DYNSDM: Dynamic and Flexible Software-Defined
Multicast for ISP Environments

Julius Riickert, Jeremias Blendin, Rhaban Hark, and David Hausheer
Peer-to-Peer Systems Engineering Lab, Technische Universitiat Darmstadt, Germany
Email: {rueckert|jblendin|rhark|hausheer} @ps.tu-darmstadt.de

Abstract—A number of today’s over-the-top (OTT) services
could greatly benefit from a scalable and efficient network-layer
multicast support on the Internet. IP multicast showed to not meet
these requirements and, thus, is not available for this purpose.
Content Delivery Networks emerged as global alternative but
usually end at the border of ISP networks. Software-Defined
Multicast (SDM) is proposed in a previous work by the authors,
enabling ISP-internal network-layer multicast delivery of OTT
traffic. While it coins fundamental concepts, it does not detail the
ISP-internal traffic and service management and leaves important
questions unanswered. To this end, DYNSDM is proposed in
this paper, detailing the multicast planning and management,
proposing a novel network-layer multi-tree mechanism to dis-
tribute traffic on links inside the ISP network, and introducing
mechanisms to handle group and network dynamics. DYNSDM
was prototypically evaluated, showing its high traffic efficiency,
good scalability, and superior traffic distribution characteristics.

I. INTRODUCTION

Today, an increasing amount of Internet traffic is caused
by over-the-top (OTT) services. For years, Internet Service
Providers (ISPs) find themselves being used as “dumb pipes”,
both unable to participate in the revenue of OTT services
and having little incentive to upgrade their networks to help
improving OTT service qualities for their own customers. Yet,
from a pure technical point of view, network providers could be
a driving force for innovation on the Internet by providing new
network services to the OTT world and their own customers.
A major reason for this situation can be seen in missing
practical service models and abstractions to allow realizing
new services in a quick and flexible manner. A large part of
today’s OTT traffic consists of video streams [5], [11], [31] that
could greatly benefit from a number of network services, most
prominently from network-layer multicast to more efficiently
deliver, e.g., the increasing amount of live content on the In-
ternet [7], [27]. Multicast support on an Internet-scale showed
to be hard to achieve in practice [9], where IP multicast [6]
failed to become a solution that spans more than individual
network islands. By now, it seems even reasonable to assume
that solutions following the initial IP multicast design are
unlikely to become reality, given the structure of the Internet,
the involved stakeholders, and the technical challenges of the
approach itself [9]. Today, global OTT multicast delivery is
enabled by Content Delivery Networks (CDNs) that emerged
as alternative, implementing multicast functionality at appli-
cation layer with hundred thousands of world-wide deployed
server nodes [32]. While this approach scales with the nodes’
resources, CDNs usually end at ISP network edges, which fear
CDN nodes as being unpredictable traffic sources inside their

978-3-901882-77-7 (© 2015 IFIP

well-managed networks [14]. This situation leaves the ISPs
with heavy traffic load on their networks as multicast traffic
is delivered through the ISP as unicast streams from the CDN
nodes to the clients. This is unfortunate as ISPs very well know
how efficient multicasting in their network can be realized as
they typically use it for their ISP-internal IPTV services [22].

In a previous work by the authors [30], Software-Defined
Multicast (SDM) is proposed to address this problem in a way
that both ISPs and OTT content providers can benefit from.
Using the concept of Software-Defined Networking (SDN)), it
enables a practical service model for one-to-many multicasting
services. The service model itself was already discussed by
Holbrook et al. [15] in 1999 but only recently became practical
based on SDN and its implementations, such as the OpenFlow
protocol. Using the SDN concept, SDM introduces a well-
defined control API run by the ISP to allow OTT providers
creating and managing network-layer multicast groups for
OTT data delivery inside the ISP network. For the data path,
SDM uses OpenFlow features to enable an efficient, scalable,
and transparent delivery of the streams. While SDM coins
fundamental concepts for SDN-based OTT multicasting in
ISP networks, it leaves some important questions unanswered
that require a deeper study to make a practical applicability
of the approach feasible. By making OTT streams explicit
to the ISP, an efficient multicast delivery becomes possible.
Yet, to calculate the actual data paths, a simplified approach
was taken, not specifying the planning of multicast trees in
line with the ISP’s internal traffic engineering policies. Thus,
the multicast data paths are rather inflexible and lead to an
unbalanced distribution of load in the ISP network. In addition,
SDM lacks mechanisms to support dynamic multicast groups
with changing client populations and mechanisms to react on
network dynamics, such as link failures or load changes.

