR PROGRAMMING (ILP)
FORMULATION

VNF-OP is a considerably harder problem to solve than
traditional Virtual Network (VN) embedding problems [11],
[12], [5], as virtual resources are shared between multiple
requests. In this work, we address these challenges by judi-
ciously augmenting the physical network as explained in the
rest of the section.

A. Physical Network Transformation

We transform the physical network to generate an aug-
mented pseudo-network that reduces the complexity involved
in solving the VNF-OP. The transformation process is per-
formed in two steps:

1) VNF Enumeration: A part of the original physical net-
work topology is shown in Fig. 2(a). Here, we have three
switches (s1, s2, and s3) and a server n2 connected to switch
s2. The first transformation is called VNF enumeration, as
we enumerate all possible VNFs in this step. The modified
network after the first transformation is shown in Fig. 2(b). In
this step, we find the maximum number for each VNF type
that can be deployed on each server. We calculate this number
based on the resource capacities of the server and the resource
requirements of a VNF type. In Fig. 2(b) we show enumerated
VNFs for server n2.

We denote the set of these VNFs (called pseudo-VNFs) by
M. Each VNF m ∈ M is implicitly attached to a server
n̄ ∈ N̄ . We use the function ζ(m) to denote this mapping.

ζ(m) = n̄ if VNF m is attached to server n̄
We also define a function Ω(n̄) to represent the pseudo-

VNFs attached to server n̄:
Ω(n̄) = {m | ζ(m) = n̄}, m ∈M, n̄ ∈ N̄

Next, we define qmp ∈ {0, 1} to indicate the type of a VNF:

qmp =

{
1 if VNF m is of type p ∈ P,
0 otherwise.

As discussed earlier, a given type of VNF can be deployed
on a specific set of servers. To ensure this we must have:

qmp = dζ(m)p (1)

We should note that pseudo-VNFs simply represent where
a particular type of VNF can be provisioned. ym ∈ {0, 1}
indicates whether a pseudo-VNF is active or not.

ym =

{
1 if pseudo-VNF m ∈M is active,
0 otherwise.
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Fig. 2. Network Transformation

2) Adding Pseudo-Switches: Next, we augment the physi-
cal topology again by adding a pseudo-switch between each
pseudo-VNF and the original switch to which it was attached.
This process is shown in Fig. 2(c). We perform this step
to simplify the expressions of the network flow conservation
constraint in the ILP formulation presented next. This process
does not increase the size of the solution space as we consider
them only for the flow conservation constraint.
B. ILP Formulation

We define the decision variable xtnm to represent the map-
ping of a traffic node to a pseudo-VNF:

xtnm =

{
1 if node n ∈ N t is provisioned on m ∈M,
0 otherwise.

Next, we define another variable to represent the mapping
between a traffic node and a switch in the physical network.

ztns̄ =

{
1 if node n ∈ N t is attached to switch s̄,
0 otherwise.

ztns̄ is not a decision variable as it can be derived from xtnm:
ztns̄ = 1 if xtnm = 1 and h̄ζ(m)s̄ = 1

We can also derive the variable ym from xtnm as follows:

ym = 1 if
∑
t∈T

∑
n∈Nt

xtnm > 0

We assume that x̂tnm represents the value of xtnm at the
last traffic provisioning event. To ensure that resources for
previously provisioned traffic are not deallocated we must have
xtnm ≥ x̂tnm, ∀ t ∈ T̂ , n ∈ N t,m ∈ M. Now, we define
ŷm ∈ {0, 1} that represents the value of ym at the last traffic
provisioning event as follows:

ŷm = 1 if
∑
t∈T

∑
n∈Nt

x̂tnm > 0

Again, to ensure that resources for previously provisioned
traffics are not deallocated we must have ym ≥ ŷm, ∀ m ∈
M. Next, we need to ensure that VNF capacities are not over-
committed. The processing capacity of an active VNF must
be greater than or equal to the total amount of traffic passing
through it. We express this constraint as follows:∑

t∈T

∑
n∈Nt

xtnm × βt ≤ cm, ∀ m ∈M|ym = 1 (2)

We also need to make sure that physical server capacity con-
straints are not violated by the deployed VNFs. We represent
this constraint as follows:∑

m∈Ω(n̄)

ym × κrm ≤ crn̄, ∀ n̄ ∈ N̄ , r ∈ R (3)

Each node of a traffic must be mapped to a proper VNF
type. This constraint is represented as follows:
xtnm × gtnp = qmp, ∀ t ∈ T, n ∈ N t,m ∈M, p ∈ P (4)
Next, we need to ensure that every traffic node is provi-

sioned and to exactly one VNF.∑
t∈T

∑
n∈Nt

xtnm = 1, ∀ m ∈M (5)

Now, we define our second decision variable to represent
the mapping between links in the traffic model (Fig. 1) to the
links in the physical network.

wtn1n2
ūv̄ =

{
1 if (n1, n2) ∈ Lt uses physical link (ū, v̄),
0 otherwise.

