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Abstract—The recent growth of interest for in-memory
databases poses the question on whether established prediction
methods such as response surfaces and simulation are effective
to describe the performance of these systems. In particular, the
limited dependence of in-memory technologies on the disk makes
methods such as simulation more appealing than in the past,
since disks are difficult to simulate. To answer this question, we
study an in-memory commercial solution, SAP HANA, deployed
on a high-end server with 120 physical cores. First, we apply
experimental design methods to generate response surfaces that
describe database performance as a function of workload and
hardware parameters. Next, we develop a class-switching queue-
ing network model to predict in-memory database performance
under similar scenarios. By comparing the applicability of the
two approaches to modeling multi-tenancy, we find that both
queueing and response surface models yield mean prediction
errors in the range 5%-22% with respect to mean memory
occupancy and response times, but the accuracy for the latter
deteriorates in response surfaces as the number of experiments
are reduced, whereas simulation is effective in all cases. This
suggests that simulation can be very effective in performance
prediction for in-memory database management.

Index Terms—Simulation; In-memory Database; Performance
Model; Response Surface; Approximation; SAP HANA.

I. INTRODUCTION

The growing interest for in-memory analytics has attracted
industry and academia to use in-memory databases and re-
lated technologies as part of cloud-based offerings [1], [2].
Nonetheless, research still widely considers traditional disk-
based database systems. Evaluation methods for such systems
have mostly revolved around experiment-driven approaches
that rely on Latin-hypercube designs, adaptive sampling or
Kriging methods in order to construct underlying response
surfaces of database performance [3]–[7]. In contrast, with
in-memory analytics systems we experience fewer types of
performance contention, since analytical data processing is
mostly independent of disk access rates [8]. This simplifies the
modeling process and introduces new potential for simulation-
based methods to service management as an alternative to
well established experiment-driven approaches. Accordingly,
the question arises, if one, the other, or a joint use of both
approaches is preferable.

Our work addresses this question with a comparative anal-
ysis that explores the applicability of simulation and response
surfaces to model multi-tenancy performance for in-memory

databases. Both approaches can help to anticipate database
performance under different workload and hardware config-
urations and drive database management decisions that guar-
antee sustainable profits to cloud providers. However, there
is no rule-of-thumb intuition that guides the choice for one
specific method, since both come along with their advantages
and disadvantages. To further explore the suitability of both
methods we focus on the consolidation of large in-memory
databases. This constitutes a new research problem, and thus
performance impacts under these scenarios have not been
studied yet. In particular, we use response surfaces to analyze
the impact of analytical workloads and hardware parameters
on tenant interference and memory occupancy in such systems.
Since experiment time is a crucial factor for the accurate
construction of these models, we also consider an evaluation
of response surfaces based on a reduced set of experiments.
To complement our analysis, we develop a queueing net-
work based simulation model and explore its capability to
describe response times and memory occupancy. We expect
a simulation model to be a competitive alternative with little
requirements on experimental time and broader applicability
to ad-hoc evaluation scenarios.

During our study we observed that in-memory database
performance seems mainly workload driven. We also noticed
contrasting effects on response times and memory occupancy
depending on hardware resource sharing strategies. This raises
interesting questions for future work on database resource
management. Further, we found our simulation model highly
competitive to response surfaces, indicating potential for a
joint use of both approaches as an effective aid to database
management and capacity planning.

Summarizing, our main contributions are:

• A performance analysis of in-memory databases across
different workload and hardware parameters using re-
sponse surfaces

• Definition of a queueing network model to predict per-
formance under multi-tenant workloads

• A comparative evaluation of response surface and simu-
lation model

The remainder of our paper is structured as follows: Section II
provides an overview of experiment- and model-driven system
analysis approaches and describes our experimental testbed.
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Section III puts focus on the analysis of our chosen experiment
design using response surfaces, while we present an alternative
model based on a class-switching queueing network in Section
IV. We give a comparative evaluation of our predictive models
in Section V and discuss related work in Section VI. Finally,
we conclude the paper and outline future work in Section VII.

