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Abstract—Access to ground-truth data is limited in network
security research, especially at large-scale. If data is available,
sharing is typically not possible due to privacy concerns and
contractual requirements. Hence, reproducibility of research and
comparability of results is difficult. For a prevailing empirical
domain of research, the resulting lack of transparency is a
methodological problem which especially affects network security
management in practice. To address this problem, in this paper
we propose a research process that ensures reproducibility by
embodying both, synthetic and real-world data. Our motivation
for this is to combine best of both worlds: synthetic data is used
to establish ground-truth and real-world data to assure validity
of results. To the best of our knowledge, no such process has
been formulated until today.

I. INTRODUCTION

The dependence of our society and economy on the Internet
and computer networks is constantly increasing. In an era
where launching bandwidth-exhausting attacks is just one
mouse-click and little money away [1], network security
management is becoming fundamental, especially when under
attack. To achieve this, two important aspects of network
security management are to appropriately implement the right
network protection solution and to constantly validate its
efficiency and effectiveness. To be able to identify the right
network protection solution, experiments published in network
security research must be repeatable and results reproducible.
Otherwise, approaches can not be compared. To be able to
constantly validate efficiency and effectiveness, access to con-
temporary labelled reference data sets, i.e. ground-truth data, is
required. Unfortunately, such reference data is hard to find. As
an attempt to quantify the unavailability of ground-truth data
and its implications, we performed a retrospective analysis
of data sets used in network security research published on
highly-ranked security conferences between the years 2009
and 2014 in previous work [2]. In this analysis, we showed
that for only 10% of the work we reviewed data sets had been
publicly released together with an accepted conference paper.
Furthermore, the analysis revealed that data sets provided in
public data repositories are rarely being used. From these
results we concluded that our community is facing a lack
of available ground-truth, which we refered to as missing
labelled data problem. This missing labelled data problem
heavily affects network security research. Sonchack et al. [3]
argue that the inability to share data and the resulting absence
of ground-truth effectively hinders the scientific process and

advancement. In fact, the key component of the scientific
process that is affected by the inability to share ground-truth
data is repeatability of research and reproducibility of results.

While we understand the difficulty of sharing real-world
data, which constitutes the scientific ideal with regard to
reproducibility, we also experience the increasing requirement
of finding a solution for the dilemma we face. As discussed
by different authors (e.g., [4], [3], [5], [6]), one way to
establish ground-truth and to bridge the data gap is utility of
synthetic data. It is commonly argued that synthetic data is, by
definition, free of sensitive information that prohibits sharing.
On the other hand, we find the prevalent persuasion in the
network security community that synthetic data is insufficient
for evaluation of approaches due to its lack of realism [7].

To that end, we tend to agree with both lines of argumen-
tation, arguing for and against synthetic data. From our work
in that specific field and from discussions with colleagues,
however, we especially identified that the network security
community is lacking a sound research process that accounts
for both the requirements to (i) perform realistic experiments
and to be able to (ii) repeat experiments and reproduce results.
In other words: we learned that researchers do not know how
synthetic data could be used in a sensible way. To close this
gap, in this paper, we propose a research process that ensures
reproducibility in network security research by combining
real-world as well as synthetic data in the research process.
To the best of our knowledge, no such research process has
been published earlier at the time of writing.

The remainder of this paper is structured as follows: Section
II discusses related work. In Section III we derive the contem-
porary research process our community follows as of today
by analysing attack detection systems published in literature
and discuss its shortcomings. In Section IV we describe
our proposed research process that ensures reproducibility in
network security research. Section V concludes and discusses
future work.

