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Abstract—Network managers have to deal with tons of mea-
surement data provided by monitoring systems. Such data is
difficult to both process and translate into concrete management
actions. As an attempt to make managerial work easier, we
propose a novel statistical approach that summarizes the behavior
of network flow characteristics —e.g., flow sizes or durations.
Bearing in mind that losses in the summarized information can
lead to restricted or even erroneous conclusions, our approach
solves this by exploiting the probability integral transform the-
orem. This theorem allows the definition of a set of intervals,
mapped into concrete categories, where the number of flows
according to a given characteristic would be uniformly distributed
among categories. This eases the use of both statistical tests
and simple visual inspection to detect changes in the behavior
of the characteristic under analysis, as typically abrupt changes
are understood as signs of intrusion, malfunction or other types
of anomalies. This proposal gave rise to the visualization and
analytical framework Dictyogram, which has been applied to
monitor the Spanish Academic Network —more than one million
users. Its results are shown as a case study assessing the usefulness
of our proposal.

I. INTRODUCTION

Network monitoring is one of the main Network Manage-
ment activities. Thanks to it, network managers can detect,
diagnose and solve the problems that arise every day as part of
the network’s life. Unfortunately, monitoring systems provide
network managers with tons of measurement data, and its inter-
pretation has become a challenge. In this scenario, this paper is
intended to ease network managers’ work by proposing a novel
approach to study the behavior of network flow characteristics.
We refer to network flow characteristic as any metric that can
be part of a typical or extended network flow record, as defined
by IP Flow Information eXport (IPFIX) [1] —some common
examples are size in bytes, duration in seconds or number of
packets.

Network flow-based monitoring has received much at-
tention by the research community as it represents a good
trade-off between two opposite approaches, such as packet
captures and aggregated time series —e.g., MRTG outputs.
This monitoring method has been proven useful to detect
network intrusion, malfunction, or other types of anomalies.
As an example, the authors in [2] show that under abnormal
situations the size and duration of flows decrease at least one
order of magnitude. Another example is that, during Denial of
Service attacks, the proportion of flows with very few packets
shoots up [3].

Network traffic change detection has also been deeply
studied. In the beginning, the definition of static thresholds [4]
(e.g., if the ratio of small flows was over a certain value) was
the typical approach to this problem. However, it is unable to
provide the flexibility that monitoring requires. More recently,
research efforts have been focused on applying statistics to
this issue. First, only based on changes on mean and variance,
and later, more complete studies based on histograms and
cumulative distribution functions [5], [6].

Following these previous works, we propose a simpler
and more flexible way to summarize the behavior of network
characteristics. This can be useful to visualize the traffic
evolution, and easily detect changes in its pattern. Bearing in
mind that losses in the summarized information can lead to
restricted or even erroneous conclusions, our approach solves
this problem by defining a set of intervals related to certain
probability levels using the probability integral transform [7].
Such transformation ensures that given a set of samples of
a concrete characteristic, the distribution on equally-spaced
ranges (i.e., quantiles) over the cumulative distribution function
of the sample will be uniformly distributed. Intuitively, this
means that if we take, for example, the empirical percentiles
of a sample and we count the values appearing between each
percentile, we will approximately obtain the same figures.

With respect to common traffic throughput time series,
the representation over time of these set of values would
provide a richer view of the network traffic, which is at the
same time easy to understand by a network manager. If a
change on the behavior occurs, it would break the uniform
distribution over the intervals vector and a change will be
detected. Particularly, we claim that the detection of departures
on uniformly distributed values is easier than other approaches
for both automatic tools and network managers. First, it is
trivial to use a contrast hypothesis test for uniformity (e.g., χ2

test) —however, as we will explain, some limitations apply
for non-continuous samples. Second, network managers can
also easily detect departures from uniformity after a simple
visual inspection. Note that each defined interval (hereafter,
a category) must fairly show the same number of samples
and if we plot that over time, the results will be represented
as equispaced curves. Otherwise, the uniform distribution is
not being fulfilled. This observation gave rise to the frame-
work Dictyogram, which allows network managers to visu-
ally inspect the output of our approach.
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The rest of the paper is organized as follows. Section II
includes a further description of the problem, and introduce
the fundamentals of our approach. Dictyogram will be
explained in Section III, while the next section is devoted
to provide more details of our proposal. We have put into
operation Dictyogram over flow records collected during
several years in the Spanish Academic Network (more than a
million users), and its results are shown in Section IV. Then,
Section V reviews the related work, and finally Section VI
provides the main findings and conclusion of this paper.