II. METHODOLOGY

A. Approaches to In-Memory Database Analysis

In-memory databases are a new class of systems able to
process multi-client and multi-tenant workloads with improved
speedups compared to traditional hard disk based systems.
However, analyzing the performance of these systems under
varying workloads and hardware configurations can be costly
and time consuming. Hence, we explore the applicability of
both experiment-driven and model-driven performance analy-
sis techniques. To provide a short comparison, Table I lists
advantages and disadvantages of both approaches. In partic-
ular, we are interested if an experiment-driven approach is
worth the large experimental time that comes with it compared
to simulation. Therefore, the focus of our methodology is
first set on experimental design methods, such as full facto-
rial designs [9], to analyze in-memory database performance
across various dimensions. We then explore the accuracy of
regression-based approximations over different fractions of our
experimental data which allows us to extend our consider-
ations to fractional factorial designs. Lastly, we provide a
comparison to a class-switching based queueing model for in-
memory databases. The goal of this comparison is to clarify
applicability of both methods to predicting queueing and non-
queueing related performance metrics. With the former we
mean response times, query throughputs and server utilization,
performance measures that can be directly obtained from
queueing networks. However, non-queueing related metrics,
such as memory occupancy or power consumption, have to be
inferred from direct measures as detailed in Section IV.

B. Testbed Description

1) Hardware and Software Platform: Our experimental
setup is composed of a TPC-H benchmark suite that drives
analytical workloads on multiple SAP HANA in-memory
database containers and manages monitoring tools to capture
low-level hardware usage profiles. The hardware platform
we use is an IBM x3950 X6 server running SLES 11 SP3.
This test server features 8 processor sockets with a total
of 120 physical cores and provides a total of 6 TB RAM
corresponding to 750GB per socket. The software stack of
our benchmark driver comprises shell and python scripts for
performing database resource allocation, managing experiment
specific parameter settings, submitting TPC-H queries and
actuating monitoring tasks. In particular, we focus on modeling
the computational time to process queries, but not the cost
of result fetch operations that require both CPU and network
resources. Dealing with networks adds a new layer of com-
plexity in our models that we leave for future work. Therefore,
in our experiments we kept benchmark driver and database

TABLE I
COMPARISON OF SYSTEM ANALYSIS APPROACHES

Experiment-driven Approach Model-driven Approach
Planning and Modeling

+ Established experimental designs + Many options for model definition
- Dependent on good factor selection - Choice of model complexity
- High effort in setting up testbed - Experiments for model validation

Execution
- Experiment time (high variability) + Relative short execution times
- Susceptible to experimental inter-

ruptions & measuring inaccuracy
+ Independent from experiment in-

terruptions

Analysis
+ High accuracy over design space + Only few experiments required for
+ Good for metrics difficult to model trace-driven parameterization
+ Can feed trace-driven models + Re-usability
- Adding more metrics is very costly + Exploration of additional metrics
- Potentially long trace analysis trivial
- Poor accuracy outside design space - Accuracy-complexity trade-offs

containers on the same server and issued queries without
fetching the result set. However, this does not imply workloads
are becoming light-weight. Due to multiple concurrently active
users and the CPU intensive character of analytical workloads
we are still experiencing high contention for resources and
query interference, keeping our test system heavily utilized.

2) Resource Allocation and Measurement Tools: During
our experimentation we make use of HANA’s multi-tenant
database containers. More specifically, we define a tenant
as a customer that has exclusive access rights to one or
more database containers/processes. The workload of a ten-
ant is generated by one or more users/clients that relate to
this specific tenant. The advantage of a multiple-container
system that manages several tenant database containers lies
in the possibility of isolating tenant database resources for
performance and security reasons, while avoiding additional
overhead by sharing non-tenant specific database processes
across all containers. In particular, we make use of Linux
cgroups to specify the number of CPU sockets a tenant
database container is assigned to. This allows us to control
the degree of overlapping across tenant databases, e.g. full,
partial or isolated. Moreover, we employ three monitoring
tools during our experimentation to collect micro architectural
statistics and database memory usage profiles. First, we use
Intel PCM [10] to retrieve information about hardware perfor-
mance counters for CPU core utilization, core and DRAM
power consumption, CPU temperature and other measures.
Next, we use a tool that continuously monitors core-affinity of
database threads [11], from which we infer threading levels of
database queries. Lastly, we implement a monitor that samples
the total memory used by all active tenant database processes.
To ensure sampling accuracy with short query execution times,
we set the sampling granularity of all monitoring processes to
50 ms, for which monitoring overheads remained below 0.1%
during our experiments.

C. Experimental Design

For our study, we are interested in six different workload
and resource configuration parameters that we believe have



TABLE II
CHOICE OF DESIGN FACTORS

Factor Description
x1 Client think time (in seconds)
x2 Number of active tenant databases
x3 Database scale factor, uncompressed (in GB)
x4 CPU-sockets a tenant database is assigned to
x5 Degree of resource overlapping between two tenants
x6 Number of clients/users per tenant

a large impact on database performance. We list our choice
of these parameters, in experimental design terminology also
called factors, in Table II.

