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Abstract— Mobile thin-client services are gaining lots of 

attention from companies who concern about the security yet 

recognize the benefits of mobile computing in their businesses. 

The service is based on a private cloud system hosting virtual 

machines that can execute mobile OS instances. The owner of the 

private cloud needs to prepare sufficient server resources for 

hosting those virtual machines. In this paper, we propose a 

framework to guide server procurement decisions in a private 

cloud for mobile thin-client service, which aims to minimize the 

cost of unused servers while avoiding service level violation due 

to the lack of resources. To make a timely server procurement 

decision, the framework combines the techniques for workload 

estimation to individual VMs, demand estimation of newly 

created VMs and repetitive simulation of VM replacement 

algorithm. Through a simulation study, we show that the 

proposed framework can reduce the cost of unused servers by 

25% while satisfying a service level, compared with a time-based 

heuristic decision method. 

Keywords— cloud computing, optimization, server procurement, 

smartphone, virtual machine 

I. INTRODUCTION 

Smartphones and tablets are widely accepted for business 
use, not only for communication tools but also for terminal 
devices for remote working. Cloud service providers like NEC 
provide secure smartphone solutions called Virtualized 
Smartphone (VSP) [1], where mobile OS instances are 
executed on virtual machines hosted in a private datacenter and 
users can access the instances from their mobile devices 
through encrypted communication. Since the proprietary data 
is stored in the secure datacenter and is accessible via secure 
communication, the risk of information leak is reduced even 
when the mobile devices are lost or theft. Customers of VSP 
solution need to establish private cloud environments in secure 
sites. The server resources for the private cloud are necessary 
for accommodating mobile OS instances, but they impose the 
cost as well according to the amount of server resources 
required. On the other hand, once a customer decides to add a 
new server, the additional resource becomes an idle server 
which is regarded as wasted cost until the server is really in 
operation. Hence a timely server procurement decision for 
optimizing the resource cost is a key challenge of cloud owners. 

In this paper, we propose a framework to assist the decision 
of timely server procurement by workload characterization of 
VSP instances and demand prediction for virtual machines. 

Based on a practice, we assume that VMs for mobile OS 
instances are reallocated among host servers on the cloud at a 
certain time interval (e.g., everyday) by a VM replacement 
algorithm. A difficulty in the decision of server procurement is 
partly caused by such a behavior of replacement algorithm, 
which typically relies on heuristics and results in an ad-hoc 
placement. Depending on the algorithm or policy for VM 
reallocation, the time when a new server is required 
significantly changes. Such problem has  not been addressed in 
the research of mobile cloud computing [2]. To address this 
issue, we exploit a simulation of VM replacement algorithm in 
the framework so as to predict the time to resource contention 
resulting in additional server requirement. The effectiveness of 
the proposed framework is presented through the experiments 
in comparison with decision methods relying on heuristics. Our 
experimental results show that the proposed decision 
framework outperforms the heuristic approaches in terms of 
server unused period (UNP) while not violating a given service 
level.  

The rest of the paper is organized as follows. Section II 
introduces the configuration of the target service, VSP. Section 
III formulates the problem of server procurement decision. In 
Section IV, we propose a procurement planning framework 
that includes the simulation of VM replacement algorithm. 
Section V shows the evaluation results and Section VI gives 
our conclusion. 

II. VIRTUAL SMARTPHONE SERVICE 

VSP is a thin-client service that offers computing resources 
in a secure datacenter to mobile devices through encrypted 
network communication. Operating systems for smart devices 
are installed in virtual machines and their images and data are 
saved in the datacenter. A security policy prohibits the smart 
device users from saving any confidential data in the local 
storage and hence the company can minimize the risk of 
information leak due to accidental lost of the mobile device. 
All the processes associated with company activities, such as 
mailer, scheduler and document viewers, are run in the 
datacenter environment instead of the mobile device. User 
inputs on the smart device are transferred to the corresponding 
VM instance in the datacenter and, on the other side, the only 
screen data is transferred to the mobile device (see Fig. 1). The 
content of user inputs and screen data is protected by encrypted 
communication.  
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Fig. 1. A service architecture of virtual smartphone service 

Applications and an operating system run on a virtual 
machine consume shared computing resources in the datacenter. 
Increased number of VMs might cause resource contention 
which results in performance degradation of user applications. 
User-perceived performance is affected not only by resource 
contention in the datacenter (e.g., CPU, memory and disk I/O) 
but also by end-to-end network bandwidth between the 
datacenter and the mobile device.  