We also assume that ŵtn1n2
ūv̄ represents the value of wtn1n2

ūv̄

at the last traffic provisioning event. To ensure that resources
for previously provisioned traffics are not deallocated in the
current iteration we must have
wtn1n2
ūv̄ ≥ ŵtn1n2

ūv̄ ,∀ t ∈ T̂ , n1, n2 ∈ N t|n2 ∈ ηt(n1)

and n2 > n1, ū, v̄ ∈ S̄ (6)
To ensure that each directed link in a traffic request is not

mapped to both directions of a physical link, we must have:
wtn1n2
ūv̄ + wtn1n2

v̄ū ≤ 1,∀ t ∈ T,
n1, n2 ∈ N t|n2 ∈ ηt(n1) and n2 > n1, ū, v̄ ∈ S̄ (7)

Now, we present the capacity constraint for physical links:∑
ū∈S̄

∑
v̄∈S̄

(wtn1n2
ūv̄ + wtn1n2

v̄ū )× βt ≤ βūv̄,

∀ t ∈ T, n1, n2 ∈ N t|n2 ∈ ηt(n1) and n2 > n1 (8)
Next, we present the flow constraint that makes sure that the

in-flow and out-flow of each switch in the physical network
is equal except at the ingress and egress switches:∑

v̄∈η(ū)

(
wtn1n2
ūv̄ − wtn1n2

v̄ū

)
= ztn1ū − z

t
n2ū,

∀ t ∈ T, n1, n2 ∈ N t|n2 ∈ ηt(n1) and n2 > n1, ū ∈ S̄ (9)
To meet SLOs, the total propagation delay experienced by

traffic t must be within the expected propagation delay δt:∑
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄

∑
v̄∈η(ū)

wtn1n2
ūv̄ δūv̄ ≤ δt (10)

Finally, we need to ensure that every link in a traffic request
is provisioned on one or more physical links in the network:∑

ū∈S̄

∑
v̄∈S̄

(wtn1n2
ūv̄ + wtn1n2

v̄ū ) ≥ 0,

∀ t ∈ T, n1, n2 ∈ N t|n2 ∈ ηt(n1) and n2 > n1 (11)



Our objective is to find the optimal number and placement
of VNFs that minimizes OPEX for the network. We formulate
them in detail below:

– OPEX: We consider three cost components to contribute
to OPEX. These are as follows:

1. VNF Deployment Cost: the VNF deployment cost can be
expressed as follows:

D =
∑

m∈M|ym=1

D+
p × qmp × (ym − ŷm) (12)

2. Energy Cost: Without loss of generality we assume that
the energy consumption of a server is proportional to the
amount of resources being used. However, a server usually
consumes power even in the idle state. So, we compute the
power consumption of a server as follows:

En̄ =
∑
m∈Ωn̄

ym × qmp × er(crn̄, κrp)
where

er(rt, rc) = (ermax − eridle)×
rc
rt

+ eridle

Here, rt and rc denote the total and consumed resource,
respectively. eridle and ermax denote the energy cost in the idle
and peak consumption state for r, respectively.

E =
∑
n̄∈N̄

∑
m∈Ωn̄

ym × qmp × er(crn̄, κrp) (13)

3. Cost of Forwarding Traffic: Let us assume that the cost
of forwarding 1 Mbit data through one link in the network is
σ (in dollars). So, cost of traffic forwarding:

F =
∑
t∈T
n1∈Nt

∑
n2∈ηt(n1)
and n2>n1

∑
ū∈S̄
v̄∈η(ū)

(wtn1n2
ūv̄ − ŵtn1n2

ūv̄ )× βt × σ

(14)
Our objective is to minimize the weighted sum of the

aforementioned costs.
minimize

(
αD + βE + γF

)
(15)

Here, α, β, and γ are weighting factors that are used to
adjust the relative importance of the cost components. We
can reduce the Multi-Commodity, Multi-Plant, Capacitated
Facility Location Problem (MCMP-CFLP) [25], [10]) to VNF-
OP, which is known to be NP-Hard. Hence, VNF-OP is also
NP-Hard [8]. Next, we propose a heuristic algorithm.