First, we consider workload parameters that directly cor-
respond to the TPC-H workload intensity. These are think
times x1 that define the delay between database requests sent
by each client and the number of clients x6 that are active
at the same time. Both parameters are indirect proportional,
meaning that database response times surge with an increase of
clients or a decrease in think times. Furthermore, with factor
x3 we consider the TPC-H database scale factor (SF). The
scale factor describes the uncompressed size of a tenant dataset
that has to be processed during query execution, and thus we
expect this factor to be a main driver of database response
times and memory occupancy. With the latter we mean the
total memory used by a tenant database process. In addition,
we are interested in how the number of CPU sockets x4 that a
tenant database is assigned to affects its performance. We think
that while not necessarily beneficial under light load, a higher
number of CPUs is a welcome processing resource under
heavy workload scenarios. Furthermore, our considerations
include the number of tenant databases x2 that are deployed on
the same server and the degree of resource sharing between
several tenants x5. These two factors are of importance for
consolidation scenarios, since we can pack more tenants onto
a server when processing resources are shared. In Figure 1
we illustrate this with an exemplary packing under different
overlapping strategies on a 4-socket system. Since overlapping
forces tenant performance interference it becomes an interest-
ing factor for our analysis.

Analyzing our choice of six factors is a difficult task since
an experimental exploration of all their combinations is time
consuming. For example, a complete analysis of six factors
each at four different settings would require more than 17
months worth of experiments at execution times of 3 hours
per experiment. Experiment designs can drastically reduce the
number of experiments required to efficiently explore such
factors settings. Hence, we focus on 2k full factorial designs
[9], with k = 6. These designs are restricted to two settings for
each of the k factors. As a first step to obtain the corresponding
experiment design matrix, we define respective lower and
upper factor bounds {Xl,Xh}, listed in Table III. We can then
construct the design matrix using the senary Cartesian product
over the six sets {Xi

l , X
i
h}, i = 1, ..., 6 formed by columns xi

in Table III. This results in 64 experiment runs that account
for a total experiment time of eight days.

T1

T1

T2

T2

T1
T2

T1
T2

T1

T2

T1
T2

CPU 1 CPU 3

CPU 2 CPU 4

CPU 1 CPU 3 CPU 1 CPU 3

CPU 2 CPU 4 CPU 2 CPU 4

Isolation Partial Overlap Full Overlap

Fig. 1. Different Resource Assignment Strategies for 2 consolidated Tenants
(T1 and T2) that have access to 2 Sockets on a 4 Socket System.

TABLE III
DESIGN FACTORS AND THEIR BOUNDS

Bound x1 x2 x3 x4 x5 x6

Lower Bound (Xl) 0 2 30 2 full 8
Upper Bound (Xh) 10 4 300 4 isolated 16

III. FULL FACTORIAL DESIGN

Based on our chosen 26 design we want to determine the
effects on in-memory database performance for each design
factor. Hence, we explore the variation that each of the main
factors and two-factor interactions contributes to the total
variation of response times, utilization, memory occupancy
and CPU power consumption. To do so, we fit a second-
order regression model with two-factor interaction terms on
each of the response variables across our datasets from all
64 experiments, whereby input variables xi are mapped into
the [-1,1] domain [9]. Subsequently, we use the regression
coefficients to determine individual factor contributions. Our
regression model has the following form:

y = β0 +

k∑
i=1

βixi +

k∑
i=1

k∑
j=1

βi,jxixj + ε, (1)

with k regression coefficients β = (β0, ..., βk) and an additive
error ε, estimated with ordinary-least squares (OLS). While the
first term β0 gives an estimate for the mean model response,
the second term expresses the main effects for each of the
design factors and the third term corresponds to two-factor
interaction effects. We determine the variation per factor SSXk

compared to the total variation SST of each response according
to [9]:

SSXk = 2k
βk

SST
(2)

SST =

2k∑
i=0

(yi − ȳ)2, (3)

where 2k with k = 6 accounts for the number of experiments
and ȳ denotes the mean over the set of measured responses
yi, i = 1, ..., 2k. Furthermore, we used a common logarithmic
transformation, suggested also in [9], where we fit the natural
logarithm ln y of the respective response variable, also known
as multiplicative model. The reason for this approach is that
we can explain the total variation in response times due to
main factor and two-factor interaction effects to 99.8% using
a multiplicative model. An additive model would explain a
total variation of only 93.3%.



