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Abstract—In recent years, IT Service Providers have been
rapidly introducing automation to their service delivery model.
Driven by market pressure to reduce cost and maintain quality
of services, they are looking for technologies that will allow rapid
progress towards attainment of truly automated service delivery.

Software monitoring systems are designed to actively collect
and signal event occurrences and, when necessary, automatically
generate incident tickets. Repeating events generate similar tick-
ets, which in turn have a vast number of repeated problem
resolutions likely to be found in earlier tickets.

In our work, we develop techniques to recommend an appro-
priate resolution for incoming events by making use of similarities
between the events and historical resolutions of similar events.
The traditional KNN (K Nearest Neighbor) algorithm has been
first applied to recommend resolutions for incoming tickets.
Massive heterogeneous applications as well as various monitoring
software are running on clients’ servers to accomplish required
tasks and to monitor system health via different metrics. It leads
to generation of correlated tickets that have different symptom
descriptions but similar resolutions. Furthermore, change of
servers’ environments can also induce similar situations in which
ticket descriptions differ before and after change but could have
similar resolutions. These correlated tickets cause performance
degradation in ticket resolution recommendation. Therefore, we
propose using SCL (structural corresponding learning) based
feature adaptation to uncover feature mapping in different time
intervals. Moreover, to put more insights into the periodic regu-
larities existing in our ticket datasets, we apply our algorithm on
tickets grouped by different time interval granularities. Extensive
empirical evaluations on real-world ticket data sets demonstrate
the effectiveness and efficiency of our proposed methods.

I. INTRODUCTION

The competitive business climate, as well as the complexity
of service environments, dictate the need for efficient and
cost-effective service delivery and support. These are largely
achieved through service-providing facilities integrated with
system management tools in combination with automation of
routine maintenance procedures such as problem detection,
determination and resolution for the service infrastructure [1],
[2], [3], [4], [5]. Automatic problem detection is typically
realized by system monitoring software, such as IBM Tivoli
Monitoring [6] and HP OpenView [7]. Monitoring continu-
ously captures the events and generates incident tickets when
alerts are raised. Deployment of monitoring solutions is a first

step towards fully automated delivery of a service. Automated
problem resolution, however, is a hard problem.

However, most service providers keep years’ worth of his-
torical tickets with their resolutions. The resolution is usually
collected as a free-form text and describes steps taken to reme-
diate the issues in the ticket. We analyzed historical monitoring
tickets collected from three different accounts managed by one
of the large service providers (an account is an aggregate of
services using common infrastructure). We noticed that there
are many repeating resolutions for monitoring tickets within
an account. It is natural to expect that if events are similar,
then their respective tickets probably have the same resolution.
Therefore, we can recommend a resolution for an incoming
ticket based on the event information and historical tickets.

In our previous work [8], a KNN-based approach has
been first applied to provide resolution recommendations for
incoming tickets in service management. Additionally, several
improved approaches [8], [9] have been proposed to resolve
various shortcomings of the basic algorithm and thus to
make recommended resolutions more relevant and practical.
However, a further drawback has been uncovered when our
previous methods were applied to system management.

In current service environments, massive heterogeneous
applications, as well as various monitoring software, running
on customers’ servers to accomplish complex tasks and to
monitor system health via different metrics, lead to generation
of correlated tickets that have different symptom descriptions
but similar resolutions. Furthermore, evolving over time, ser-
vice environments cause a further discrepancy. The description
of tickets generated before and after change differ but might
have similar resolutions since root causes remain unchanged.

Based on our previous understanding and initial experi-
ments, we find out that vocabularies used in ticket descriptions
are changing and shifting over time but interesting mappings
exist in those different vocabularies. However, our previous
algorithms are not able to discover those mappings and thus
their performance degrades over time due to inaccurate ticket
similarity. To overcome drawback, we propose structural cor-
responding learning (SCL) to discover the words’ mapping and
apply it to our ticket resolution recommendation system.