II. RELATED WORK

To the best of our knowledge, we are not aware of any paper
that proposes a research process that aims at ensuring repro-
ducibility in network security research. The lack of available
data and the need of ground-truth, however, is acknowledged
throughout many different papers: Most notably, Ringberg
et al. [5] discuss the necessity of simulation for evaluating
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anomaly detectors. Especially, they argue that simulation is
a prerequisite in order to maintain experimental control and
propose to train and test systems using synthetic data. After-
wards, they argue that validation on real-world data should be
performed to understand how an approach performs in reality.
In [3], Sonchack et al. especially discuss the challenge of
evaluating performance of large-scale collaborative systems.
In this context, the difficulties resulting from unavailability of
data multiply as not only samples from one environment are
required, but from many. In earlier work [4], we give a plea
for utilising synthetic data when performing machine learning
based cyber-security experiments. Amongst others, we argue
that synthetic data is the only viable solution towards achieving
reproducibility in cyber-security research. The necessity to
fill this data gap reflects in a number of papers. Recently,
simulators that are capable of generating synthetic data have
been proposed in [8], [6], [9], [10]: Lindauer, Wallnau et
al. [8], [6] propose an approach that generates insider threat
data by simulating user activity following a “drama as data”
concept. In [9], Sonchack et al. describe the host behaviour
simulator LESS that is capable of automatically deriving and
configuring host behaviour from background traffic. LESS
is tailored towards large-scale simulations and can be used
to generate synthetic traffic records. The technique used to
generate synthetic data here is superposition of different traffic
sources and has been used in different earlier work [11], [12],
[6]. A different approach is followed in work proposed by
Abt et al. [10]. In that work, the complex node automation
framework cnaf is introduced, which provides API-bindings
to maintaining virtual machine clusters and to automation
of applications (e.g., sending/receiving emails, web browsing,
instant messaging) for the Python programming language. An
earlier approach to generating labelled data sets by means of
simulation is the DARPA IDEVAL project [13]. However, the
DARPA IDEVAL data sets date back to 1999 and do not con-
tain any relevant information of today’s networks. An approach
towards compiling a contemporary state-of-the-art data set is
described by Song et al. [14]. Based on our observations,
simulation and data synthesis are not broadly used in the
network security domain. Broader support for simulation is
found in the general network research (e.g. network protocol
development) community. As network security research often
involves capturing traces on the network level, utilising the
toolchains of these communities may be an option. Typically,
these simulators employ discrete event simulation (DES) [15].
Prominent DES-based toolchains utilised in network research,
which may as well be used to generate synthetic data, are: ns-
2 and its successor ns-3 [16], OMNeT++ [17] and TOSSIM
[18].

III. THE CONTEMPORARY PROCESS

A. Invariant Attack Detection

Research in network security is an arms race with mis-
creants. As a result, a plethora of detection and mitigation
approaches has been published by our community over time
(cf. [19], [20]). Very often, these approaches are centred

around machine-learning (ML) techniques. As detection of
network attacks can essentially be understood as classification
problem, the commonly encountered use of ML techniques
is unsurprising. When reviewing different approaches, we
identify a common invariant architecture of attack detection
systems as illustrated in Figure 1. This invariant is made up
of three phases:

1) In a learning phase, an algorithm is trained. More
specifically, in that phase relevant features are extracted and
classification models are computed using these features. Fea-
ture extraction and model building typically require human
inspection of the input data. Depending on the specific ML
technique, a labelled reference data set may be required (path
T.1a) in that phase or not (path T.1b). As a result of this phase,
a description of the features as well as resulting models is
typically persisted in a knowledge base.

2) In a detection phase, the description of features is used to
extract features from previously unseen input data. Using the
previously generated models, feature vectors are classified by
applying a specific ML technique. As a result, events may be
observed in case an attack has been detected. In some cases,
these events are filtered using additional external information
in order to reduce false alarms.

3) Finally, in a reaction phase, alerts are generated and
specific actions may be triggered to mitigate the attack.

B. Research Process

From this invariant in system design, we try to derive and
model the research process that is currently established in our
community. Specifically, we infer this process by reflecting
the invariant described in Section III-A to content required in
research papers. Our motivation behind this proceeding is as
follows: we hypothesise that the primary motivation of work of
a researcher is to successfully publish a solution to a specific
problem as this improves reputation and counts towards tenure
and graduation. For that, a paper has to convince reviewers that
the problem to be solved is real, the solution is either novel or
outperforms existing approaches using a relevant performance
measure and argumentation is logically sound. Hence, in that
domain, a successful paper has to cover at least the following
topics:
• Problem to solve
• Available data and collection process
• Model and ML technique applied
• Relevant features
• Experimental environment and conditions
• Evaluation results

Consequently, we expect researchers to devote their time to
these specific topics during research.