TABLE IV
VARIATION OF RESPONSES (IN %) DUE TO FACTORS AND THEIR

INTERACTIONS

Factor RTime Util Mmean Mpeak Power
x1 1.01 17.17 2.86 0.20 13.37
x2 1.51 0.51 0.03 0.01 0.06
x3 81.01 13.23 90.04 95.98 8.93
x4 1.06 3.70 0.40 0.19 6.36
x5 8.90 15.97 0.09 0.01 31.84
x6 3.81 8.05 4.09 2.73 6.68

x1x2 0.00 0.38 0.02 0.00 0.44
x1x3 0.58 12.47 1.74 0.37 10.35
x1x4 0.00 0.64 0.04 0.02 0.41
x1x5 0.02 6.16 0.09 0.02 4.37
x1x6 0.00 2.21 0.14 0.01 1.70
x2x3 0.00 0.32 0.02 0.00 0.33
x2x4 0.01 0.05 0.00 0.00 0.44
x2x5 1.46 0.41 0.03 0.00 1.22
x2x6 0.01 0.17 0.00 0.01 0.18
x3x4 0.00 0.40 0.01 0.01 0.18
x3x5 0.01 4.32 0.03 0.07 2.79
x3x6 0.00 1.36 0.06 0.01 0.97
x4x5 0.13 1.15 0.00 0.05 1.15
x4x6 0.06 0.79 0.06 0.04 0.54
x5x6 0.18 2.41 0.00 0.00 1.58

We present the results of our analysis in Table IV. More
specifically, we chose one reference tenant and report the
factor importance across our experiment design for this tenant
with regard to mean response times, mean memory occupancy
and peak memory occupancy. In addition, we report results
for the mean utilization and CPU power consumption per
socket. We observe a distinct behavior across response times,
utilization and memory occupancy. While for our chosen
design response times and utilization seem primarily affected
by the database scale factor, number of clients and tenant
overlapping, memory occupancy seems relatively insensitive
to the latter. We were interested if our system measurements
can support the predicted factor importance and looked at
the scenario with scale factor 30, think time 10 seconds,
eight clients and two sockets. We give the results for this
scenario in Figure 2, which shows the increase in three
different responses when varying the number of tenants that
overlap. As suggested by Table IV, response times are strongly
affected by tenant overlapping, while peak memory occupancy
seems indeed independent from the degree of overlapping.
We also noticed that power consumption is more sensitive
to overlapping than CPU utilization. This can be partially
explained by an increased power consumption of cache units
since likewise overlapping causes an increase of L3 cache
misses with a contribution of 21.4%. Next to the importance of
main factors we further noticed that CPU utilization and power
consumption show large two-factor interaction effects. Thus,
if a more detailed analysis of these metrics is required, an
experimenter should avoid particular resolution IV designs and
any resolution III design [9], in which important two-factor
interactions are confounded with other two-factor interactions.

Summarizing the results, we found that across our experi-
ment design space in-memory database performance is mainly
workload driven. However, we also observed a large contrast-
ing effect of resource overlapping strategies on response times
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Fig. 2. Increase of different Responses based on Overlapping. Scenario: SF30,
2 Sockets, 8 Clients. Overlapping corresponds to Utilizations of 0.34, 0.64
and 0.98. Values normalized by Single Tenant Scenario.

and memory occupation. This opens an interesting question for
future research, since from a memory perspective overlapping
can be an effective strategy to increase tenant packing.

IV. QUEUEING NETWORK BASED PREDICTION MODEL

A. Model Description

As alternative to the regression model presented in Section
III, we define a multi-class closed queueing network (QN)
model to capture in-memory database characteristics and esti-
mate database performance contention under different design
factors. Figure 3 provides a structural overview of our in-
memory database model. In particular, we use a closed QN
with class-switching to model the closed-loop execution of
TPC-H workloads. Using a class-switching model we can
simulate the behavior of a TPC-H client that recurrently
submits a permuted sequence of all 22 TPC-H query classes.
This means that for each client only one query job is in
the system at the same time, but after execution it changes
its query class. For a more detailed view on the concept
of class-switching see [12, Sec 7.3.6]. Furthermore, we use
delay centers to model the client think time between single
query submissions. To account for tenant database specific
threading limits, we employ admission queues that delay query
submissions once the corresponding finite capacity region is
full. During our experimentation we observed that threading
levels can become highly variable with analytical workloads.
Hence, we use a fork-join construct that captures the database
internal query processing mechanism on multi-core systems.
With the fork-join feature we can model the parallelization of
query plans into l subtasks that are handled by query engine
specific worker threads and their synchronization during a
parallel aggregation phase. To model the execution of worker
threads, we use processor sharing (PS) queues, where service
times are generally distributed i.i.d. random variables [13].
Further, we use the concept of class-chains [12, Sec 7.3.6]
to distinguish between client activity across multiple tenant
databases. Hence, for each tenant we separately define 22
classes and one class-switch to ensure client jobs remain
within their respective chain.