IV. HEURISTIC SOLUTION

Given a network topology, a set of middlebox specifications,
and a batch of traffic requests, the heuristic finds the number
and locations of different VNF types required to operate the
network with minimal OPEX. The heuristic runs in two steps:
(i) we model the VNF-OP as a multi-stage directed graph with
associated costs, (ii) we find a near-optimal solution from the
multi-stage graph by running the Viterbi algorithm [14].

A. Modeling with Multi-Stage Graph

For a given traffic request, t = 〈ūt, v̄t,Ψt, βt, δt〉, we
represent t as a multi-stage graph with lΨt + 2 stages.
The first and the last (lΨt + 2) stages represent the ingress
and egresses switches, respectively. These two stages contain
only one node representing ūt and v̄t, respectively. Stage i
(∀i ∈ {2, . . . (lΨt +1)}), represents the (i−1)-th VNF and the
node(s) within this stage represent the possible server locations
where a VNF can be placed. Each node is associated with a

VNF deployment cost (Eq. 12) and an energy cost (Eq. 13),
as described in Section III-B.

An edge (v̄i, v̄j) in this multi-stage graph represents the
placement of a VNF at a server attached to switch v̄j , given
that the previous VNF in the sequence is deployed on a server
attached to switch v̄i. We put a directed edge between all
pairs of nodes in stage i and i + 1 (∀i ∈ {1, 2, . . . (lΨt +
1)}). We associate the traffic forwarding cost (Eq. 14) with
each edge. This cost is proportional to the weighted shortest
path (in terms of latency) between the switches. The total cost
of a transition between two successive stages in the multi-
stage graph is calculated by summing the node and edge costs
following Eq. 15. Finally, a path from the node in the first
stage to the node in the last stage represents a placement of
the VNFs. Our goal is to find a path in the multi-stage graph
that yields minimal OPEX.

B. Finding a Near-Optimal Solution

The Viterbi algorithm is a widely used method for finding
the most likely sequence of states from a set of observed
states. To find such a sequence, Viterbi algorithm first models
the states and their relationships as a multi-stage graph and
then computes a per node cumulative cost, costu, recursively
defined as the minimum of costv+transition cost(v, u) , for
all v in the previous stage as of u’s stage. This computation
proceeds in increasing order of the stages. The most likely
sequence of states is constructed by tracing back a path from
the final stage back to the first that yields the minimum
cost. We borrow the idea of how costs are computed from
Viterbi Algorithm and propose a traffic provisioning algorithm,
ProvisionTraffic (Algorithm 1). It takes a traffic request t
and a network topology Ḡ as input and returns a placement of
Ψt in Ḡ. For each node u in each stage i, we find a node v in
stage i−1 that yields the minimum total cost costv,u (defined
according to Section IV-A). We keep track of the minimum
cost path using the table π. The desired VNF placement is
constructed by back tracing pointers from the final stage to
the first stage using π. For each traffic request, the heuristic

Algorithm 1 ProvisionTraffic(t, Ḡ)
1: ∀(i, j) ∈ {1 . . . |Ψt|}×{1 . . . |S̄|} : costi,j ←∞, πi,j ← NIL
2: ∀i ∈ |S̄| :
3: if IsResourceAvailable(ut, i,Ψt

1, t) then
4: cost1,n ← GetCost(ut, i,Ψt

1, t), π1,n ← n
5: end if
6: ∀(i, j, k) ∈ {2 . . . |Ψt|} × {1 . . . |S̄| × {1 . . . |S̄|} :
7: if IsResourceAvailable(k, j,Ψt

i, t) then
8: costi,j ← min{costi,j , costi−1,k +GetCost(k, j,Ψt

i, t)}
9: πi,j ← i yielding minimum costi,j

10: end if
11: Π← NIL, C ←∞, ψ ←<>
12: ∀i ∈ |S̄| :
13: C ← min{C, cost|Ψt|,i + ForwardingCost(i, vt)+