To this end, DYNSDM (Dynamic Software-Defined Multi-
cast) introduces a number of extensions to the original SDM
approach to answer the above questions. Thus, the contribu-
tions of this paper are threefold: (1) a detailed multicast tree
planning and management approach is introduced to better sup-
port ISP preferences in planning the multicast trees; (2) a novel
network-layer multi-tree approach is proposed to distribute
traffic across network links; (3) mechanisms for supporting
dynamic groups and fast reactions on link failures are pre-
sented. Due to space constraints, a fourth extension, an novel
SDN-based service discovery approach to allow a discovery of
DYNSDM services along OTT routing paths, is presented in an
extended version of this paper [28]. The proposed mechanisms
are shown to be efficient and scalable, making the general SDM
idea more practical and, thus, strengthening its applicability.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview on the original SDM approach.
Section III presents the design of DYNSDM. Subsequently,
Section IV presents the evaluation. Related works are discussed
in Section V and, finally, Section VI concludes the paper.

II. BACKGROUND: SOFTWARE-DEFINED MULTICAST

In a previous work by the authors, Software-Defined Mul-
ticast (SDM) [30] is proposed for efficient delivery of OTT
multicast streams in ISP environments. The core concepts of
SDM and the recent extension Adaptive Software-Defined Mul-
ticast (ASDM) [3] are presented in the following as DYNSDM
conceptually builds on them and proposes essential extensions.

The main objective of SDM is enabling ISPs to provide
efficient and well-controlled network-layer multicast services
to OTT content providers, CDN networks, or even peer-to-
peer networks [29]. In addition, it aims at being transparent to
clients of the service, i.e. the ISP’s broadband access customers
served. Clients receive normal IP unicast packets that are
not distinguishable from packets directly send by the content
provider. For this purpose, SDM intentionally avoids the usage
of legacy IP multicast-related protocols for group management
and routing. The content provider is assumed to be aware of
its clients in an OTT scenario and thus envisioned to manage
the multicast group directly using an API provided by the
ISP. SDM as well as DYNSDM assume a future ISP scenario
where all or a subset of the routers are SDN-enabled. Due
to its increasing adoption by hardware vendors, an OpenFlow-
based realization is proposed for the core mechanisms of SDM.
The SDM service API entity directly communicates with the
ISP’s network controller, which manages the configuration of
a set of network functions that constitute the core multicasting
functionality. After registering a new multicast group, the ISP
provides the group source with a so called group socket,
consisting of an IP address and port allocated by the ISP.
The group source sends the multicast stream in form of IP
unicast UDP packets addressed to the group socket, which
is delivered to the ISP following normal IP routing through
the Internet. At the ingress switch of the ISP, the packets
are matched using an OpenFlow rule that was installed by
the controller at multicast group registration. To allow for an
efficient forwarding and processing within the ISP network,
either the group socket information is used to uniquely identify
the packets of individual multicast groups or the ingress
switch marks any desired header field of the packets with
an appropriate group identifier. SDM proposes to use normal
IP unicast addresses and ports for this purpose as this allows
compatibility to normal IP routing within the SDM domain. As
the group socket uniquely identifies the multicast data stream,
it is used to install corresponding forwarding and duplication
rules at switches involved in the group’s multicast tree that was
also calculated and configured by the network controller upon
group registration. At the edge of the network, the individual
data streams arrive at the individual egress switches, which
are the last OpenFlow-enabled switches before the packets
are delivered to the individual clients. At this point, packets
might be duplicated again but more importantly, the packet
header is rewritten using another rewrite action, replacing the
group socket information by the individual client’s IP address
and port as specified by the group source for each individual
client. This way, the multicast stream is translated to individual

unicast streams to the clients. As a result, SDM is transparent
to the clients that are not aware of the multicast delivery.