To further emphasize the importance of class-switching we
compared our simulation model against the simulator in [14]
that does not consider such a concept. The advantage of our
model is that we can define the total workload population N as
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the maximum number of TPC-H clients that submit query re-
quests. For the simulator in [14] however, we have to oversize
the maximum workload population and set N for each query
class separately to the maximum number of TPC-H clients. As
shown in [14] this approach requires think-time estimates from
trace logs dependent on the number of active clients, from
which our class-switching model is independent. To analyze
the accuracy of both simulation models, we compared their
response time predictions against trace response times for the
16 user scenario of our traces in [11]. In particular, we used the
simulation framework JMT [15] to solve our queuing model.
The results confirmed the accuracy of the non-class-switching
model at a relative error of 25%, while our model was able to
reduce this gap down to 6%.

B. Predictive Functionality

This section presents the methods we use to obtain
queueing- and non-queueing related performance estimates
from our in-memory database specific model. In fact, we are
not only interested into mean performance estimates but also
want to consider the more expressive probabilistic measures.
The difficulty of using analytical methods to obtain mean
estimates from fork-join models that consider variable thread-
ing levels is discussed in [14], [16], [17]. However, obtaining
probabilistic estimates for such models adds additional layers
of complexity. Hence, we employ the simulation framework
JMT to solve the queueing model given in Figure 3 and obtain
queueing related measures, such as server utilization, response
times and queue lengths directly from simulation logs. To ob-
tain non-queueing related metrics, we infer memory occupancy
or power consumption from these measures. In particular, we
propose a modification to our memory occupancy model in
[17] to estimate the distribution of memory occupancy from
JMT trace logs:

Mi =

C∑
c=1

Qc,i

lc
mc min(1, ωi). (4)

Here, Mi denotes the estimation of memory occupancy
expressed as sum of products of per-class queue lengths Qc,i

and per-class memory consumption mc over the sampling
interval i, with i = 1, ..., I . In our case, we split the JMT
simulation logs into I sampling intervals at a granularity of
one second per interval of simulated time. Further, we note
that since JMT samples queue lengths on the level of forked

jobs, we have to approximate the number of actual query jobs
that are active in the system. To do this we first divide Qc,i

by the corresponding per-class threading levels lc. We justify
this scaling by an observation we made in our single user
experiments, indicating that per-class memory occupancy is
independent from the threading level. Second, we provide a
correction term min(1, ωi) with

ωi =
TL∑C

c=1Qc,i

(5)

to approximate the number of active jobs in cases where the
simulator predicts a total number of threads that exceeds the
database threading limit TL. Theses cases occur since currently
JMT does not allow to define tenant-specific finite capacity
regions that share the same processing resources. Hence, we
run the simulation without finite capacity regions and scale
down Qc,i by ωi for intervals i during which the number of
forked jobs Qc,i > TL. Once we have estimates for Qc,i, peak
and mean memory occupancy can be determined as follows:

Mpeak = max
i
Mi (6)

Mmean = I−1
I∑
i

Mi (7)

To obtain power consumption estimates based on CPU
utilization recent work suggests linear and non-linear models
[18]. Hence, we considered the following two formulations:

Plinear = c1U + c0 (8)

Pquadratic = c2U
2 + c1U + c0, (9)

that model power consumption based on the mean CPU
utilization U . To calibrate these models, we determined the
coefficients ci using linear regression over power and utiliza-
tion measurements from our full-factorial experiments. We
obtained c1 and c0 for a linear model with 1.33 and 37.02
respectively and c2 = 0.0039, c1 = 0.79, c0 = 52.91 for
a quadratic model. However, we noticed a slightly better
coefficient of determination of 0.932 for a quadratic model
over 0.929 for a linear model, and thus we will use (9) during
our evaluation.