II. PROBLEM STATEMENT

In this section, we present the fundamentals of our method,
which improves the definition and visualization of network
flow categories. First, we further define the problem we
are facing, describing the context of network measurements
mining and the extraction of significant features to develop
advanced analytical tools. After that, we provide a review of
the mathematical tools that are the grounds of our proposal.

A. Measurements and Monitoring: Information vs. Knowledge

In the literature, there is a huge variety of tools and method-
ologies to obtain different types of network measurements.
Nevertheless, not only the measurements are important from
the point of view of network management. Also the application
of suitable techniques improves the quality and depth of the
knowledge that can be extracted from measurements. Thus,
once we have collected network measurements, managerial
tasks require to extract conclusions from data using different
data mining approaches. The knowledge acquisition, which is
necessary to reach conclusions, leads to a typical data and
process flow that must be taken into account to obtain valuable
findings when exploring network measurements.

Using the conceptual description stated in [8], we can
identify some steps to apply them during the study of network
measurement data. First of all, it is necessary to extract general
knowledge (e.g. models) from datasets containing the observa-
tions. Those models must provide meaningful information with
high-level semantics that can help to understand the underlying
phenomena. The application of this methodology also needs
the consideration of privacy aspects, thus requiring sometimes
additional obfuscation or deletion of some attributes —e.g.,
user identifiers.

Nowadays, a huge amount of diverse data can be consid-
ered during the network management activities —e.g., MRTG
measurements, flow records or logs. The use of summaries
inferred from observations is one of the alternatives to ho-
mogenize and easily interpret such data. Our proposal is to
conform categories for different flow characteristics in terms
of different probability levels in the cumulative distribution
function (CDF) via the probability integral transform. This
approach entails different advantages. On the one hand, the use
of characteristics at flow-level improves the analysis that can
be done if we use more aggregated data, and does not incur
in privacy issues. On the other hand, our approach induces
a methodology to study and understand the flows traversing
the network. Specifically, with the use of these statistical
summaries we open the door to the elaboration of (i) tests
to detect changes and events by dealing with all the variables

(b)

0

0.5

1
(a)

C
i
 = F

X

−1
(P

i
)

P
i

Figure 1. Definition of categories in terms of a set {Pi}i=1,...,n of
probability values, with the corresponding categorical data {Ci}i=1,...,n with
Ci = F−1

X (Pi).

under study in the same manner, and (ii) a novel representation
to present the evolution of network state to managers.

B. Formal description of the method

Our goal is to describe flow characteristics in terms of a
summarized representation using the CDF. To do so, we define
categories using the probability integral transform [7]:

Theorem 1. Probability integral transform: Let X be a con-
tinuous random variable with cumulative distribution function
FX . Then FX(X) follows a uniform distribution on [0, 1].

Therefore, to obtain the summary, we consider the distribu-
tion of values in FX(X) and select a certain partition of data
defined by a set of probability levels {Pi}i=1,...,n. Hence, the
flow categorization is given in terms of a corresponding set of
values {Ci}i=1,...,n, which are defined in (1).

Ci = F−1X (Pi) (1)

Needless to say, the width between the Ci corresponding to
each quantile is not equal, as those part of the random variable
with little probability mass will define large intervals, thus
compensating those part of the variable with large probability
mass. Then, the set of values that makes up the vector of
intervals will define a signature of the behavior of a given
characteristic.