In order to be able to provide meaningful content for
the above given topics, we expect researchers to solve the
data availability problem first. Generally, data can already be
available within research groups or has to be acquired first. The
analysis we performed in earlier work [2], however, showed
that data is individually collected in most cases. Hence, we
expect a significant amount of time in the research process
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Figure 1. Invariant architecture of attack detection systems commonly found in network security literature.

to be devoted to finding environments that can provide access
to relevant data, agreeing on terms and conditions on how
to use these data, as well as developing components for data
collection. If successful, the result of this step is a real-world
data set that can be used for experiments and evaluation.
Before, however, analysis and post-processing of the data is
typically required to develop a sound understanding of the
characteristics of the available data and information covered
within the data, i.e. knowledge about the problem instance
and its specifics. Relying on the insights gained during this
exploration, a researcher can choose appropriate ML tech-
niques and extract relevant features from the input data in
order to build the classification models by performing different
experiments. This actually constitutes the creative and, in best
case, innovative step in the research process and, obviously,
may take long time. Typically, this exploration and knowledge
discovery period is circular in the sense, that the whole process
is iterated as new insight is gained during the process and
until the experimental results are convincing. Afterwards, the
resulting approach is typically evaluated using data previously
unused and relevant performance measures are computed. In
the end, the whole process and the results are documented in a
research manuscript and submitted to a conference or journal
for review.

This whole process is illustrated in Figure 2. In this figure,
rectangular boxes represent steps in the process that require en-
gineering (i.e., data collection, feature extraction, experimen-
tation), parallelograms represent resulting data (i.e., real-world
data, real-world features, real-world results) and elliptical
boxes reflect rather scientific process steps (i.e., exploration,
knowledge). While we understand that the data exploration
and knowledge discovery steps are central from a scientific
perspective, both steps are hard to quantify and especially
are difficult to reproduce. Hence, from our point of view of
developing a research process that ensures reproducibility in
network security research, both process steps play a tangential
role. Instead, we identify three main tasks in this process: ¶
data collection, · feature extraction, and ¸ experiment.

C. Discussion

The contemporary research process we derive from a design
invariant identified in existing work typically focuses on a
single available data set. As has been investigated in [2], this

data set is most commonly manually compiled in real-world.
Simulation and synthetic data as well as existing public data
archives are rarely used. As argued by Sonchack et al. [3] and
Ringberg et al. [5], single-source real-world data typically do
not reflect all characteristics relevant for developing large-scale
intrusion detection or anomaly detection systems. Especially
not if collaborative systems have to be evaluated. The reason
for this lies in the fact that data is typically collected at a single
vantage point only and, hence, information available is highly
dependent on the location of the vantage point (e.g., corporate
view vs. Internet service provider view) as well as collection
method (e.g., information available in Netflow vs. pcap). On
the other hand, data collection in enterprise environments is
typically granted only after signing restrictive non-disclosure
agreements. The reason for this is trivial: enterprises fear the
loss of reputation if information about vulnerabilities and other
weaknesses are disclosed. Additionally, enterprises need to
adhere to data protection law and are required to honour and
protect privacy of employees and customers. The latter require-
ments are especially reasons why data collection at Internet
service providers is difficult. As a consequence, obtaining
real-world data is very time consuming and data sharing is
hindered. Given these restrictions, ensuring reproducibility in
the network security research domain is almost impossible.

IV. A REPRODUCIBILITY-ENSURING PROCESS

To overcome the implications and limitations arising from
the contemporary research process, in this section we pro-
pose a novel research process that embodies simulation and
synthetic data in order to ensure reproducibility of network
security research.

As argued in related work (e.g., [4], [3], [5]), we are
convinced that use of synthetic data is currently the only viable
approach towards achieving reproducibility and experimental
control in network security research at large-scale. On the
other hand, synthetic data is hardly used in contemporary
research [2]. We believe the reason for this to be twofold:

1) Quality of synthetic data is often challenged. Specifically,
it is typically not known how results achieved on synthetic
data relate to real-world. Synthetic data is usually generated
by simulation and simulation relies on specific models of real-
world. As these models hide specific aspects of reality in order
to be able to terminate simulation in finite time, synthetic data
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Figure 2. Illustration of the contemporary network security research process. Rectangular boxes represent engineering steps, parallelograms represent data
and elliptical boxes represent scientific steps. Solid lines denote data flow, while dashed lines denote knowledge transfer.

inherently cannot contain the variety of subtleties found in
real-world [7]. Furthermore, synthetic data is often assumed to
contain artefacts, such as periodicity or determinism, that may
not be found in real-world, but heavily influence classification
accuracy. Interestingly, however, as of today no proof exists
that shows that synthetic data in fact can not be used.