The traditional KNN-based recommendation methodology
was first proposed in our preliminary work [8], [9]. The
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details and extended algorithms are fully discussed there. The
rest of our paper is organized as follows: Section II briefly
introduces the workflow of the infrastructure management of
an automated service and shares our observations on real-
world monitoring tickets. In Section III, we present detailed
implementation and application of SCL within resolution rec-
ommendation algorithms for monitoring tickets by finding
feature mapping. Notice that phrases “feature mapping” and
“feature adaptation” are used interchangeably in the rest of
our work. In Section IV, we present experimental studies on
real monitoring tickets. Section V describes related work about
service infrastructure management, recommendation systems
and SCL. Finally, Section VI concludes the paper and discusses
our future work.

II. BACKGROUND

In this section, we first provide an overview of automated
service infrastructure monitoring with ticket generation and
resolution. Then we present our analysis on real ticket data
sets.

A. Automated Services Infrastructure Monitoring and Event
Tickets

The typical workflow of problem detection, determina-
tion, and resolution in services infrastructure management is
prescribed by the ITIL specification [10]. Problem detection
is usually provided by monitoring software, which computes
metrics for hardware and software performance at regular
intervals. The metrics are then matched against acceptable
thresholds. A violation induces an alert. If the violation per-
sists beyond a specified period, the monitor emits an event.
Events from the entire service infrastructure are accumulated
in an enterprise console that uses rule-, case- or knowledge-
based engines to analyze the monitoring events and decide
whether to open an incident ticket in the ticketing system.
The incident tickets created from the monitoring events are
called monitoring tickets. Additional tickets are created upon
customer request through Service Management System. The
information accumulated in the ticket is used by technical
support for problem determination and resolution. In this paper,
we consider tickets generated by a monitoring system (see
Figure 1).

Fig. 1: Service Management System

Each monitoring ticket is stored as a database record that
consists of several related attributes with values describing the
system status at the time when monitoring event was generated.
For example, a CPU-related ticket usually contains the CPU
utilization and paging utilization information. A capacity-
related ticket usually contains the disk name and the size of
disk used/free space. Typically, different types of monitoring
events have different sets of related attributes. The resolution
of every ticket is stored as a textual description of steps taken
by the system administrator to resolve this problem.

B. Repeated Resolution of Monitoring Tickets

We analyzed ticket data from three different accounts
managed by IBM Global Services. Many ticket resolutions
repeatedly appear in the ticket database. For example, for a
low disk capacity ticket, usual resolutions mean deletion of
temporal files, backup data, or addition of a new disk. Unusual
resolutions are very rare.

TABLE I: Data Summary

Data set Num. of Tickets Time Frame
account1 31,447 1 month
account2 37,482 4 months
account3 29,057 5 months
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Fig. 2: Numbers of Tickets and Distinct Resolutions

Fig. 3: Recommendation performance degrading as testing
instances coming from different sliding window

Collected ticket sets from the three accounts are denoted
by “account1,” “account2” and “account3,” respectively. Table
I summarizes the three data sets. Figure 2 shows the numbers
of tickets and distinct resolutions. We observe that a single
resolution can resolve multiple monitoring tickets. In other
words, multiple tickets share the same resolutions.



III. FEATURE ADAPTATION

In this chapter, we propose a solution for ticket resolution
recommendation that accommodates vocabularies changing or
shifting with time. We evaluate our solution on three real
world ticket datasets collected from IBM service management
system.

First, we show that feature variation and shift exists and
degrades performance of ticket resolution recommendation.
Second, we apply a structural correspondence learning (SCL)
domain adaptation algorithm [11] for use in ticket resolution
recommendation to solve the aforementioned issue. We assume
that although features shift with time, there exists some feature
mapping, i.e., some correspondence of features for tickets
generated in different time intervals. We order and group
tickets based on consecutive and disjointed time windows, and
consider each time window as one domain. Thus, a feature
mapping problem in ticket resolution recommendation become
a domain or feature adaptation problem. We repeat process for
each pair of consecutive sliding time windows.

In the following section we will briefly review SCL,
introduce our new pivot selection strategy and describe how
we apply SCL to ticket resolution recommendation problems.

A. Structural Corresponding Learning

First, we consider a simple example to illustrate application
of SCL. Suppose that we have a dataset of historical tickets
based on which we need to identify an appropriate resolution
for the incoming event. Resolutions for the same root cause
could slightly differ, but descriptions of symptoms could vary
significantly. For example, two tickets have the same resolution
as ”archive the logs and thus reduce the space utilization”, but
their descriptions could be different when diverse vocabularies
are used, such as ”volume”, ”capacity” or ”harddiskvolume”.