In Fig. 1 we illustrate the meaning of Equation (1). We
link the category frequency behavior with the value holding
this accumulated probability via the cumulative distribution
function FX . For instance, Fig. 2 shows the application of this
theorem using 5000 realizations of a random variable following
a normal distribution with parameters µ = 30, σ = 1. In this
figure, we represent in (a) a histogram of 10 bins of the values
of FX(X), and in (b) the Empirical Cumulative Distribution
Function (ECDF) of the sample. Additionally, we have tested
that a different numbers of bins does not induce changes in the
behavior of the histogram of FX(X), which remains uniform.
Given that the hypothesis of continuity of the theorem is met,
the result holds in this case.

It is clear that we can use the quantiles of network
flow characteristics to define categorizations with a uniform
distribution of flows for each category. Additionally, as a result
of the definition of quantile, we can state that if the number
of network flows is stable, then these two situations will be
equivalent:
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Figure 2. Behavior of (a) the histogram of FX(X) and (b) the ECDF ofX for
5000 realizations of a normal random variable of parameters µ = 30, σ = 1.

• A change in the number of network flows in the
category whose extreme values are defined by two
given quantiles.

• A change in the values of those quantiles.

There are several advantages derived from the definition
of these network flow categories. As the distribution of the
number of flows for each category is uniform, it is easier
to represent the behavior of network flows. Moreover, it is
possible to detect changes using a homogeneity test (e.g.,
Pearson’s χ2 test). Additionally, our approach provides notions
about the position of each category inside of the set of
observations, which is interesting as usage patterns are related
to the characteristics of flows [5].

Nevertheless, three main issues arise during the practical
application of this method in network studies, which are later
solved:

1) Human network managers can barely cope with the
joint analysis of a large number of categories. This
fact makes necessary the definition of representative
summaries that allow the interpretation of network
measurement data.

2) It is not usual to know the cumulative distribution
function of empirical observed random variables, so
it is necessary to estimate such functions.

3) The continuity of random variables hypothesis is not
always met by network flow parameters (e.g. flow size
in bytes is an integer value). If we are using charac-
teristics which are not continuous random variables,
the uniformity of quantiles could not be hold.

With respect to this last issue, the definition of a uniformly
distributed categorization of network flows can be really chal-
lenging if the measurement process includes any sampling
(e.g. packet sampling), as we will show in Section IV. To
illustrate the absence of uniformity in the values of FX(X)
if X is not continuous, in Fig. 3 we show the behavior of
5000 realizations of a random variable following a Poisson
distribution with parameter λ = 30. The meaning of plots
(a) and (b) is the same of those in Fig. 2. Note that, if the
distribution is discrete, the mass distribution of X is very
concentrated, thus, the histogram of FX(X) shows a small
number of values for each bin.
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Figure 3. Behavior of (a) the histogram of FX(X) and (b) the ECDF of X
for 5000 realizations of a Poisson random variable of parameter λ = 30.

III. DESCRIPTION OF OUR SOLUTION: DICTYOGRAM

In this section, we will describe the characteristics of
Dictyogram, our novel framework for the analysis and
visualization of flow characteristics. Dictyogram is based
on previously described method, and it is conceived to provide
a detailed representation of the network state in an “manager-
friendly” fashion. We have chosen this name because we aim at
obtaining graphical results that can be like a network (δίκτυo
in Greek) electrogram, showing its vital signs.

A. Dimensionality reduction

Taking into account the limitations that we have explained
for a direct application of the probability integral transform,
we leverage some dimensionality reduction techniques to over-
come these potential matters.

First, we regard to non-continuous random variables issue.
In this scenario, the selection of {Pi}i=1,...,n can be tuned
to minimize the impact of discontinuities of the CDF . It
is important to note that those discontinuities are caused by
values of X having large probability mass. As a result, the
maximum mass of a point restrict the cardinality of the set
{Pi}i=1,...,n for a categorization that distributes uniformly
the number of flows between categories. If we denote the
maximum mass of a point as F0, then n is bounded by
1/F0. Thus, taking into account the CDF estimation and this
restriction, it would be possible to select a categorization
holding the maximum resolution achievable.

