
Just-in-time server procurement to private cloud for

mobile thin-client service

Fumio Machida
1
, Shunsuke Kohno

1
, Kosuke Maebara

2
, and Masayuki Nakagawa

3

1
Knowledge Discovery Research Laboratories,

2
Carrier Services Division, NEC Corporation

3
Network Software Development Operations Unit, NEC Communication Systems, Ltd.

{f-machida@ab, s-kohno@ct, k-maebara@ak}.jp.nec.com, and nakagawa.msy@ncos.nec.co.jp

Abstract— Mobile thin-client services are gaining lots of

attention from companies who concern about the security yet

recognize the benefits of mobile computing in their businesses.

The service is based on a private cloud system hosting virtual

machines that can execute mobile OS instances. The owner of the

private cloud needs to prepare sufficient server resources for

hosting those virtual machines. In this paper, we propose a

framework to guide server procurement decisions in a private

cloud for mobile thin-client service, which aims to minimize the

cost of unused servers while avoiding service level violation due

to the lack of resources. To make a timely server procurement

decision, the framework combines the techniques for workload

estimation to individual VMs, demand estimation of newly

created VMs and repetitive simulation of VM replacement

algorithm. Through a simulation study, we show that the

proposed framework can reduce the cost of unused servers by

25% while satisfying a service level, compared with a time-based

heuristic decision method.

Keywords— cloud computing, optimization, server procurement,

smartphone, virtual machine

I. INTRODUCTION

Smartphones and tablets are widely accepted for business
use, not only for communication tools but also for terminal
devices for remote working. Cloud service providers like NEC
provide secure smartphone solutions called Virtualized
Smartphone (VSP) [1], where mobile OS instances are
executed on virtual machines hosted in a private datacenter and
users can access the instances from their mobile devices
through encrypted communication. Since the proprietary data
is stored in the secure datacenter and is accessible via secure
communication, the risk of information leak is reduced even
when the mobile devices are lost or theft. Customers of VSP
solution need to establish private cloud environments in secure
sites. The server resources for the private cloud are necessary
for accommodating mobile OS instances, but they impose the
cost as well according to the amount of server resources
required. On the other hand, once a customer decides to add a
new server, the additional resource becomes an idle server
which is regarded as wasted cost until the server is really in
operation. Hence a timely server procurement decision for
optimizing the resource cost is a key challenge of cloud owners.

In this paper, we propose a framework to assist the decision
of timely server procurement by workload characterization of
VSP instances and demand prediction for virtual machines.

Based on a practice, we assume that VMs for mobile OS
instances are reallocated among host servers on the cloud at a
certain time interval (e.g., everyday) by a VM replacement
algorithm. A difficulty in the decision of server procurement is
partly caused by such a behavior of replacement algorithm,
which typically relies on heuristics and results in an ad-hoc
placement. Depending on the algorithm or policy for VM
reallocation, the time when a new server is required
significantly changes. Such problem has not been addressed in
the research of mobile cloud computing [2]. To address this
issue, we exploit a simulation of VM replacement algorithm in
the framework so as to predict the time to resource contention
resulting in additional server requirement. The effectiveness of
the proposed framework is presented through the experiments
in comparison with decision methods relying on heuristics. Our
experimental results show that the proposed decision
framework outperforms the heuristic approaches in terms of
server unused period (UNP) while not violating a given service
level.

The rest of the paper is organized as follows. Section II
introduces the configuration of the target service, VSP. Section
III formulates the problem of server procurement decision. In
Section IV, we propose a procurement planning framework
that includes the simulation of VM replacement algorithm.
Section V shows the evaluation results and Section VI gives
our conclusion.

II. VIRTUAL SMARTPHONE SERVICE

VSP is a thin-client service that offers computing resources
in a secure datacenter to mobile devices through encrypted
network communication. Operating systems for smart devices
are installed in virtual machines and their images and data are
saved in the datacenter. A security policy prohibits the smart
device users from saving any confidential data in the local
storage and hence the company can minimize the risk of
information leak due to accidental lost of the mobile device.
All the processes associated with company activities, such as
mailer, scheduler and document viewers, are run in the
datacenter environment instead of the mobile device. User
inputs on the smart device are transferred to the corresponding
VM instance in the datacenter and, on the other side, the only
screen data is transferred to the mobile device (see Fig. 1). The
content of user inputs and screen data is protected by encrypted
communication.