Our key intuition is that even if ”volume”, ”capacity”
and ”harddiskvolume” are literally distinct, they have high
correlation with ”space” or ”utilization” in the historical data
set, and thus we can tentatively construct some mapping
between them and recommend similar resolutions for incoming
events represented by different vocabulary.

B. Algorithm Overview

Given two consecutive sliding time windows, source tick-
ets are defined as the tickets from the first time window;
target domain tickets are the tickets from the second time
window. The SCL first chooses a set of m pivot features
that occur frequently in both domains. Next, it models the
correlation between the pivot features and all other features
by training pivot predictors to predict the occurrences of each
pivot feature in all training dataset from both domains [12],
[11]. The coefficients of the l-th pivot predictor characterize
the correlation between non-pivot features with the l-th pivot
feature; positive coefficients indicate that a non-pivot features
is highly correlated with the corresponding pivot feature.

We consider the coefficients of each pivot predictor as
a column vector. All predictors can then be arranged into a
matrix W = [wl]

n
l=1, where wl is the lth column coefficient

vector and n is the number of pivot features. Let θ ∈ Rh×d

be the top h left singular vectors of W , i.e.,

[U D V T ] = SV D(W ), θ = UT [1 : h, :]. (1)

There vectors are the principal predictors for our coefficient
space. If these pivot features are well chosen, we expect these
principal predictors to distinguish between words leading to
similar and different resolutions in both domains.

As we observe a feature vector x ∈ S at training and testing
time, we notice feature space S is different for different do-
mains. We apply the projection θx to obtain k new real-valued
features. Now we use augmented feature vector < x, θx > for
the same instance. If θ contains meaningful correspondences,
then we have a mapping of feature vectors from different
feature spaces into a shared feature space. The shared features
will bring tickets predicting similar pivot features closer using
similarity measurement given in following Equation 2:

sim(xas, xat) =

∑
w∈V xs(w) ∗ xt(w)

2|xs| · |xt|
+
cos(θxs, θxt)

2
(2)

Where xa =< x, θx > is the augmented feature vector, V is
the shared words in two feature space that xs and xt belongs
to, x(w) is the entry value for word w in vector x and cos(·, ·)
is the cosine similarity function. Here we assume those pivot
features strongly indicate the resolution and we will explain
how we extract those pivot features in the next section.

C. Picking Pivot Features

The efficacy of SCL depends on the choice of pivot
features. In [11], frequently-occurring words are chosen as
pivot features to resolve domain adaptation in a speech tag-
ging problem. Frequently-occurring words often correspond to
function words, such as prepositions and determiners, and are
good indicators of parts of speech. With respect to sentiment
classification in [13], those features are chosen as pivot features
which have the highest mutual information to the source label.
We use a different approach, however, for a ticket resolution
recommendation task in picking up pivot features. We require
pivot features to be good predictors of resolutions. We attempt
following two approaches in our situations.

First, we calculate the term frequency-inverse document
frequency (TF-IDF [14]) scores for all words out of ticket
symptom description in both domains and choose 1000 words
having the highest TF-IDF scores for each domain. Then,
we choose the m most frequently-occurring words out of the
two sets of 1000 words. This allows us to eliminate function
words, such as prepositions and determiners, while choosing
less frequently-occurring words that are strong indicators of
resolutions. However, vocabularies used for describing ”ticket
symptom” and ”ticket resolution” could differ, and the first
approach only gives us the words that are strong indicators
of ”symptom” instead of ”resolution”. Second, we assume
that there are some tickets with resolution in target domain
and use the strategy shown in Table III to pick the pivot
features from ticket resolutions instead of ticket symptoms.
The assumption can be easily satisfied in a practical scenario
since we define source and target domain via partitioning the
tickets and, therefore, we can always assign those latest tickets
with resolutions to a target domain. Table II contains the top
pivot features chosen using these two approaches.



TABLE II: Top pivot features chosen from description and
resolution

DESCRIPTION RESOLUTION
app space job high re-
store status error proce-
dures failed db

incident close copy resolve
server found issue action
team job clear close file

As shown in Table II, the pivot features chosen from
description strongly describe the ticket symptom observed on
the server system. At the same time, the pivot features chosen
by resolution describe the ticket resolution, i.e., how to resolve
issues on the server system.