Nevertheless, sometimes it will not be possible to define
any categorization having this property —e.g., think of a
random variable taking a value with a probability greater
than 0.5. Still, in this worst case scenario our proposal to
define categories can be useful, even without achieving a strict
uniform distribution of flows. The summarization of network
behavior, and the visualization and study of network dynamics
are interestingly enriched, as we will show in Section IV.

Regarding the results presented to network managers, the
dimensionality reduction that Dictyogram provides entails
other advantages. One of the definitions of visualization states
that it is “a cognitive process performed by humans in forming
a mental image of a domain space” [9]. Thus, the data ob-
tained after applying the probability integral transform must be
presented to users in such a way that they can comprehend the



characteristics of the system under analysis. Dictyogram lets
control the resolution of the visualization of the distribution
that network flow characteristics follow. Additionally, if we
obtain time series representing the number of flows in each
category, we will have temporal snapshots of the distribution
evolution of the characteristic under analysis. Moreover, other
high-dimensional visualizations can be obtained using suitable
graphical representations, for instance, heat maps.

B. Estimation of the cumulative distribution function

To estimate the cumulative distribution function of the
flow characteristic under analysis, we discuss three different
approaches, namely (i) to use the mean function of the
observations, (ii) the deepest observation, or (iii) the curve
that maximizes the functional depth. Let us describe each
of these approaches and highlight their main advantages and
shortcomings.

Although the Glivenko-Cantelli theorem [10] assures that
the empirical estimation of the ECDF converges to the CDF as
the number of observations increases, our goal here is to use
the ECDFs observed in different days without accumulating all
the values of the characteristic under analysis. This methodol-
ogy is more scalable when considering long-term studies, as
the amount of required data is drastically reduced —e.g. we
keep only a certain number m of points for each ECDF, instead
of all the observations for the characteristic of each flow.

First of all, we consider the use of the mean function of
observations. That is, given a set of observations of the ECDF
of the characteristic under analysis, which we represent as
{FXi

}i∈1,...,n, we define our model in (2).

FmeanX =
1

n

n∑
i=1

FXi (2)

Given that all elements in {FXi}i∈1,...,n are well defined,
so it is FmeanX . This approach provides a solution with reduced
computational cost, which can be valuable in some scenarios.
Nevertheless, the use of the mean as a central tendency
measure is not a robust approach. As a result, if there are
outliers or heterogeneous behaviors in {FXi

}i∈1,...,n (e.g.,
different distributions between weekdays and weekends), the
model would be deviated and bad-representing the distribution
function, as we will illustrate in Section IV. Moreover, prob-
lems with integer values for certain flow characteristics arise
when using this approach. In fact, it is difficult to describe
how to manage rational values in this context, and it can lead
to incorrect behaviors of the model.

To cope with these matters, we describe now two alterna-
tives that provide a more robust approach and avoid problems
with values out of the domain of definition of the observations.
Our proposals are defined in terms of functional depth, so we
will briefly comment this concept. Functional depth measures
are useful as they give a notion of the relative position of
elements in the set of observations. As a result, depth measures
have become a key element in constructing some statistics that
require a certain order of the sample space, especially when
considering functional observations [11], [12]. In this case, we
use the functional depth definition stated in [13], given by the
expression in (3).

MSn,H(x) = min{SLn(x), ILn(x)} (3)

where

SLn(x) = 1
nλ(I)

n∑
i=1

λ{t ∈ I : x(t) ≤ xi(t)}

ILn(x) = 1
nλ(I)

n∑
i=1

λ{t ∈ I : x(t) ≥ xi(t)} (4)

In (4), λ represents the Lebesgue measure. With this definition,
we order curves using the minimum between the “time” they
are in the hypograph (SLn(x)) or epigraph (ILn(x)) of other
observations.