SLOV iolationCost(i, vt, t)}
14: Π← i yielding minimum cost|Ψt|,i
15: ∀i ∈< |Ψt|, |Ψt| − 1 . . . 1 > : Append Π to ψ, Π← πi,Π

16: return Reverse(ψ)
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Fig. 4. Traffic Distribution over Time for Different Scenarios
TABLE I

SERVER AND MIDDLEBOX DATA USED IN EVALUATION
Server Data [1]

Physical CPU Cores Idle Energy Peak Energy
16 80.5W 2735W

Hardware Middlebox Data
Idle Energy Peak Energy Processing Capacity
1100W 1700W 40Gbps

VNF Data [4], [22]
Network Function CPU Required Processing Capacity

Firewall 4 900Mbps
Proxy 4 900Mbps
Nat 2 900Mbps
IDS 8 600Mbps

runs in Θ(n2m) time, where n is the number of switches in
the network and m is the VNF sequence length.

V. PERFORMANCE EVALUATION

We perform trace driven simulations on real-world network
topologies to gain a deeper insight, and to evaluate the effec-
tiveness of the proposed solutions. Our simulation is focused
on the following aspects: (i) demonstrating the benefits of
dynamic VNF orchestration over hardware middleboxes (Sec-
tion V-C), (ii) comparing the performance of the heuristic
solution with that of the optimal solution (Section V-D), and
(iii) comparing the performance of our heuristic with state-
of-the-art (Section V-E). Before presenting the results, we
briefly describe the simulation setup (Section V-A) and the
evaluation metrics (Section V-B). Source code is available at
http://goo.gl/Da7EZu.

A. Simulation Setup

1) Topology Dataset: We used two types of networks: (i)
Internet2 research network (12 nodes, 15 links) [3], and (ii) A
university data center network (23 nodes, 42 links) [9].

2) Traffic Dataset: We use real traffic traces for the eval-
uation. We use traffic matrix traces from [3] to generate time
varying traffic for the Internet2 topology. This trace contains
a snapshot of a 12 × 12 traffic matrix and demonstrates
significant variability in traffic volume. For the data center
network, we use the traces available from [9], and replay the
traffic between random source-destination pairs.

3) Middlebox and Cost Data: We have generated a 3-length
middlebox sequence for each traffic based on the data provided
in [2], [26]. We have used publicly available data sheets from
manufacturers and service providers to select and infer values
for server energy cost and resource requirements for software
middleboxes and their processing capacities. We also obtained
energy consumption data for hardware middleboxes from a
popular network equipment manufacturer. Table I lists the
parameters used for servers, VNFs, and middleboxes.

B. Evaluation Metrics

1) Operational Expenditure (OPEX): We measure OPEX
according to Eq. 15, and compare CPLEX and heuristic by
plotting the ratio of OPEX and its components.

2) Execution Time: It is the time required to find middlebox
placement for a given traffic batch and network topology.

C. VNFs vs. Hardware Middleboxes

One of the driving forces behind NFV is that VNFs can
significantly reduce a network’s OPEX. Here, we provide
quantifiable results to validate this claim. Fig. 3(a) shows
the ratio of OPEX for hardware middleboxes to VNFs for
incoming traffic provisioning requests (about 132 requests per
batch) over a period of 10000 minutes. We show two compo-
nents of OPEX: energy and transit cost. There is no publicly
available data that can be used to estimate the deployment
cost of hardware middleboxes. So, for this experiment, we
do not consider deployment cost as a component of OPEX
to make the comparison fair. We implemented a separate
CPLEX program that finds the optimal number and location
of hardware middleboxes for the same traffic. This program
finds the optimal values over all time-instances. VNFs are
provisioned at each time-instance by the CPLEX program
corresponding to the formulation provided in Section III.

The bottom part of Fig. 3(a) shows that VNFs provide more
than 4× reduction in OPEX. The individual reductions in
energy and transit costs are also shown in the same figure.
The reduction in energy cost is much higher than that of the
transit cost. This is due to the fact that hardware middleboxes
consume considerably higher energy than commodity servers.
From Fig. 3(a) and Fig. 4(a), we can also see that with
the increase in traffic volume (after time-instance 4000) the
total cost ratio decreases. Interestingly, the energy cost ratio
decreases, but the transit cost ratio increases. Handling higher
traffic volume requires higher number of VNFs to be de-
ployed, which increases the energy consumption of commodity
servers, thus decreasing the energy cost ratio. However, VNFs
are provisioned at optimal locations, which causes the transit
cost to decrease and increases the transit cost ratio.