978-3-901882-77-7 © 2015 IFIP

Fig. 1. A service architecture of virtual smartphone service

Applications and an operating system run on a virtual
machine consume shared computing resources in the datacenter.
Increased number of VMs might cause resource contention
which results in performance degradation of user applications.
User-perceived performance is affected not only by resource
contention in the datacenter (e.g., CPU, memory and disk I/O)
but also by end-to-end network bandwidth between the
datacenter and the mobile device.

We focus on the case that CPU resource in the datacenter is
the bottleneck of the service performance. To keep a good
performance of smartphone service, it is important to avoid
CPU resource contention proactively by adding server
resources for hosting VMs. Meanwhile unused server incurs
unnecessary cost. To reduce the idling periods of server
resources, a virtualized datacenter employs a heuristic
approach to optimize VM placement such that all the
workloads of the VMs are packed in the given server resources.

III. SERVER PROCUREMENT DECISION

Server procurement decision problem can be regarded as a
variation of classical inventory management problem with
respect to the following two performance measures.

 Server unused period (UNP)
UNP represents the time period between the time procured
server is ready for use and the time when the server actually
starts being used in the system. To reduce the unused
resources and maximize the efficiency, the server unused
period should be minimized.

 CPU overload
CPU overload event occurs when the average CPU
utilization of a server in a time window exceeds a
predefined threshold value. CPU overload is caused by the
lack of computation resources and it degrades the quality of
the services hosted on the server.

Let 𝑁(𝑡) denote the number of CPU overload events
observed in the system for time interval t from when the last
server is added to the system. Since 𝑁(𝑡) is a counter of events
from t=0, it increases monotonically over time. We assume the
system has sufficient computing resources at the beginning and
thus there is no overload as represented by 𝑁(0) = 0 . The
probability that the 𝑁(𝑡) becomes positive (i.e., Pr[𝑁(𝑡) > 0])
increases according to workload fluctuations as well as
increased demands for new VM instances. In order to avoid a
CPU overload event, additional server resource should be
procured before 𝑁(𝑡) becomes positive. Let 𝑡proc be the time

when a server procurement decision is made. The ordered

server will be delivered with a certain lead time d. A server
procurement should be scheduled under the constraint

𝑁(𝑡proc + 𝑑) = 0 so as to avoid CPU overload event. At the

time 𝑡proc + 𝑑, the procured server becomes an unused server

resource and UNP starts. To reduce UNP, 𝑡proc should be

postponed as much as possible into the future. When we regard
𝑡proc as a decision variable, the problem can be defined as

below.

Problem 1: Server procurement decision problem

Determine the maximum server procurement time 𝑡proc under

the condition 𝑁(𝑡proc + 𝑑) = 0.

Note that 𝑁(𝑡proc + 𝑑) is not given a priori since the number

of overload events in the future depends on the dynamics of a
system under uncertainty. However, it is a monotonic function

over time and thereby Pr[𝑁(𝑡proc + 𝑑) > 0] increases as 𝑡proc

becomes larger. The condition 𝑁(𝑡proc + 𝑑) = 0 constrains

the value of 𝑡proc from above. We capture the system dynamics

by stochastic processes and present a framework to estimate
the maximum 𝑡proc based on a simulation model.

IV. PROCUREMENT PLANNING FRAMEWORK

We propose a framework to determine the optimum server
procurement time for VSP by combining the techniques for
VM demand estimation and workload prediction.