Using the definition of functional depth that we have in-
troduced above, our second alternative is to obtain the deepest
observation of the sample set. We can find the observed ECDF
with the highest value of MSn,H(x). This approach entails to
increase the computational cost of the estimation, but at the
same time it is protected against outliers in global terms; this
is, ECDFs that are far from the usual observed behavior (for
instance, ECDFs from atypical days).

A third alternative arises by following the notion of cen-
trality. We see that the median curve (that is, the curve that
passes through the median value at each probability level)
is the function that maximizes (3) when considered at each
point. As a consequence, this approach captures the typical
behavior of the flow characteristics at each probability level.
This is the most computationally demanding approach that we
are considering. It provides a robust exploration of the typical
behavior locally (instead of globally as in the case of the
deepest observation) but it needs to order all the observations
at each probability level.

The next section empirically evaluates these three ap-
proaches. Our findings point to assess the alternatives for
each particular deployment scenario, as the properties of traffic
characteristics may induce changes to the behavior of ECDF
estimations.

IV. CASE STUDY

In this section we will present a case study in which we put
into practice the ideas behind this article. To lead this study,
we have used Dictyogram to process network flows from
5 different flow exporters of the Spanish Academic Network
during a period of four years, from 2007 to 2011. Given that
we will study the underlying distribution function of these
exporters, it is important to note that traffic has been sampled
at a rate of one out of 100 packets. In our case study, we have
decided to present an example studying network flow size in
bytes, but the techniques presented here can be used for any
other network characteristic, such as packets or duration of the
flows.

For each of the exporters (A, B, C, D and E hereafter), we
have calculated the deciles of the flow size in bytes using the
three methods described in the previous section, obtaining the
results shown in Table I. We can appreciate the effect sampling
exerts on the underlying data, as usually the first three deciles
are in the 40-60 bytes range. Further analysis of the data also
shows that up to 90% of the sampled flows per day consist
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Figure 4. Comparison between observed CCDFs (orange line, no marker) for Exporter A, and models obtained using the mean (blue line, circles), deepest
(black line, diamonds) and median (red line, triangles) functions.

Table I. DECILES OBTAINED USING THE ESTIMATION OF THE CUMULATIVE DISTRIBUTION FUNCTION WITH EACH APPROACH.

Exporter Method Deciles (bytes) # Best*

A
Mean function 40.019 44.88 57.047 84.18 165.99 562.13 1327.8 1595.6 3348.8 0
Deepest obs. 40 44 52 80 129 420 1448 1500 4600 3

Median function 40 44 53 80 149 501 1452 1500 3000 25

B
Mean function 39.982 47.244 59.644 93.771 211.99 824.68 1467.5 1582.3 3794.3 0
Deepest obs. 40 52 64 92 163 531 1420 1500 4476 6

Median function 40 48 60 92 208 833 1480 1500 3744 22

C
Mean function 39.817 45.583 51.782 72.296 124.01 346.59 1148.5 1486.6 3028.3 20
Deepest obs. 40 48 52 70 120 312 1152 1500 3000 8

Median function 40 46 52 74 122 348.5 1260 1500 3000 0

D
Mean function 39.914 43.36 53.505 82.337 165.01 485.46 1329.9 1508.4 3991.9 0
Deepest obs. 40 49 60 86 146 355 1420 1500 3604 23

Median function 40 44 52 80 160 496 1420 1500 4170 5

E
Mean function 40 46.415 62.596 95.141 180.35 654.24 1404.5 2117.3 4736.7 0
Deepest obs. 40 51 63 93 160 367 1260 1840 5680 28

Median function 40 48 62 91 168 600 1420 2120 4260 0
* # Best column shows the number of days in 4 weeks that each method provided the best Pearson’s test-statistic value.

of only one packet, following the clue given by the 9th decile
which is always close to 1500 bytes —one TCP packet with
full payload. This means that barely 10% of the sampled flows
per day have two packets, and due to the nature of the Internet
traffic, we find high variances in the middle deciles.