D. Performance Comparison Between CPLEX and Heuristic

Now, we compare the performance of our heuristic with that
of the optimal solution. Fig. 3(b) and Fig. 3(c) show the cost
ratios for Internet2 and data center networks, respectively. The
traffic patterns for these two topologies are shown in Fig. 4(a)
and Fig. 4(b), respectively. The deployment cost is not shown
as it is equal in both cases. From Fig. 3(b), we can see
that the heuristic finds solutions that are within 1.1 times of
the optimal solution. During peak traffic periods, the ratio
of energy cost goes below 1, but the ratio of transit cost
increases. The optimal solution adapts to high traffic volumes
by deploying more VNFs (increasing energy cost) and placing
them at locations that decrease the transit cost. As a result,
the ratio of energy cost decreases and the ratio of transit cost
increases. However, the total cost ratio stays almost the same
(varying between 1 and 1.1). Similar results are obtained for
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TABLE II
AVERAGE EXECUTION TIME

Topology CPLEX Heuristic
Internet2 (12 nodes, 15 links) 34.99s 0.535s

Data Center (23 nodes, 43 links) 1595.12s 0.442s

the data center network (Fig. 3(c)) as well. Here, the cost ratio
is also very close to 1 and varies between 1.1 and 1.3.

The average execution times of the heuristic and CPLEX are
shown in Table II. They were run on a machine with 10×16-
Core 2.40GHz Intel Xeon E7-8870 CPUs and 1TB memory.
As we can see, our heuristic provides solutions that are very
close to the optimal one and its execution time is several order
of magnitude faster than CPLEX.

E. Performance Comparison with Previous Work
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Fig. 5. Performance comparison with [21]

We demonstrate the effectiveness of our proposed heuristic
(NFO-DP) over prior work by comparing with a very recent
and relevant one. We implemented the binary search based
heuristic proposed in [21] (NFO-BS) and ran it on a ma-
chine with similar configurations. We adjusted the heuristic
parameters according to the provided guideline in the paper.
We experimented with a moderate sized ISP network topology
with 79 nodes and 147 links (AS3967 from RocketFuel ISP
topologies [30]). We varied the number of VNF chaining
requests from 10 to 100 and measured the execution time along
with the number of deployed VNFs. The results are reported
in Fig. 5. The binary search based approach could not find a
feasible solutions within the set time limits for more than 60
chains. Our findings show that, on a similar problem instance
our proposed heuristic outperforms the state-of-the art in both
solution quality and execution time.

VI. RELATED WORKS

The initial drive for NFV came from several telecommu-
nication operators back in 2012 [13]. More recently, Man-
agement solutions for NFV are proposed by projects like
Stratos [15], OpenNF [16]. Stratos proposes an architecture
for orchestrating VNFs to a remote cloud with focus on
traffic engineering and horizontal scaling of VNFs. OpenNF
proposes a converged control plane for VNFs and network
forwarding plane by extending the centralized SDN paradigm.
An OpenStack based VNF orchestration system is presented
in [20]. It proposes to modify the compute and networking
engine of OpenStack to support intelligent placement of VNFs
in VMs and transparently deploy service chains. Initial studies
on placement of VNFs and VNF chains in both IP and optical
networks is presented in [23], [24], [21], [32], [28], [7], [6].
However, none of the aforementioned research works address
the issue of dynamically adjusting the placement of VNFs to
balance between network operating cost and performance.

VII. CONCLUSION

Virtualized network functions provide a flexible way to
deploy, operate, and orchestrate network services with much
less capital and operational expenses. Our model can be used
to determine the optimal number of VNFs and to place them
at the optimal locations to optimize network operational cost
and resource utilization. Our trace driven simulations on the
Internet2 research network demonstrate that network OPEX
can be reduced by a factor of 4 over hardware middleboxes
through proper VNF orchestration. In this paper, we presented
two solutions to the VNF orchestration problem: CPLEX
based optimal solution for small networks and a heuristic for
larger networks. We found that the heuristic produces solutions
that are within 1.3 times of the optimal solution, yet the
execution-time is about 65 to 3500 times faster than that of
the CPLEX solution.
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