2) As use of simulation and synthetic data seems not to be
widely encouraged in the network security community as of to-
day, we notice a general lack of adequate synthesis toolchains.
As discussed in Section II, this situation is much better in other
disciplines (e.g., network protocol development and testing).
Recently, work has been published towards developing specific
simulators for network security research (e.g., [10], [9], [6]).
We believe that this evolution supports our hypothesis, but are
convinced that this process is still at its infancy.

We hypothesise that the second reason is a direct conse-
quence of the first reason. For the first reason, however, we
have no final explanation as to why it has manifested itself in
our community for many years, without seeing any attempt to
proof or falsify it. During our work towards finding an answer,
we realised that our community is missing a description of an
adequate research process that guides researchers on how to
incorporate synthetic data and how to proof utility and quality
of synthetic data. With this work, we aim at closing this gap.

A. Research Process

The research process we propose directly builds upon
and extends the contemporary process as described in Sec-
tion III-B. As this process constitutes the de-facto standard
in our community and is what researchers are used to, we
assumed it would be wise to base our work on that. When
designing our process, our motivation was to introduce sim-
ulation and synthetic data in a non-intrusive, natural way.
Especially, our aim was to re-use existing process steps best
possible in order to reduce the amount of additional work as
time-to-publication is a relevant metric, specifically for young
and tenure-track researchers. Nonetheless, we are aware that
the research process we propose, if completely followed, will
require additional resources – either time or manpower. This
is the tradeoff for achieving reproducibility.

The process we propose is depicted in Figure 3. The
notation and interpretation of symbols is equivalent to that
described in Section III-B. Additionally, we introduce utility
and quality checks, denoted with diamond shapes. In contrast

to the contemporary process, our process has six process steps:
¶ data collection, · simulation, ¸ feature extraction, ¹ utility
control, º experiment and » quality control. Initially, the
process starts again with data collection in real-world. This
data is explored in order to gain specific knowledge about
a problem’s characteristics and to identify relevant features.
Based on that knowledge, in contrast to the contemporary
process, we propose not only to develop feature extractors,
but also to configure simulation in order to generate synthetic
data. This is a fundamental difference to the contemporary
process. However, we also believe that this is a very obvious
proceeding. If the knowledge about the problem, the data set’s
specifics as well as the whole environment is already devel-
oped, transferring it into simulation is very straight forward -
assuming availability of appropriate simulators. If this step is
completed, relevant features can be extracted from available
real-world data as well as from synthetic data, leading to
real-world as well as synthetic feature vectors, respectively.
At that point in the process, we propose a first utility check
to ensure quality of synthetic data at feature vector level. If
the comparison of real-world and synthetic features yields
significant differences, the exploration, knowledge discovery
and simulation process steps should be repeated, as some basic
misunderstanding of the underlying concepts can be assumed.
So, in fact, by including simulation and utility checks in the
process, we not only work towards reproducibility, but also
explicitly introduce a methodology that enables researchers to
assess the knowledge gathered during exploration at an early
phase, i.e. it enables self-control.

If the utility check is passed, the experiment can be
performed on both real-world as well as synthetic feature
vectors. This step, again, is a straight-forward extension of the
equivalent step found in the contemporary research process.
The fundamental difference is that all experiments have to be
performed twice: on, both, real-world and synthetic data. As
outcome, we obtain results on synthetic and real-world data
and introduce an additional quality control step in order to con-
clude the synthetic data’s quality. If results are good enough,
the developed approach as well as real-world results can be
published. In contrast to the contemporary process, however,
the synthetic results, synthetic data as well as synthetic feature
vectors can be published as well. By following this process,
reproducibility of network security research is granted as
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Figure 3. Illustration of our proposed research process that ensures reproducible network security research. Rectangular boxes represent engineering steps,
parallelograms represent data, elliptical boxes represent scientific steps and diamond-shaped boxes represent quality gates. Solid lines denote data flow, while
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synthetic data is free of sensitive information and, thus, can
be shared without restrictions. Consequently, synthetic data
serves as link for comparison of competitive approaches.