Sharing the conclusions presented in [14], we have also
assessed that the exporters do not share values for the deciles
(although all of them presented similar intrinsic features),
confirming that measurements collected in a network could
not be extrapolated to others. It is recommended to use at least
one month worth of data in order to obtain the deciles. These
measurements should be recalibrated every so often, because
traffic behavior may alter them significantly enough.

Additionally, we have plotted in Fig. 4 the results for
exporter A, showing the model obtained with each method. We
have selected this exporter because of the high variability of
the daily ECDFs, which leads to noticeable differences in the
derived models —note that axis of abscissas is in logarithmic
scale. In this figure, we have also labeled the decile values in
the estimation that presented the best behavior for this exporter
after the empirical evaluation presented below.

To measure which of the three methods distributes more
uniformly the flows, we have calculated the Pearson’s test-
statistic for all three methods during a period of 4 weeks
in every exporter. The results are depicted in Fig. 5, and
summarized in the last column of Table I.
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Figure 5. Evolution of the Pearson’s test-statistic for all exporters during October 2010. (Less is better.)

As we can see, no method outperforms the other two, as
the results change among the observed exporters. Depending
on the level of aggregation of the exporter under study one
might prefer one or the other, bearing in mind that the median
is the most computationally expensive of the three methods
presented. In exporters with less aggregation (and thus more
variance) such as E, the median yields better results. Exporter
A also presents less aggregation, but the deepest observation
in this case is consistently the method with lowest Pearson’s
test-statistic. Looking at the evolution of the Pearson’s test-
statistic for Exporter A, we can see that the deepest observation
test-statistic value is fairly similar to that of the median,
and it could be argued that in general it would seem more
reasonable to use the deepest observation, as the median is
the most computationally expensive method. In cases with
low aggregation one should not use the mean to obtain the
deciles, due to higher variance. In cases where there is more
aggregation (exporters B, C and D) we have a similar situation.
We can safely say that, although the mean is the cheapest
method it does not yield the best results for uniformity overall,
and that the median and the deepest observation do not seem
to differ significantly. Nonetheless, the results obtained point
out that one or other method should be considered depending
on the aggregation of the exporter.

The goal of the visualization produced by Dictyogram
is to present the number of flows between each interval
defined by the deciles. If {dk}k=1,...,9 are the deciles obtained
through a given method, then we define the intervals as
[0, d1] ∪ (dj , dj+1] ∪ (d9,∞) for j = 1, . . . , 8. For each of
these intervals we will present a plot fi(t) for i = 1, . . . , 10
that will represent the number of active flows whose size is
within its given size interval at a given time t. In our study,
we have chosen visualizations of one day and granularity of
one minute.

As stated in Section II, it is not trivial to obtain a uniformly
distributed categorization of the flows because of the sampling.
As mice flows tend to be more present than elephant flows,
smaller flow size categories have an inherently higher number
of flows than larger ones. Furthermore, flows from determined
sizes are more likely to appear than others (40, 48, 1500,
etc.). A categorization defined with the deciles, as explained,
further impedes uniformity of distribution among categories,
as usually the deciles concur with these sizes. Nevertheless, it
does not impede a good visualization.

We present a Dictyogram representation example in
Fig. 6. The represented data was collected at exporter B
during a whole day. The values of the deciles for such
exporter are those presented before in Table I for each method,
where median and deepest observation provide the best flow
classification. As shown, the use of the mean does not work
correctly with the smallest deciles, which become almost
overlapped. To improve visualization, we stacked each fi(t)
function, so that lowest size interval is plotted at the bottom
and so on. The accumulation of the fi(t) functions provides
several advantages. It provides a clear understanding of what
is happening in the network at any given time. With a quick
glance one can understand how the traffic is distributed, and
which size intervals are responsible for the majority of traffic
observed at any given time.