A. Architecture

Fig. 2. Block diagram of the server procurement decision framework

The overview architecture of the proposed framework is
shown in Fig. 2. The framework includes two estimators; VM
demands estimator and workload estimator. The VM demand
estimator predicts the number of new requests for VMs, Ht,
that arrive in the next time period. The estimation is based on
the demand model which is assumed to derive from the history
of new VM requests. While, the workload estimator is used for
predicting the CPU workloads of individual VMs, Wt, for the
next time period based on the patterns derived from the history
data of CPU utilization. The estimated workloads are then fed
into the VM placement simulator in which a VM placement
algorithm determines the optimum VM placement in the server
infrastructure under some allocation constraints. An important
constraint is the CPU resource allocation constraint which
ensures that the CPU overloads do not occur in any hosts.
When the CPU resource allocation constraint is not able to be
satisfied with the existing host servers, a new host server is
decided to be added. If a procured server is not ready until then,
the CPU overload counter, N(t), increases in the next period.

Application

OS

vcpu mem vnic

VM

Host server

VM

HostHost

Private cloud Smart device

User inputs

Screen data

(encrypted)

Workload

estimator

VM demand
estimator

VM placement
simulator

Placement planWt-1

tproc = t-d

t=t+1

N(t)>0

N(t)=0

Epoch counter

Ht Wt

WorkloadsNew VMs

Patterns

Constraints

Demand

model

To determine the optimum server procurement decision
time, the overall framework works as a simulator. The
simulator has a virtual timer which starts at the beginning of
the simulation with the current state of the target VSP system.
We assume that VM replacement takes place in a periodic
maintenance period (e.g. every midnight) and define epoch as
the time period bounded by the latest decision of VM
placement. The simulation timer contains an epoch counter
which counts the number of epochs from the beginning of the
simulation. When the epoch counter increments, first the
number of new requests for VMs during the new epoch, Ht, is
estimated by VM demand estimator. Next, for all the target
VMs in the system, the workloads during the new epoch, Wt,
are estimated by workload estimators. The results are then used
in the VM placement simulator that determines whether the
existing host servers are tolerant to the workload changes and
increased demands. If the host servers can accommodate all the
VMs by replacement, the simulation proceeds to the next
epoch. If not, it means CPU overload is inevitable without
additional server resource. We can regard the next epoch as the
time when the condition 𝑁(𝑡) = 0 is violated. In this case,
subtracting the lead time d from the virtual time, we can get the
maximum server procurement time 𝑡proc . Note that the

optimum server procurement time is 0 when the lead time d is
larger than the time to reach 𝑁(𝑡) > 0 (i.e., 𝑁(𝑑) > 0). VM
demands estimator and workload estimator are detailed in the
subsections below.

B. VM demand and workload estimators

In response to the increasing demands to a VSP service, we
assume that the number of VMs monotonically increases over
time. The requirements of VM instantiations can be considered
as a random request arrival process, thus we model the VM
demands by a Poisson Arrival Process. Once a VM is
instantiated in the cloud, the workload of the VM changes over
time. With the assumption that VM workloads in an epoch are
categorized into a certain small-set of patterns, we employ a
pattern estimation approach for VM workload estimation. Let
us define workload pattern as a vector of average CPU
utilizations in k segmented time intervals in an epoch, 𝒖 =
(𝑢1, 𝑢2, … , 𝑢𝑘), 𝑢1, 𝑢2, … , 𝑢𝑘 ∈ [0,100]. Workload changes in
the consecutive epochs can be represented by the transitions
among workload patterns. Let S be the set of patterns, which is
constructed from history data, assume that any observation of
workload change in an epoch is mapped onto a pattern

𝒖(𝑖) = (𝑢1
(𝑖)

, 𝑢2
(𝑖)

, … , 𝑢𝑘
(𝑖)

), 1 ≤ 𝑖 ≤ 𝑙, where l represents the

number of patterns identified. By analyzing the statistics about

the number of transitions among patterns 𝒖(𝑖) to 𝒖(𝑗)

(𝒖(𝑖), 𝒖(𝑗) ∈ 𝑆), we can estimate the transition probabilities
among individual patterns. The state space S and the estimated
transition probabilities over S define a Discrete Time Markov
chain (DTMC) [2] which capture the probabilistic behavior of
pattern transitions over time epochs. Let 𝚵 be the transition
probability matrix of the DTMC whose (i, j)-element

represents the transition probability from pattern 𝒖(𝑖) to

𝒖(𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑙 . The DTMC characterized by 𝚵 is used to
predict the VM workload pattern in the next time epoch by the
following steps.