In [3], a second work by the authors, ASDM is proposed
as extension to the original SDM concept. It extends the
packet duplication mechanism, providing ISPs an improved
control on the tradeoff between bandwidth and network state
per multicast group. This shows to be highly beneficial to
support a large variety of OTT multicast streams, typically
following a Zipf-like popularity distribution [1]. ASDM allows
ISPs to dynamically define where in the network the multicast-
to-unicast translation is performed. This is a generalization
of SDM’s static translation at the egress switches. This way,
different strategies for the duplication and translation can be
realized. The strategy resulting in the lowest bandwidth con-
sumption is called late-duplication and is very similar to the
default SDM strategy. Here, the translation happens together
with the last duplication step, thus likely close to the clients.
This strategy pays for its bandwidth efficiency by a large
number of flow rules, in worst case spread across all involved
switches/routers. For large multicast groups this is likely to
be acceptable in the light of the achieved traffic reductions.
For heterogeneous and Zipf-like populated multicast groups,
however, network state can quickly become a precious good
as the rule space of the switches is limited. Thus, it might not
be worth using up the space for many small long-tail groups or
in parts of the network where other network functions are more
important. Therefore, ASDM introduces the ability to use other
strategies, e.g. early-duplication. Here, as another extreme,
multicast streams are translated to unicast as soon as they enter
the ISP network at the ingress switch. This way, the content
provider still benefits from the multicasting in that it only
sends the stream once. The ISP drastically reduces the required
network state and concentrates it at a single switch. The rest
of the topology remains unaware of the group and performs
normal routing. The ISP trades this reduction in state for an
increased traffic inside its network. Besides these extremes,
ASDM introduces a translation threshold to efficiently control
the tradeoff between bandwidth and network state. Here, a
translation is automatically performed by the switches if a
remaining subtree holds fewer clients than the translation
threshold, effectively limiting the network state required per
client. While these features greatly improve the ISP’s control
on the service, DYNSDM goes even further in this direction
and proposes mechanisms orthogonal to the ones presented
above. In a productive implementation, it is envisioned that a
combination of all three approaches is used to allow ISPs to
leverage the full feature set of all of them.

III. DYNAMIC SOFTWARE-DEFINED MULTICAST

While SbM [30] proposes the basic functional building
blocks for an ISP-provided multicast service for OTT streams,
it does not detail how ISPs can efficiently manage and plan the
multicast delivery in line with the rest of their traffic. ASDM
[3] extends SDM by the possibility to control the tradeoff
between bandwidth and network state, which addresses an
orthogonal problem (cf. Section II). In the following, Dynamic
Software-Defined Multicast (DYNSDM) is presented, which
adds the actual traffic engineering support to SDM, making the
proposed mechanisms highly relevant for a practical adoption
of the overall approach. For this, first, DYNSDM’s multicast
tree planning and management approach is presented. Second,

an efficient network-layer multi-tree extension is proposed to
allow for a fine-granular traffic engineering of the multicast
traffic. Third, mechanisms are presented that allow DYNSDM
to dynamically react on changing client populations and net-
work conditions, such as congestion or link failures. Due
to space constraints, the fourth constituent of DYNSDM, a
novel, practical, and transparent service discovery approach,
is presented in an extended version of this paper [28].

A. Multicast Tree Planning and Management

The multicast tree planning and management process of
DYNSDM and its input parameters are summarized in Figure 1,
including the multi-tree planning as detailed in Section III-B.

ISP TE Assigned Entry . .
Network)) List of Multicast
P Requirements and Point for OTT
‘ flonionyd Preferences Content Provider S MEmEE
|y 7 { 7
Input Parameters Input Input

Update

Update
Weighted ISP Tree Construction
Topology Graph Algorithm
| generates Incremental
s Update

Multi-tree case:
Trigger calculation of next subtree — —
with updated graph & edge weights

Multicast

Tree

Fig. 1. DYNSDM’s multicast tree planning and management process.
Graph model of the ISP topology: As a first step, the net-
work topology of the ISP is modeled as graph. The information
required for this is assumed to be available based on static and
real-time information provided by the ISP’s monitoring system.
As this work envisions a future ISP scenario, the physical
network topology is assumed to consist of OpenFlow-enabled
switches/routers and links between them. For simplicity, a
homogeneous OpenFlow scenario is assumed in the following.
Hybrid networks scenarios could be supported as well with
some basic requirements on the routing behavior of non-
OpenFlow routers. They would act as passive forwarders of the
multicast streams, not performing any duplication or rewriting.
The result of this initial step is a mapping of the network
topology to a graph G = (V, E), where each OpenFlow switch
is represented as vertex v € V' and each link as edge e € E.