Importantly, it can be used as a tool to detect anomalies
in the network. This day presents several anomalies in traffic,
during the whole day. We define an anomaly to be an unusual
number of active flows during a certain period of time. Anoma-
lies can occur in small periods of time (such as those happening
between 00:00 and 3:00, the drop in traffic around 10:00, and
some minor ones from 21:00 to 23:59) or in longer ones. In the
latter case, we will focus on two groups of anomalies, as they
provide the most interesting cases of study. Respectively, those
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Figure 6. Dictyogram representation of fi(t) with their respective size intervals delimited by the deciles given by (a) mean, (b) deepest observed ECDF,
and (c) median. Two groups of anomalies are remarked in rectangles 1 and 2.

groups can be seen in Fig. 6 from 3:30 to 8:00 (remarked in
rectangle 1) and from 14:45 to 15:30 (remarked in rectangle 2),
approximately. Thanks to the accumulated plots we can easily
identify the flow category (or categories) that are causing a
spike at any given time. For the first group of anomalies, we
can see that, after the spike happening at 4:00 and until 8:00,
flows of sizes from 60 to 92 bytes are responsible for the
alteration of traffic. Although the second group of anomalies
presents a similar behavior, it is worth remarking that this
anomalous event would not be easily detectable by looking
only at f10(t).

Given the shape of the anomaly and the size interval
of the anomalous flows an analyst can rapidly build up an
idea of what might be happening. Following our example, we
might hypothesize that we are observing some kind of port
scanning during the start of the first set of anomalies, and
then some kind of DNS or SMTP anomaly for the second
one. One fast query to the flow records confirms that both
sets of anomalies consist of DNS traffic between one host
inside the Spanish Academic Network and several DNS servers
across Europe. The frequency of requests and the delayed
responses produce the most of the traffic, indicating that we are
probably witnessing a DoS attack against several DNS servers.
Additionally, other less obvious anomalies (when looking just
at f10(t)) occur that day, such as those happening around
14:00 and 19:30 hours, which can be easily identified with
the Dictyogram representation.

All anomalies shown in Fig. 6 can be automatically
detected using time series filters, such as a Holt-Winters
filter [15] or other exponential smoothing algorithms. These

algorithms are not new for the network community, as the
Jacobson algorithm for TCP round-trip time estimation [16]
follows a similar approach. Smoothing each fi(t) and setting
confidence intervals will pinpoint the anomalies, making the
less obvious ones visible to analysts.

V. RELATED WORK

In this section, we first survey different approaches that
leveraged flow information to face different network manage-
ment tasks. Then, we turn out attention to frameworks for
network data visualization.

The authors in [17] provided an extensive review of current
applications based on the concept of network flows. Such
review includes several applications such as performance eval-
uation, misuse of bandwidth, and monitoring for QoS among
others, between which traffic characterization, diagnostic, se-
curity and intrusion detection stand out. Our approach may be
included in these latter categories, where we share space with
works like [5], [6], [18].

The authors in [5] found that flows can be categorized
according to their size and duration in four categories, named
by analogy as dragonflies (short), tortoises (long), mice (light)
and elephants (heavy). Furthermore, the authors in [6] continue
targeting traffic classification by flow size and duration, and
define other classes such as the buffaloes, which are more
spiky flows. They refine flow classification by using histograms
and modeling them with Dirichlet random distributions and a
stochastic version of the Expectation Maximization algorithm.
We note that these categories are intended to describe flow
behaviors, not working as real mechanism to detect deviations



from normal operation. In addition, we are proposing a simpler
method to categorize flow characteristics, as well as a visual
framework to show when the network went wrong.

Regarding Intrusion Detection Systems (IDS), the authors
in [18] reviewed solutions based on the construction of IP
flows. They provided a deep insight into the different ap-
proaches to identify problems in a network using flows. Among
these methods, it is remarkable the proportion of ICMP flow,
size and distribution of IP ranges, number of SYN packets
and the number of SYN/ACKs, small ratio flow-size/packets
among others. This illustrates the diversity of characteristics
that our approach could exploit to detect network issues.