D. Pivot Predictors

From each pivot feature we create a binary classification
problem of the form “does pivot feature l occur in this ticket?”.
Then we classify the training set. If we represent our features
as a vector x, we can solve these problems using m linear
predictors in which we use a linear regression model with l2
regularization as the underlying classification model.

fl(x) = sgn(ŵl · x), l = 1 . . .m (3)

Table III summarizes the details about construction of
predictors given by Equation 3.

TABLE III: Details on predictors’ construction

sgn(·) does pivot feature l occurs in the resolution of this
ticket?

pivot
features

the m most frequently-occurring words shared in the
two sets of 1000 words having the top TF-IDF scores
in ticket resolutions of both domains

x 1000 words having the highest TF-IDF scores from
symptom description

training
data

all tickets attached with resolution from both domains

The pivot predictors are the key element in SCL. The
weight vectors ŵl encode the covariance of the non-pivot
features with the pivot features. If the weight given to the z-th
feature by the l-th pivot predictor is positive, then feature z is
positively correlated with pivot feature l. Since pivot features
strongly indicate resolutions, we expect non-pivot features
from both domains to be correlated with them. If two non-pivot
features are correlated in the same way with many of the same
pivot features, then they have a high degree of correspondence.

Our algorithm has two hyper parameters, i.e., the number
of pivot features m and the h in Equation 1. We set h = 30
and m = 70 according to prior work and experiments in our
work which are not shown here due to limited contents.

IV. EVALUATION

In this chapter, we will focus on the dataset, the running
environment and discussion of experimental results.

A. Setup

For each account, we ordered tickets by time and chose var-
ious approaches to slide the dataset. Codes are implemented in
Java, running on 64-bit Windows 7 operating system residing
on a machine equipped with 16 GB RAM, Intel(R) Core(TM)
i7-4770 CPU running at 3.40 GHz. Training of pivot predictors
is parallelized.

B. Evaluation of Feature Adaptation

The goal of our first experiment is to verify feature
adaptation in which tickets are ordered by time. The first
6000 tickets are chosen for experiments. Then it has been
consecutively partitioned into three parts. The first two are
considered as source and target tickets for training and the
third part as testing pool from which we sample 400 testing
instances. Pivot features is extracted from available resolutions
of both source and target domain using the approach shown in
Table III . Under this setup, our experiments show that feature
mapping between the vocabularies used in both source domain
and target domain exists, and it strongly helps in improving
ticket recommendation performance.

Figure 4 shows the overall performances using two algo-
rithms “No-TF” and “TF-3”. “No-TF” is just the basic KNN-
based recommendation algorithm with no feature adaptation
and “TF-3” is the one with feature adaptation. As shown

Account1 Account2 Account3
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

a
cc
u
ra
cy

No-TF

TF-3

Fig. 4: Overall performance for three accounts

in Figure 4, “TF-3” outperforms “No-TF” by average 9%,
3%, 10% respectively for three accounts. We select an event
ticket in account1 to illustrate why “TF-3” is better than the
basic KNN-based algorithm “No-TF.” Table IV shows a list
of recommended resolutions given by each algorithm. The
testing ticket is a real event ticket triggered by an error when
processing a text file. It has the symptom description as “an
error in process xxx while processing file xxx.txt, leave the
processing” and its true resolution is “connectivity issue, the
file has been retransmitted successfully.” The general idea of
this resolution is to retransfer and reprocess the file.

As shown in Table IV, the second resolution recommended
by “No-TF” is the most relevant but still a wrong resolution:
“as a part of application team testing, file has been successfully
repulled.” Obviously, it is caused by manual testing. “TF-3,”
however, recommends 4 resolutions all highly relevant to the
true resolution. According to the definition of HIT [8], the
first resolution recommended by “TF-3” is regarded as a true



resolution, i.e., “the file has been retransmitted successfully.”
Also as we notice, the word “file” is a pivot feature shown
in Table III that allow us to identify expected resolutions.
Therefore, our proposed algorithm “TF-3” indeed can find the
hidden feature mapping using SCL and the feature mapping
performs better for recommending ticket resolution.