B. Discussion

As can be seen from the above description, our process
aims at combining the best of real-world and synthetic data:
synthetic data are used as link to ensure reproducibility. Real-
world data, on the other hand, is used not only to demonstrate
that a specific approach indeed works in reality, but also
to assure quality of synthetic data. This quality assurance
is not only required in order to convince reviewers, but,
unfortunately, also not trivial. To the best of our knowledge,
quality assurance of synthetic data is not intensively discussed
in our community. In fact, we are not aware of any published
results in that direction. In Section IV-C we discuss one
approach to utility and quality control, each. Nevertheless, we
would like to note that this is just an initial concept which we
have to explore in future work in greater detail.

Additionally, we realise that our process greatly benefits
from data synthesis and simulation toolchains. As mentioned
earlier, currently, research in that direction is sparse.

C. Quality of Synthetic Data

As discussed in the previous section, proving quality of
synthetic data is a fundamental requirement in order to con-
vince our community of the validity of results achieved using
synthetic data and utility of synthetic data in general. In the
process we propose, at least initially, we rely on real-world
data for this task. Essentially, we introduce two quality gates
that aim at assuring quality at two different layers. These
additional checks introduced in our process directly follow
from the definition of the missing labelled data problem we
gave in [2]: A utility check at feature level is introduced in
order to proof statistical similarity of synthetic data and real-
world data and, hence, to show utility of the synthetic data
set. Additionally, quality control is enforced at the result level

in order to proof that equivalent results can be reached at the
end of an experiment, regardless of whether synthetic or real-
world data are used. Our intention of these checks as well
as initial concepts on how these checks can be performed are
further presented briefly in Section IV-C1 and Section IV-C2.

1) Utility Control: Assessing similarity of raw synthetic
and real-world data at bit level is computationally expensive
due to complexity and size of data sets typically dealt with
in the network security domain (e.g., network traces). And
even if one were able to compute similarity of two data sets
at that level, semantics of data are typically not known as the
state of all communicating devices is typically not available.
Neither are researchers familiar with all specific peculiarities
that may be found in data. Hence, we believe that similarity
of two data sets can only be approximated for particular cases
and at a higher level. In our process, we refer to that higher-
level approximation as utility control. As network security
research often involves ML techniques (cf. Section III-A), a
natural level of abstraction for our utility control is the feature
level. Features are extracted from input data in order to gain
a specific view on the data set at hand. Irrelevant aspects
are removed and relevant characteristics are typically encoded
after applying transformations. At that level, a researcher is
capable of analysing and understanding a specific data set
and its phenomena. Consequently, we propose to perform
statistical analysis and comparison of real-world features and
synthetic features as utility control. If synthetic and real-world
features are statistically similar, it is safe to assume that a
ML algorithm is capable of learning the same concept from
data. Thus, achieving high similarity in statistical comparison
at feature level is assumed to be a predictor for equivalence of
experiments. On the other hand, while dissimilarity at feature
level may nevertheless lead to equivalent results of experi-
ments (e.g., if relevant characteristics are not well represented
in selected features), we encourage researches to repeat data
exploration and knowledge discovery as some fundamental



misunderstanding may be prevalent.
However, it is important to note that by performing utility

control at feature level, quality of synthetic data is not assured
in general. Instead, this utility check just settles ground for
quality assessment of a specific interpretation of the synthetic
data set at hand and needs to be correlated to the final quality
control step as proposed in our process.

2) Quality Control: The final quality control step aims at
assuring quality of a specific interpretation of synthetic data,
i.e. depending on the selected features. We assume that it is
neither feasible, nor possible to assure quality of the whole
synthetic data set generated in process step two as this may by
far exceed the knowledge and experience of a researcher. Also,
we believe that it is not sensible to try to assess the quality of
any possible set of features not covered by the utility control
in process step four. Hence, if the set of extracted features
changes, utility and quality control have to be repeated as well
in order to assure quality.