We focus on the case that CPU resource in the datacenter is 
the bottleneck of the service performance. To keep a good 
performance of smartphone service, it is important to avoid 
CPU resource contention proactively by adding server 
resources for hosting VMs. Meanwhile unused server incurs 
unnecessary cost. To reduce the idling periods of server 
resources, a virtualized datacenter employs a heuristic 
approach to optimize VM placement such that all the 
workloads of the VMs are packed in the given server resources. 

III. SERVER PROCUREMENT DECISION 

Server procurement decision problem can be regarded as a 
variation of classical inventory management problem with 
respect to the following two performance measures. 

 Server unused period (UNP) 
UNP represents the time period between the time procured 
server is ready for use and the time when the server actually 
starts being used in the system. To reduce the unused 
resources and maximize the efficiency, the server unused 
period should be minimized. 

 CPU overload 
CPU overload event occurs when the average CPU 
utilization of a server in a time window exceeds a 
predefined threshold value. CPU overload is caused by the 
lack of computation resources and it degrades the quality of 
the services hosted on the server.  

Let 𝑁(𝑡)  denote the number of CPU overload events 
observed in the system for time interval t from when the last 
server is added to the system. Since 𝑁(𝑡) is a counter of events 
from t=0, it increases monotonically over time. We assume the 
system has sufficient computing resources at the beginning and 
thus there is no overload as represented by 𝑁(0) = 0 . The 
probability that the 𝑁(𝑡) becomes positive (i.e., Pr[𝑁(𝑡) > 0]) 
increases according to workload fluctuations as well as 
increased demands for new VM instances. In order to avoid a 
CPU overload event, additional server resource should be 
procured before 𝑁(𝑡) becomes positive. Let 𝑡proc be the time 

when a server procurement decision is made. The ordered 

server will be delivered with a certain lead time d. A server 
procurement should be scheduled under the constraint 

𝑁(𝑡proc + 𝑑) = 0 so as to avoid CPU overload event. At the 

time 𝑡proc + 𝑑, the procured server becomes an unused server 

resource and UNP starts. To reduce UNP, 𝑡proc  should be 

postponed as much as possible into the future. When we regard 
𝑡proc  as a decision variable, the problem can be defined as 

below. 

Problem 1: Server procurement decision problem 

Determine the maximum server procurement time 𝑡proc under 

the condition 𝑁(𝑡proc + 𝑑) = 0. 

Note that 𝑁(𝑡proc + 𝑑) is not given a priori since the number 

of overload events in the future depends on the dynamics of a 
system under uncertainty. However, it is a monotonic function 

over time and thereby Pr[𝑁(𝑡proc + 𝑑) > 0] increases as 𝑡proc 

becomes larger. The condition 𝑁(𝑡proc + 𝑑) = 0  constrains 

the value of 𝑡proc from above. We capture the system dynamics 

by stochastic processes and present a framework to estimate 
the maximum 𝑡proc based on a simulation model. 

IV. PROCUREMENT PLANNING FRAMEWORK 

We propose a framework to determine the optimum server 
procurement time for VSP by combining the techniques for 
VM demand estimation and workload prediction.  

A. Architecture 

 

Fig. 2. Block diagram of the server procurement decision framework 

The overview architecture of the proposed framework is 
shown in Fig. 2. The framework includes two estimators; VM 
demands estimator and workload estimator. The VM demand 
estimator predicts the number of new requests for VMs, Ht,  
that arrive in the next time period. The estimation is based on 
the demand model which is assumed to derive from the history 
of new VM requests. While, the workload estimator is used for 
predicting the CPU workloads of individual VMs, Wt, for the 
next time period based on the patterns derived from the history 
data of CPU utilization. The estimated workloads are then fed 
into the VM placement simulator in which a VM placement 
algorithm determines the optimum VM placement in the server 
infrastructure under some allocation constraints. An important 
constraint is the CPU resource allocation constraint which 
ensures that the CPU overloads do not occur in any hosts. 
When the CPU resource allocation constraint is not able to be 
satisfied with the existing host servers, a new host server is 
decided to be added. If a procured server is not ready until then, 
the CPU overload counter, N(t),  increases in the next period. 
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To determine the optimum server procurement decision 
time, the overall framework works as a simulator. The 
simulator has a virtual timer which starts at the beginning of 
the simulation with the current state of the target VSP system. 
We assume that VM replacement takes place in a periodic 
maintenance period (e.g. every midnight) and define epoch as 
the time period bounded by the latest decision of VM 
placement. The simulation timer contains an epoch counter 
which counts the number of epochs from the beginning of the 
simulation. When the epoch counter increments, first the 
number of new requests for VMs during the new epoch, Ht, is 
estimated by VM demand estimator. Next, for all the target 
VMs in the system, the workloads during the new epoch, Wt, 
are estimated by workload estimators. The results are then used 
in the VM placement simulator that determines whether the 
existing host servers are tolerant to the workload changes and 
increased demands. If the host servers can accommodate all the 
VMs by replacement, the simulation proceeds to the next 
epoch. If not, it means CPU overload is inevitable without 
additional server resource. We can regard the next epoch as the 
time when the condition 𝑁(𝑡) = 0  is violated. In this case, 
subtracting the lead time d from the virtual time, we can get the 
maximum server procurement time 𝑡proc . Note that the 