TABLE IV: Case Study

algorithm recommended resolutions isHit

No-TF
closing this ticket as its a duplicate of the incident
inc0771310

FALSE

as a part of application team testing, file has been
successfully repulled

FALSE

the file is been decommissioned, no action re-
quried, hence resolving

FALSE

TF-3

the file has been retransmitted successfully TRUE
the file was delivered successfully FALSE
the file has been successfully repulled FALSE
file was pulled successfully from bank of xxx FALSE

Moreover, we visualized one row of the project matrix θ
for our experiments on general feature adaptation. Table V
illustrates the first row of θ; the features on each row appear
only in the corresponding domain. In a traditional binary
classification problem of applying SCL [13], corresponding
features indicate either a positive or negative label. Corre-
sponding features here indicate event tickets caused by the
same or similar root cause and thus share similar resolutions.
We colored those correspondence feature groups so they could
be easily identified visually. For example, features “sdump,
page, harddiskvolume, paging, traps” colored in red indicate
system issues in or similar to paging due to low capacity.
“sdump” is an excutable command that tries to dump virtual
storage and thus makes space for paging. Without feature
mapping, event tickets will be considered having low or
no similarity if they contain discriminant features. Once we
discovered feature mapping, we can project those discriminant
features to shared feature space by applying them to θx. The
features will ensure that their corresponding event tickets have
higher similarity.

type features
+s sdump bee idc ami sr included refer read processing queues page read-

response
+t readresponse getacctsummbycustid contingency cli logerror harddiskvolume

paging traps getacctsforgrantee ant
-s messages wtprocess normal wiptrigger ifscmonitor poa responding dump-

code acctinfo
-t batjbstrm sm fndstn xmx dbm aelv throw responsestream

TABLE V: Correspondences discovered by SCL for general
feature mapping experiments. Notation “s” corresponds to
features coming from source domain, and “t” corresponds to
features coming from target domain. The “+” and the “-” sym-
bols indicate positive and negative features in correspondences,
respectively.

C. Feature Adaptation for Different Time Granularity

In section IV-B, we discussed the experiments for general
feature adaptation problems. In this section we consider an
adaptability between ticket data sets sliced by different time
granularities, i.e., daily, weekly or even monthly. The goal
of this experiment is to understand the feature shifting phe-
nomenon and the shifting of an event type in different time

granularities. Positive results in recommendation task would
indicate that monitoring tickets generated daily do not change
too much and there exists stable pivot features for constructing
meaningful feature mapping in the feature vocabulary. Other-
wise, it would indicate that the daily monitoring tickets shift
a lot leading to various daily resolutions and thus noisy pivot
features.

Figure 5 shows the experimental results for daily feature
adaptation. Tickets from three consecutive days are required
for one trial. “No-TF” only uses first day’s data for training
and last day’s for testing, meanwhile “TF-3” uses the first two
days’ data as source and target domain respectively for training
and last day’s for testing. The next trial is based on the tickets
from a time window that we get by sliding the start date of
time window one time unit later. Weekly consecutive feature
adaptation experiments have been carried out in a similar setup
and the results are shown in Figure 6 and Figure 7 for account1
and account2 respectively. Account3 has been ruled out of
weekly feature adaptation experiments since it only has two
weeks tickets, and the experiment requires ticket data from at
least three weeks.

Fig. 5: Daily adaptation for account1.
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Fig. 6: Weekly adaptation experimental results on account1’s
four weeks data. Two trials are carried out since each trial
requires three weeks data.

While feature mapping learned from the first two consec-
utive days’ tickets are useful for recommending the last day’s
event ticket resolutions from the first day, it can also degrade
the recommendation performance. This causes problems when
resolutions indicated by pivot features are quite commonly
shared for the first two days but not for the third day. For
example, the event tickets occurred in the first two days mainly
caused by “software exception” and “system failure” but in
the last day they occurred because of “low capacity.” As
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Fig. 7: Weekly adaptation experimental results on account2’s
four weeks data. Two trials are carried out since each trial
requires three weeks data.

shown in Figure 5, around half of the trials show performance
degradation for our approach “TF-3.” These feature mappings,
which are not applicable between the first daily tickets and the
last daily ones, are used to project features of the last daily
tickets into shared feature space with first daily tickets. They
cause noisy and inaccurate similarity calculations by recom-
mending algorithm and degradation of accuracy in resolution
recommendation .