The aim of the quality control step is to assess the validity
of results achieved using synthetic data. That means, this step
aims at demonstrating that an approach under development
achieves similar results, independent of being evaluated using
real-world or synthetic data. To achieve this, we interpret
quality as probability Q: Let A denote the set of all known
approaches that solve a given problem and a ∈ A denote
a specific approach. Furthermore, let pr(a) ∈ [0, 1] denote
the performance of a as measured on real-world data and
ps(a) ∈ [0, 1] denote the performance of a as measured on
synthetic data. Then,

Q[pr(a)− ε ≤ ps(a) ≤ pr(a) + ε] (1)

denotes the probability that ps(a) falls within ε-environment
of pr(a), i.e. that ps(a) is ε-close to pr(a). In term (1), 0 ≤
ε ≤ 1 models the tolerance we accept the performance on
synthetic data to deviate from performance on real-world data.
As probability, 0 ≤ Q ≤ 1 by definition. Hence, in order
to actually control quality, we need to bound term (1) by a
specific threshold 0 ≤ δ ≤ 1. If

Q[pr(a)− ε ≤ ps(a) ≤ pr(a) + ε] > δ,

we say that our synthetic data suffices quality δ with tolerance
ε. Obviously, the larger valued δ and the smaller valued ε, the
higher the quality of the synthetic data. If this requirement
holds true for all a ∈ A, i.e. if

∀a ∈ A : Q[pr(a)− ε ≤ ps(a) ≤ pr(a) + ε] > δ,

then we conclude that the synthetic data set indeed is of high
quality.

As mentioned initially, the utility and quality control con-
cepts we sketch here are still preliminary and at its infancy.
Nevertheless, we are convinced that it is valuable to share
ideas towards assessing quality of synthetic data as we notice
a dearth of ideas and approaches in that direction. As an
interesting question for future research we need to identify
which subset A′ ⊆ A suffices to obtain this conclusion. Es-
pecially, we need to identify the confidence of this conclusion

for |A′| = 1, which would be the typical case when following
our approach.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a research process that ensures
reproducible network security research by embodying simula-
tion and synthetic data in the research process. Our motivation
for this is to combine best of both worlds: synthetic data
is used to establish ground-truth and can serve as link for
rigorous scientific comparison and peer-review. Real-world
data on the other hand is used to demonstrate utility of the
approach and can serve as quality benchmark for synthetic
data. Especially the latter is an important aspect, as utility
of synthetic data and validity of synthetic data is widely
challenged in our community. Nevertheless, we are convinced
that using synthetic data is the only viable approach towards
achieving experimental control and reproducibility in network
security research. To the best of our knowledge, we are the first
to propose a research process with comparable capabilities.

As quality assurance of synthetic data is an important topic,
we introduce two quality gates into our process. These quality
gates have the capability to assure that for a specific interpre-
tation of the data, synthetic data achieve results comparable
to real-world data. To achieve this, we briefly sketch concepts
on how to perform utility control and how to control quality.
However, we acknowledge that the work on quality assurance
is still at its infancy and requires future work. At the time of
writing, we are not aware of any other concepts on assessment
of synthetic data quality. We believe that this work is very
essential to gain trust in synthetic data based research.

We are aware that the process we sketch here is a vision for
the future, which especially causes significant additional work
for early adaptors. Successful application requires not only ad-
ditional research on each of the process steps, but also a change
in how our community reviews research and acknowledges
efforts in data synthesis and data sharing. If applied, however,
we are convinced that this process heavily impacts the network
security domain as it increases repeatability of research and
reproducibility of results and, consequently, transparency of
approaches. We believe that especially the latter boosts the
transfer of research to real-world and supports proper network
security management: if approaches published in research
can easily be compared and benchmarked, appropriate net-
work protection solutions can be selected. If open synthetic
reference data is generated, efficiency and effectiveness of
network protection solutions can be validated. Both aspects of
network security management, i.e. selection of the appropriate
network protection solution as well as constant validation of
its efficiency and effectiveness, are important and difficult to
achieve today.
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