V. EVALUATION

A. Methodology and Evaluation Scenarios

1) Overview: Though restricted to two levels, 26 full fac-
torial designs still come with a high experimental effort. In
fact, the corresponding 64 design points of our 26 design
account for eight days worth of experiments, at an experiment
time of three hours including overhead incurred by tenant
restarts. Hence, we want to explore at what cost in model
accuracy this effort can be reduced using different fractional
factorial designs [9]. In particular, we are focusing on three
26−p designs, where p = 1, 2, 3. These designs correspond
to 32 (four days), 16 (2 days) and 8 (one day) experiments
respectively. We rely on Matlab’s fracfact function to generate
2k−p designs and use the regression model in (1) to fit a



TABLE V
DISTINCT CHOICE OF DESIGN POINTS FOR EVALUATION

Heavy Load (x1=0) Medium Load (x1=10)
x2 x3 x4 x5 x6 x2 x3 x4 x5 x6

2 30 2 full 16 2 30 2 full 8
2 30 2 isolated 8 2 30 2 isolated 16
2 30 4 full 8 2 30 4 full 16
2 300 2 full 8 2 300 4 full 8
2 300 4 full 16 2 300 4 isolated 16
2 300 4 isolated 8 4 30 2 full 16
4 30 2 full 8 4 30 2 isolated 8
4 30 2 isolated 16 4 30 4 isolated 16
4 30 4 isolated 8 4 300 2 isolated 16
4 300 4 full 8 4 300 4 full 16
4 300 4 isolated 16 4 300 4 isolated 8

x1: Think Time in s, x2: Number of Tenants, x3: Database Scale Factor,
x4: Sockets per Tenant, x5: Degree of Overlapping, x6: Number of Clients
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Fig. 4. Distribution of Prediction Errors for Response Times and Utilization
based on the 6 Factor Design.
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Fig. 5. Predicted Response Times and Mean Memory Occupancy, Evaluation
Runs sorted ascending by Trace Values - normalized by respective maximum
Trace Value, logarithmic Scale

performance measure of interest. For the actual evaluation,
we use a distinct subset over the remaining 2k − 2k−p data
points that all three models have to predict. Table V list the
corresponding scenarios that have not been used during the
model training process. In addition, we compare all three
regression models with our class-switching simulation model.
In contrast to all regression models, our simulation model does
only require service demands and threading levels obtained
from isolated query runs. We have obtained both parameters
from single user experiments and refer to [17] for more
detailed information about the extraction process.

B. Prediction of Queueing Related Metrics

At first we are interested in the accuracy of mean response
time and utilization estimates. Since we look across many

TABLE VI
VARIATION OF RESPONSES (IN %) DUE TO MAIN FACTORS

Factor Response Time Utilization
RS-64 RS-32 RS-16 RS-8 RS-64 RS-32 RS-16 RS-8

x1 1.01 1.02 1.21 0.57 17.17 16.02 12.57 14.99
x2 1.51 1.37 0.94 0.50 0.51 0.96 1.15 12.41
x3 81.01 81.42 82.04 78.09 13.23 12.61 9.39 11.81
x4 1.06 0.90 1.04 0.73 3.70 4.54 6.10 15.66
x5 8.90 9.14 8.64 10.74 15.97 15.32 16.32 16.72
x6 3.81 3.82 3.35 8.85 8.05 8.41 8.06 15.88

x1: Think Time, x2: Number of Tenants, x3: Database Scale Factor,
x4: Sockets per Tenant, x5: Degree of Overlapping, x6: Number of Clients

different scenarios, we prefer to give the distribution of errors
that have to be expected when using each model. Figure 4
shows the corresponding results for our simulation model
and the three regression models built from 32 experiments
(RS-32), 16 experiments (RS-16) and 8 experiments (RS-
8). In particular, we use Matlab’s standard box plots, aug-
mented with squares to represent the mean for each response.
The results suggest that our simulation model achieves a
good performance for both mean response times and server
utilization with a 75th percentile below a relative error of
20%. Interestingly, the regression models that use a fraction
of 1/4 (RS-16) and 1/8 (RS-8) of the original full-factorial
design result in large prediction errors. We attribute this to the
confounding of important two-factor interactions with other
two-factor interactions. For example, in the case of RS-16,
the response time interaction BE (Table IV) is confounded
with two other two-factor interactions, and can thus not be
estimated properly.

A further analysis of the residuals between simulator re-
sponse times and actual measurements revealed that estimates
are slightly optimistic under light load scenarios and mostly
pessimistic under heavy load. We can observe a similar
behavior in Figure 5(a), where optimistic predictions tend to
occur in scenarios with small or medium response times. We
also discovered that response time estimates for scale factor
30 are generally more optimistic than for scale factor 300.
We explain the cause for this in measurement inaccuracies for
threading levels of scale factor 30 and expect improvements
using a smaller sampling intervals.