optimum server procurement time is 0 when the lead time d is 
larger than the time to reach 𝑁(𝑡) > 0 (i.e., 𝑁(𝑑) > 0). VM 
demands estimator and workload estimator are detailed in the 
subsections below. 

B. VM demand and workload estimators 

In response to the increasing demands to a VSP service, we 
assume that the number of VMs monotonically increases over 
time. The requirements of VM instantiations can be considered 
as a random request arrival process, thus we model the VM 
demands by a Poisson Arrival Process. Once a VM is 
instantiated in the cloud, the workload of the VM changes over 
time. With the assumption that VM workloads in an epoch are 
categorized into a certain small-set of patterns, we employ a 
pattern estimation approach for VM workload estimation. Let 
us define workload pattern as a vector of average CPU 
utilizations in k segmented time intervals in an epoch, 𝒖 =
(𝑢1, 𝑢2, … , 𝑢𝑘), 𝑢1, 𝑢2, … , 𝑢𝑘 ∈ [0,100]. Workload changes in 
the consecutive epochs can be represented by the transitions 
among workload patterns. Let S be the set of patterns, which is 
constructed from history data, assume that any observation of 
workload change in an epoch is mapped onto a pattern 

𝒖(𝑖) = (𝑢1
(𝑖)

, 𝑢2
(𝑖)

, … , 𝑢𝑘
(𝑖)

), 1 ≤ 𝑖 ≤ 𝑙,  where l represents the 

number of patterns identified. By analyzing the statistics about 

the number of transitions among patterns 𝒖(𝑖)  to 𝒖(𝑗) 

(𝒖(𝑖), 𝒖(𝑗) ∈ 𝑆 ), we can estimate the transition probabilities 
among individual patterns. The state space S and the estimated 
transition probabilities over S define a Discrete Time Markov 
chain (DTMC) [2] which capture the probabilistic behavior of 
pattern transitions over time epochs. Let 𝚵  be the transition 
probability matrix of the DTMC whose (i, j)-element 

represents the transition probability from pattern 𝒖(𝑖)  to 

𝒖(𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑙  . The DTMC characterized by 𝚵  is used to 
predict the VM workload pattern in the next time epoch by the 
following steps. 

1) For a target VM, the latest workload pattern is observed 

as �̃� = (�̃�1, �̃�2, … , �̃�𝑘) . Compute the Euclid distances 

between �̃� and any 𝒖 ∈ 𝑆 and determine the pattern 𝒖(𝑖) 

which has the shortest distance from �̃�. 

2) Determine a next workload pattern 𝒖(𝑗), 1 ≤ 𝑗 ≤ 𝑙, which 

has a transition from 𝒖(𝑖) in the DTMC, sampled by the 

corresponding probability. In other words, 𝒖(𝑗) is chosen 

as the next workload pattern by probability 𝚵𝑖𝑗. 

We also need to estimate the workload of new VMs which 
is expected to start in the next epoch and has no recorded 
workload in the previous epoch. We can incorporate this 
boundary case into the pattern transition DTMC by adding the 
pattern for start-up workload. In the DTMC, the transition from 
start-up workload to any workload patterns is defined and the 
associated transition probabilities are estimated from the 
workload history of start-up VMs. In summary, the workload 
estimator predicts both the workload for existing VMs and new 
VMs in the next epoch based on underlying DTMC 
constructed from the history of VM workload change. 

C. VM replacement algorithm 

VM replacement algorithm, which reallocates VMs to host 
servers during a maintenance period, has a significant impact 
on the time to resource contention event (e.g., CPU overload 
event) resulting in server addition. Depending on heuristic 
algorithms or optimization methods used in the system, the 
total number of VMs that can be hosted by the given host 
servers changes [4]. There are several VM placement 
approaches which take into consideration the number of VM 
migrations required for replacement. Here we assume that the 
system employs a heuristic algorithm for VM replacement. In 
particular, we use Ajiro algorithm [5], which is a heuristic 
algorithm to determine a VM replacement plan with small 
number of VM migrations from the current state of VM 
placement. The algorithm is based on an iterative deepening 
search method with respect to the number of VMs extracted 
from each host for replacement. Note that the proposed 
framework does not rely on any specific VM replacement 
technique, we can employ different methods in the framework. 