Other approaches have also proposed statistical-sound
mechanisms to characterize traffic but paying attention to
macroscopic behavioral aspects of computer networks [3],
[19], [20], [21]. Nevertheless, the study of aggregates is often
insufficient for certain situations as stated in [22] and usually
flows represent a better trade-off between burden and precision.
Particularly, [23] is closer to our work. In that paper the
authors proposed to model throughput time series as a multi-
normal and stationary distribution, where each hour represents
a dimension. Their proposal tests if new samples follow the
model. If not, it is marked as a change, and the model
parameters are recalculated. However, our focus is far more
general (any network flow characteristic) and simpler, as we
summarize a characteristic with a simple vector instead of
multidimensional distribution.

Let us now present some surveys on frameworks for net-
work data visualization. In [24], the authors provided a review
of existent systems oriented to detect security issues. That
work analyzed different aspects of such systems, including data
sources and classification criteria. Their conclusions pinpointed
to the necessity of techniques that exploit the capacities of a
human analyst when defining network data visualizations. In
this sense, our proposal provides a “manager friendly” sum-
mary of the evolution of flow dimensions, without saturating
them with irrelevant information.

The authors in [25] showed a framework based on both data
mining and visual graphical representation. They proposed the
integration of different tools in a unique integrated network
traffic visualization system, and presented a number of exam-
ples. Our solution is a complementary visualization tool that
can be included in such a framework, to provide a temporal
visual description of changes in flow parameters.

Finally, we mention the tool Time Series Solver
(TSS) [26], which is a tool for the analysis of time series
based on network flow monitoring. TSS includes a battery of
tests to apply on the time series data as those our solution
outputs. However, they do not uniformly classify the flows,
with the lack of semantic these classes provide.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel proposal to sum-
marize network flow characteristics. Claiming that detection
of changes in uniformly distributed values is more intuitive
and giving to the visualization the importance it deserves,
we have devised a method that help in network management
tasks. The advantages of our method are manifold. First, it is

more straightforward to apply than other approaches, as we
use a simple vector to summarize the behavior of a network
characteristic. Second, it allows the description of the temporal
evolution of the flows traversing the network. Finally, the
identification of changes on such a vector becomes trivial, as a
simple visual interface lets network managers assess abnormal
changes.

Throughout the paper, we have analyzed the different steps
of the practical application of our method. On the one hand, we
have explored its limitations, such as the problem of discretiza-
tion and non-continuity of the random variables under analysis.
Nevertheless, these limitations do not significantly hinder the
results that can be obtained. Moreover, this discussion could be
of interest for other researchers, as the characteristics of flows
are often defined in terms of this type of random variable. On
the other hand, we have studied the estimation of the CDF
of flow characteristics using observations of different ECDFs.
We have proposed three different approaches that obtain robust
and representative results —namely, mean, deepest and median
functions. These three approaches can also be spread to any
networking area, applying these novel statistical techniques to
estimate other models.

Finally, we have implemented our method in a framework,
Dictyogram, available under request. We have presented
a real case study on flow data from the Spanish Academic
Network to illustrate the usefulness of Dictyogram. Specif-
ically, we have focused on flow sizes, but it is worth remarking
that we could have studied any other network characteristic.
This study has highlighted the applicability and ease of use of
our approach.

As future work, we plan to study how to summarize several
different network behaviors in a multivariate uniform distribu-
tion, so spanning additional methods to detect changes and
anomalies. We are also studying the possibility of modeling
the categories presented in this work with other well-known
distributions and not only as uniform signatures. Additionally,
we plan to study the distribution of the Pearson’s test-statistic
to detect anomalous events. Moreover, we consider testing the
stability of the estimation of the CDF, by defining some criteria
to recalibrate the model. Another future work is the exploration
of other representations with higher dimensionality —e.g., heat
maps, based for instance in percentiles.

To conclude, we have presented a set of tools and guide-
lines that can be applied during several analytical activities in
the Network Management scope. Moreover, we have defined
a novel data representation that can be successfully applied in
many different network research tasks, being useful for both
analysts and researchers.
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