Due to the large prediction errors for RS-16 and RS-8,
we were interested if these methods can at least be used to
estimate the main factor importance of the corresponding 26

full factorial design. Table VI presents a comparison of these
estimates. While factor estimates for response times seem
reasonable under all fractions, we noticed that particularly for
CPU utilization main factors cannot be estimated accurately
with a 26−3 fractional factorial design (RS-8) due to severe
confounding of main factors with important two-factor inter-
actions.

C. Prediction of Non-Queueing Related Metrics

Since the focus of our work is on in-memory databases,
we are also interested in analyzing the prediction quality for
a second group of metrics, such as mean and peak memory
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Fig. 6. Distribution of Prediction Errors for Mean and Peak Memory
Occupancy based on the 6 Factor Design.

occupancy as well as CPU power consumption. These metrics
are not directly available from queueing theoretic models, and
thus we use the approximations given in (4) and (9) to obtain
estimates for these.

1) Memory Occupancy: Figure 6 presents the results for
our analysis of mean and peak memory predictions across all
four predictive models. First we observe, in contrast to query
response times and CPU utilization, that regression estimates
for memory occupancy seem generally more accurate. We
suspect this is due to a less severe confounding, since memory
occupancy shows fewer important main factor and two-factor
interaction effects (Table IV). Interestingly, our simulation
model seems to be competitive with regression models fitted
over 1/2 (RS-32) and 1/4 (RS-16) of the corresponding full
factorial design. Moreover, for our simulation model the
analysis in Figure 5(b) suggests a similar prediction trend
compared to response times: slightly optimistic for scale factor
30 and slightly pessimistic for scale factor 300, whereby both
scale factors are be distinguished by the significant jump in
memory occupancy.

Since our simulation model yields promising estimates for
mean and peak memory occupancy, we will further investigate
if a similar accuracy can be retained for probabilistic estimates.
For this analysis we examine the memory occupancy his-
togram under scenarios with two SF30 tenants that are sharing
the same two CPU sockets and run 16 concurrent clients
with 1) no think times (Figure 7) and 2) a think time of 10
seconds (Figure 8). For comparison purposes, we normalized
all four histograms by the maximum trace memory occupancy
from scenario 1). First, we observe a similar general trend
between simulation and trace logs. Second, the simulation
seems more optimistic under high load. The reason for this
can be found in the jobs queue length correction in (4),
where our scaling seems to strong. We suspect a more detailed
approximation could lead to better estimates. Under the more
practical scenario in Figure 8(a), where think time delays
occur between query submissions, the results indicate a better
approximation of the long tail. Concluding, the probabilistic
estimates look promising for a more detailed analysis as part
of our future work.

2) Power Consumption: Finally, we want to include an
analysis for estimates of CPU power consumption. Models that
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Fig. 7. Predicted Memory Occupancy Histogram vs. Traces for Scenario:
Zero Think Time, 2 Tenants, Scale Factor 30, 2 Sockets, Full Overlapping,
16 Clients - (normalized by max value from corresponding trace scenario)
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Fig. 9. (a) Distribution of Prediction Errors for Power Consumption based on
the 6 Factor Design, (b) Simulation Times across all 22 Evaluation Scenarios.

can accurately capture this metric have potential in scheduling
and resource allocation scenarios. Before we analyze the
results, our first anticipation is that prediction accuracy for
power consumption should follow the trend in corresponding
utilization estimates. We expect this behavior, since there is
a direct relationship between these two metrics. Figure 9(a)
presents the distribution of relative prediction errors across
all four models. As expected, we observe a similar accuracy
for all models compared to utilization estimates in Figure
4(b). A more detailed analysis for our simulation model
revealed that prediction errors above 20% correspond to light
and medium load scenarios. We noticed a similar trend for
utilization estimates and expect that solving the pessimistic
prediction of utilizations, will lead to better estimates for
power consumption.



TABLE VII
MEAN RELATIVE PREDICTION ERRORS (%) ACROSS ALL METRICS

Method RTime Util Mmean Mpeak Power
Sim 13.77 10.16 11.60 9.21 9.14

RS-32 6.27 6.14 6.97 8.17 4.28
RS-16 32.27 11.20 7.85 6.94 7.32
RS-8 40.87 19.10 22.19 12.18 13.02

D. Conclusion

Summarizing our results, we observed that:
• Response surfaces over fractions 1/4 and 1/8 can be

effectively used to restore a corresponding full-factorial
design for memory occupancy

• Response times and utilization seem most sensitive to
two-factor interactions and require more experiments to
be captured accurately

• With regard to Table VII simulation models can retain a
good accuracy across all classes of metrics and show po-
tential for probabilistic estimates for memory occupancy