V. EVALUATION 

To show the feasibility and the effectiveness of our framework, 
we conduct a simulation experiment. We capture the workload 
characteristics by the patterns, as described before. In our 
preliminary experiments, we use the pattern matrix U and the 
pattern transition matrix 𝚵 defined below. The values of  U are 
determined by the real observed data from a trial system. 

𝑼 =

[
 
 
 
 
𝒖(1)

𝒖(2)

𝒖(3)

𝒖(4)

𝒖(5)]
 
 
 
 

=

[
 
 
 
 
0 0 0 0 24 8 6 6 5 5 5 5 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 8 19 28 17 14 14 12 9 8 7 6 6 9 7
4 4 10 8 5 5 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 34 19 11 8 6 6 5]

 
 
 
 

 

𝚵 =

[
 
 
 
 
0 0.3 0.3 0.2 0.2
0 0.6 0.1 0.1 0.1
0 0.3 0.5 0.1 0.1
0 0.2 0.1 0.6 0.1
0 0.3 0.2 0 0.5]

 
 
 
 

 



We use a Poisson arrival process with rate 1/12 [1/hours] to 
create the VM demands. VM replacement takes place once a 
day in the maintenance period and we do not consider dynamic 
VM replacement during the usage period. Each host can 
accommodate VMs as long as the sum of their average CPU 
utilizations in the same time interval does not exceed 600. Fig. 
3 shows the results of the simulation based on the sample paths 
of VM demand arrivals by the Poisson process.  

 

Fig. 3. A simulated sample path of the number of hosts and VMs 

Using the data shown in Fig. 3, we evaluate the 
effectiveness of the framework compared with the two simple 
heuristic approaches. The first heuristic is an approach to order 
a new host after a lapse of predefined period tD from the time 
the previous host is added to the system. The ordered server is 
delivered after the lead time that is assumed to be three days 
(d=3). The second heuristic considers the number of VMs 
created in the system after the latest server and decides the next 
server procurement when the number of created VMs reaches 
to a threshold nD. When the number of new VMs exceeds nD, 
an order of a new server is placed and the server is delivered 
after the lead time d. 

 

Fig. 4. The simulation results of total UNPs and CPU overload events  

Unlike the two heuristic approaches, our framework can 
take into consideration the demand changes, workload changes 
and the effects of VM replacement algorithm. In the 
experiments, we conduct the simulation five times and decide a 
procurement when the next server addition is expected to occur 
after 𝑑 + ∆𝑑  days on average. ∆𝑑  is a simulation parameter 
which represents the margin of a delivery time. 

As defined in the problem in Section III, the objective is to 
maximize the server procurement time without violating the 

condition 𝑁(𝑡proc + 𝑑)  to minimize UNP. We evaluate the 

approaches by the total UNP observed until fifth server is 
added to the system and the number of CPU overloads due to 
delayed server procurement. 

Fig. 4(a) shows the UNPs and CPU violations result from 
the heuristic 1 with different value of tD. As tD increases the 
UNP decreases, while the number of CPU overloads starts 
increasing at certain time points. The UNP is minimized to 32 
days by setting tD = 13. Heuristic 2 is expected to yield better 
decisions because it can consider the number of VMs arrived to 
the system. Fig. 4(b) shows the UNPs by the heuristic 2 with 
different value of nD. The higher nD gives the better UNP, 
while the risk of CPU overloads increases. The UNP is 
minimized to 26 days by nD = 32, which is 18.7% smaller than 
the result of the heuristic 1. Finally, Fig. 4(c) shows the results 
of our framework with different margin ∆d for lead time d. 
When we set ∆d =6, the UNP is minimized to 24 days, which 
is 25% smaller than the heuristic 1 and 7.6% smaller than the 
heuristic 2. Through the above preliminary experiments, we 
confirm that the proposed framework can reduce UNPs 
drastically while avoiding CPU violations.  

VI. CONCLUSION 

Making a timely decision of server procurement in a private 
cloud system for smart devices is an important and challenging 
issue. We formulated the problem of server procurement 
decision in light of the trade-off between the useless period 
caused by a premature decision and the increased risk of 
service level violation due to delayed decision. We proposed a 
framework to guide a better decision of server procurement by 
using workload estimation for individual VMs, demand 
estimation of new VMs and simulation of a VM replacement 
algorithm. Through the experiments, we have shown that the 
proposed framework can reduce the UNPs compared with the 
simple heuristic approaches.  
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