Our experiment on weekly ticket datasets achieved positive
results as illustrated in Figure 6 and Figure 7. They indicate
that the distribution of event types occurring weekly are similar
for these three consecutive weeks.

V. RELATED WORK

This section reviews prior research studies related to the
automated IT service management and domain adaptation.
System monitoring, as part of the automated service man-
agement, has become a significant research area of the IT
industry in the past few years. Commercial products, such as
IBM Tivoli [15], HP OpenView [7] and Splunk, [16] provide
system monitoring. Numerous studies [17], [18], [19], [20],
[21], [22] focus on monitoring that is critical for a distributed
network. The monitoring targets include the components or
subsystems of IT infrastructures, such as the hardware of the
system (CPU, hard disk) or the software (a database engine,
a web server). Once certain system alarms are captured, the
system monitoring software will generate the event tickets
into the ticketing system. Automated ticket resolution is much
harder than automated system monitoring because it requires
vast domain knowledge about the target infrastructure. Some
prior studies apply approaches in text mining to explore the
related ticket resolutions from the ticketing database [23], [24].
Other works propose methods for refining the work order of
resolving tickets [23], [25]. A number of studies focused on the
analysis of time series event data and textual log files with the
goal of improving an understanding of system behaviors [26],
[27], [28], [29]. Another area of interest is the identification of
actionable patterns of events and misses, or false negatives, by
the monitoring system [30]. False negatives are indications of
a problem in the monitoring software configuration, wherein
a faulty state of the system does not cause monitoring alerts.

Large service providers staff their service centers with

hundreds of IT experts who are responsible for resolving
various incident tickets every day. Therefore, service providers
heavily rely on human efficiency for tasks such as root cause
analysis and incident ticket resolution. Automatic techniques
of recommending relevant historical tickets with resolutions
can significantly improve the efficiency of technical support
in this task. In our work, we resort t domain adaptation
techniques SCL to further improve our previous work [9] in
ticket resolution recommendation.

Domain adaptation is a well studied area. Roark and Bac-
chiani [31] use a Dirichlet prior on the multinomial parameters
of a generative parsing model to combine a large amount of
training data from a source corpus and a small amount of
training data from a target corpus. Several authors have also
given techniques for adapting classification to new domains.
Chelba et al. [32] first train a classifier on the source data
and then apply the maximum a posteriori estimation of the
weights of a maximum entropy on a target domain classifier
in which the Gaussian prior has a mean equal to the weights
of the source domain classifier. Daumé III and Marcu [33] use
an empirical Bayes model to estimate a latent variable model
grouping instances into domain-specific or common across
both domains. Our work focuses on applying SCL to find a
common representation for features from different tickets to
favor ticket resolution recommendation.

Finally we note that SCL is first introduced in the work
of Ando et al. [12], and later Blitzer combines SCL with
labeled target domain data, they compared the two using
the label of SCL or non-SCL source classifiers as features.
Several applications of SCL have been studied in papers [11],
[13]. Unlike these applications, we apply SCL to our ticket
resolution recommendation task and pick up the pivot features
from both source and target labeled tickets. We show that
we can make better use of SCL to discover a useful feature
mapping in our real-work ticket data and improve performance
of our ticket resolution recommendation task.

VI. CONCLUSION

This paper studies the problem of resolution recommen-
dation for monitoring tickets in an automated service man-
agement. Based on our previous work and some initial ex-
periments, we observe the feature shifting phenomon and the
existence of feature mapping in those tickets. In this paper,
we applied structural correspondence learning to the problem
of recommending ticket resolution, and conducted extensive
experiments on real-world ticket data sets to demonstrate the
effectiveness and efficiency of proposed methods.

There are several avenues for future research. First, we plan
to investigate and develop intelligent classification techniques
to automatically label resolutions [34], [35]. Second, our
current recommendation system uses KNN-based algorithms
due to their simplicity and efficiency. We will investigate and
develop other advanced algorithms to improve the recommen-
dation performance. Finally, we also plan to use an active query
strategy to fully automate resolution recommendations.
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