1) For a target VM, the latest workload pattern is observed

as �̃� = (�̃�1, �̃�2, … , �̃�𝑘) . Compute the Euclid distances

between �̃� and any 𝒖 ∈ 𝑆 and determine the pattern 𝒖(𝑖)

which has the shortest distance from �̃�.

2) Determine a next workload pattern 𝒖(𝑗), 1 ≤ 𝑗 ≤ 𝑙, which

has a transition from 𝒖(𝑖) in the DTMC, sampled by the

corresponding probability. In other words, 𝒖(𝑗) is chosen

as the next workload pattern by probability 𝚵𝑖𝑗.

We also need to estimate the workload of new VMs which
is expected to start in the next epoch and has no recorded
workload in the previous epoch. We can incorporate this
boundary case into the pattern transition DTMC by adding the
pattern for start-up workload. In the DTMC, the transition from
start-up workload to any workload patterns is defined and the
associated transition probabilities are estimated from the
workload history of start-up VMs. In summary, the workload
estimator predicts both the workload for existing VMs and new
VMs in the next epoch based on underlying DTMC
constructed from the history of VM workload change.

C. VM replacement algorithm

VM replacement algorithm, which reallocates VMs to host
servers during a maintenance period, has a significant impact
on the time to resource contention event (e.g., CPU overload
event) resulting in server addition. Depending on heuristic
algorithms or optimization methods used in the system, the
total number of VMs that can be hosted by the given host
servers changes [4]. There are several VM placement
approaches which take into consideration the number of VM
migrations required for replacement. Here we assume that the
system employs a heuristic algorithm for VM replacement. In
particular, we use Ajiro algorithm [5], which is a heuristic
algorithm to determine a VM replacement plan with small
number of VM migrations from the current state of VM
placement. The algorithm is based on an iterative deepening
search method with respect to the number of VMs extracted
from each host for replacement. Note that the proposed
framework does not rely on any specific VM replacement
technique, we can employ different methods in the framework.

V. EVALUATION

To show the feasibility and the effectiveness of our framework,
we conduct a simulation experiment. We capture the workload
characteristics by the patterns, as described before. In our
preliminary experiments, we use the pattern matrix U and the
pattern transition matrix 𝚵 defined below. The values of U are
determined by the real observed data from a trial system.

𝑼 =

[

𝒖(1)

𝒖(2)

𝒖(3)

𝒖(4)

𝒖(5)]

=

[

0 0 0 0 24 8 6 6 5 5 5 5 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 8 19 28 17 14 14 12 9 8 7 6 6 9 7
4 4 10 8 5 5 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 34 19 11 8 6 6 5]

𝚵 =

[

0 0.3 0.3 0.2 0.2
0 0.6 0.1 0.1 0.1
0 0.3 0.5 0.1 0.1
0 0.2 0.1 0.6 0.1
0 0.3 0.2 0 0.5]

We use a Poisson arrival process with rate 1/12 [1/hours] to
create the VM demands. VM replacement takes place once a
day in the maintenance period and we do not consider dynamic
VM replacement during the usage period. Each host can
accommodate VMs as long as the sum of their average CPU
utilizations in the same time interval does not exceed 600. Fig.
3 shows the results of the simulation based on the sample paths
of VM demand arrivals by the Poisson process.

Fig. 3. A simulated sample path of the number of hosts and VMs

Using the data shown in Fig. 3, we evaluate the
effectiveness of the framework compared with the two simple
heuristic approaches. The first heuristic is an approach to order
a new host after a lapse of predefined period tD from the time
the previous host is added to the system. The ordered server is
delivered after the lead time that is assumed to be three days
(d=3). The second heuristic considers the number of VMs
created in the system after the latest server and decides the next
server procurement when the number of created VMs reaches
to a threshold nD. When the number of new VMs exceeds nD,
an order of a new server is placed and the server is delivered
after the lead time d.