• Simulation poses little requirements on experimental
time, Figure 9(b), compared to our 26 design with 2-3
hours per experiment

VI. RELATED WORK

The majority of studies that evaluate database performance
have focused on system measurement and machine learning
techniques. For example, the authors in [19] propose linear
regression models to predict response time violations for
multi-tenant in-memory databases, but consider only small
tenant datasets < 204 MB and servers with 2 compute units.
Other works consider the joint use of machine learning and
adaptive sampling techniques [3]–[5]. For example [3], [5],
focus on multivariate regression methods and support vector
machines to capture contention effects under analytical query
mixes and model performance effects that disk and memory
contention impose on database performance. In [4], the authors
further propose collaborative filtering and adaptive sampling
to construct response surfaces of database query through-
puts. However, all three approaches are evaluated on small
scale PostgreSQL systems only, do not consider large multi
programming levels and put focus largely on I/O contention
models. In [20] support vector machines and kernel canonical
correlation analysis are used to predict query performance
under analytical workloads. The approach is evaluated on
top of PostgreSQL for scale factors TPC-H 1 and 10, but
requires fine-grained information on query operator level.
Kriging-based techniques using Gaussian process regression
are leveraged in [21] and [7] to estimate response surfaces
of query performance under TPC-H workloads on IBM DB2
and PostgreSQL systems. However, both works do neither
consider hardware resource assignment parameters nor multi-
tenancy aspects and limit their evaluation to small database
scale factors. Experiment design methods, such as fractional
factorial and response surface designs are successfully used in
[22] to approximate and optimize Markovian models, but the

focus is put on optimization of a theoretical model rather than
a real system.

Methods to guarantee performance SLOs under transac-
tional and analytical multi-tenant workloads have been pro-
posed in [23] and [6]. Both works consider profiling-based
analyses, but rather focus on non-in-memory hardware con-
figurations. In [24] and [25] authors present management
strategies for placing tenants in multi-tenant databases. [25]
consider replica swapping to minimize the interference of co-
located tenants and employ linear additive models for server
utilization and I/O load approximations. However, in contrast
to our analysis, both works focus on transactional workloads
where tenants characteristics largely differ from in-memory
focused customers.

Several works investigate system performance under dif-
ferent resource allocation strategies [26]–[28]. The authors
[26] present an experimental evaluation of OLTP performance
under different multi-socket database configurations and iden-
tify the variability of communication latencies under NUMA
architectures as key factor that impact database performance.
Management frameworks based on collaborative filtering, pro-
filing and admission control methods are introduced in [27]
and [28] to anticipate impact of resource assignments on
application performance. However, neither of these approaches
puts focus on large in-memory compute workloads.

VII. CONCLUSIONS AND FUTURE WORK

Summarizing our work, we have provided a comparative
evaluation of response surfaces and simulation methods re-
garding their suitability to model in-memory database perfor-
mance as function of different workload and hardware param-
eters. Our study was motivated by the limited dependence of
in-memory databases from disk, which likewise simplifies the
modeling process. In particular, we observed a high accuracy
for our predictive simulation model over different classes of
performance metrics, such as response times, server utilization,
energy consumption and memory occupancy. Well established
response surface models however, show a deterioration of
prediction errors once the number of experiments is reduced.
Our results suggest that simulation techniques can be an
effective aid for predicting in-memory database performance.

For future work we see potential in a more detailed anal-
ysis of consolidation scenarios, where tenants are partially
sharing hardware resources and plan to extend our simulation
model accordingly. Another promising direction is the use of
probabilistic estimates for memory occupancy to drive tenant
consolidation decisions rather than relying on conservative
peak memory usage. Finally, our evaluation was based on a
case study using SAP HANA, leaving the open question for
future research whether our models are applicable to other
in-memory systems.
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[25] H. J. Moon, H. Hacigümücs, Y. Chi, and W.-P. Hsiung, “SWAT: A
Lightweight Load Balancing Method for Multitenant Databases,” in Pro-
ceedings of the 16th International Conference on Extending Database
Technology, ser. EDBT ’13. ACM, 2013, pp. 65–76.

[26] D. Porobic, I. Pandis, and M. Branco, “OLTP on hardware islands,”
Proceedings of the VLDB Endowment, pp. 1447–1458, 2012.

[27] R. Krebs, S. Spinner, N. Ahmed, and S. Kounev, “Resource Usage
Control in Multi-tenant Applications,” in Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, May 2014, pp. 122–131.

[28] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware Cluster Management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’14, 2014, pp. 127–144.