Fig. 4. The simulation results of total UNPs and CPU overload events

Unlike the two heuristic approaches, our framework can
take into consideration the demand changes, workload changes
and the effects of VM replacement algorithm. In the
experiments, we conduct the simulation five times and decide a
procurement when the next server addition is expected to occur
after 𝑑 + ∆𝑑 days on average. ∆𝑑 is a simulation parameter
which represents the margin of a delivery time.

As defined in the problem in Section III, the objective is to
maximize the server procurement time without violating the

condition 𝑁(𝑡proc + 𝑑) to minimize UNP. We evaluate the

approaches by the total UNP observed until fifth server is
added to the system and the number of CPU overloads due to
delayed server procurement.

Fig. 4(a) shows the UNPs and CPU violations result from
the heuristic 1 with different value of tD. As tD increases the
UNP decreases, while the number of CPU overloads starts
increasing at certain time points. The UNP is minimized to 32
days by setting tD = 13. Heuristic 2 is expected to yield better
decisions because it can consider the number of VMs arrived to
the system. Fig. 4(b) shows the UNPs by the heuristic 2 with
different value of nD. The higher nD gives the better UNP,
while the risk of CPU overloads increases. The UNP is
minimized to 26 days by nD = 32, which is 18.7% smaller than
the result of the heuristic 1. Finally, Fig. 4(c) shows the results
of our framework with different margin ∆d for lead time d.
When we set ∆d =6, the UNP is minimized to 24 days, which
is 25% smaller than the heuristic 1 and 7.6% smaller than the
heuristic 2. Through the above preliminary experiments, we
confirm that the proposed framework can reduce UNPs
drastically while avoiding CPU violations.

VI. CONCLUSION

Making a timely decision of server procurement in a private
cloud system for smart devices is an important and challenging
issue. We formulated the problem of server procurement
decision in light of the trade-off between the useless period
caused by a premature decision and the increased risk of
service level violation due to delayed decision. We proposed a
framework to guide a better decision of server procurement by
using workload estimation for individual VMs, demand
estimation of new VMs and simulation of a VM replacement
algorithm. Through the experiments, we have shown that the
proposed framework can reduce the UNPs compared with the
simple heuristic approaches.

REFERENCES

[1] NEC Virtualized Smartphone,
http://www.nec.com/en/global/solutions/nsp/vsp/index.html

[2] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, Heterogeneity in mobile
cloud computing: Taxonomy and open challenges, IEEE
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 369-392, 2014.

[3] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, John Wiley & Sons, 2nd edition, 2001.

[4] F. Machida, M. Kawato, Y, Maeno, Redundant virtual machine
placement for fault-tolerant consolidated server clusters, In Proc. of
NOMS2010, pp. 32-39. 2010.

[5] Y. Ajiro, Recombining Virtual machines to autonomically adapt to load
changes, In the Proc. of Annual Conf. of the Japanese Society for
Artificial Intelligence, (In Japanese) 2008.

0

1

2

3

4

5

6

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

#
H

o
st

s

#
V

M
s

Days

Host

VM

0

1

2

3

4

5

0

10

20

30

40

50

60

70

5 6 7 8 9 10 11 12 13 14 15

C
P

U
 o

v
er

lo
ad

s
[d

ay
s]

T
o

ta
l

U
N

P
 [

d
ay

s]

tD

UNPs

Overloads

0

1

2

3

4

5

0

10

20

30

40

50

60

70

14 16 18 20 22 24 26 28 30 32 34

C
P

U
 o

v
er

lo
ad

s
[d

ay
s]

T
o

ta
l

U
N

P
 [

d
ay

s]

nD

UNPs

Overloads

(a) Heuristic 1

0

1

2

3

4

5

0

10

20

30

40

50

60

70

9 8 7 6 5 4 3 2 1 0

C
P

U
 o

v
er

lo
ad

s
[d

ay
s]

T
o

ta
l

U
N

P
 [

d
ay

s]

Δd

UNPs

Overloads

(c) Proposed method

(b) Heuristic 2