Calculating edge weights: As a next step, the graph is
transformed into a weighted graph by assigning edge weights
that reflect the ISP’s traffic engineering preferences, its internal
policies, and the current network conditions. Individual links
or parts of the topology can be excluded from the multicast
transport by removing the respective vertices and edges in this
step, resulting in a sub-graph GmcCG. The calculation of the
weights is performed based on monitoring information on the
current traffic conditions, individual Quality-of-Service (QoS)
metrics, and the available resources of network links. For this
purpose, the ISP defines the importance and ranking of the
individual properties and network aspects and, thus, enables a
delivery in line with its overall traffic engineering approach.
To calculate a single weight per edge, a number of monitored
and static information on the link could be used. Following
the approach of typical routing protocols, e.g. the Enhanced
Interior Gateway Routing Protocol (EIGRP) [34], DYNSDM
calculates the weight of an edge e using (1).

weight, :=(K; x bandwidth.) + (K2 x utilization,)
+ (K3 x delay,) + (K4 x lossrate,) (1)
+ (K5 x failurerate,)

The coefficients K; to K5 can be used to influence and
tune the importance of individual QoS parameters for the
final weights. The idea is to provide ISPs with a powerful
mechanism that they can parameterize according their topology
and requirements. The process of tuning the parameters is
not covered here as it is not different from tuning similar
parameters in routing protocols like the one mentioned above.

Multicast tree construction: For the actual multicast tree
construction, two more pieces of information are required: the
entry point, i.e. the switch at that the unicast traffic sent by
the content provider enters the ISP network and the list of
group members to be served. Both are available at the service
API server, which is used by the content provider to interface
with the ISP for group registration and management. The entry
point is defined by the group socket assigned by the ISP on
group registrations as introduced in Section II. By assigning
DYNSDM group sockets in line with the externally announced
BGP routes, the ISP can influence where the respective traffic
enters the network. Typically, large ISPs consist of multiple
Autonomous Systems (ASes) that might be reached over dif-
ferent paths and peering connections. Assigning group sockets
to one of the ASes, thus, allows influencing the entry point to
the ISP network. If this is not possible, the entry point could
also be learned or probed on service discovery. The actual
construction of the tree is being done using well-studied graph
algorithms. Here, it is important to note that the tree is to
be calculated from the entry point to all clients in the group,
which usually is a subset of all clients connected to an ISP. In
contrast to traditional multicast approaches, no distributed tree
calculation protocol is required and, thus, a variety of existing
graph algorithms could be used here. For an ISP scenario, the
use of multicast algorithms constructing a Minimum Spanning
Tree (MST) that minimize the sum of the weights of used edges
might be a good choice. As the tree is only required to include
a subset of vertices, this problem can be classified as a Steiner
tree problem, which is well known to be NP-hard [12]. Yet, a
set of heuristics and approximation algorithms exists that can
be applied to build nearly optimal trees more efficiently [2].
Depending on the requirements, it might be also sufficient
to build a Shortest Path Tree (SPT) that minimizes the path
between the entry point and the receivers individually, making
it a good choice to, e.g., reduce the delay of the multicast
delivery. In the focus of this work, no particular algorithm is
preferred over another one. The choice is intentionally kept
open, providing a framework for varying application scenarios
and allowing ISPs to pick the best algorithm that fits their
needs. For the prototypical implementation, it was decided to
exemplarily adopt an algorithm that calculates SPTs, namely
a variant of Dijkstra’s algorithm [8].

Network-layer path setup: As a last step, the multicast tree
is mapped back to the actual network topology and flow rules
are installed at the involved switches. Here, three different
switch roles can be distinguished: ingress switches, internal
switches, and egress switches. Ingress switches function as
entry points for the traffic and perform the unicast-to-multicast

translation using header rewriting and marking packets with
its specific group identifier similar to SDM. For the multi-
tree case, sub-group identifiers are used as introduced in the
next section. Internal switches purely forward and duplicate
packets of the stream based on this identifier. Egress switches
additionally perform the multicast-to-unicast translation by
rewriting the packet headers for the individual receivers.

B. Network-Layer Multi-Tree Support

DYNSDM fundamentally extends the mechanisms pre-
sented in the last subsection to make the multicast traffic
elastic. Elasticity, here, refers to the ability to dynamically
distribute multicast traffic over links of the ISP topology,
reducing imbalances between links and avoiding links used
for other services. This is realized by breaking up the rigid
definition of multicast streams, adopting a mechanism from
peer-to-peer overlays [37] and application-layer multicast-
ing [16], namely the usage of multi-tree topologies. They were
originally introduced to overcome limitations of single-tree
overlay topologies that are known to be prone to instability
in case of dynamics in the client population. Besides, single
trees unevenly distribute load across peers as almost half
of them are leaf nodes and, thus, cannot contribute to the
distribution. Using multiple independently built trees, each
carrying a substream of the original stream, these problems can
be addressed [21]. Translated to network-layer multicasting,
where switches perform the duplication of traffic, splitting
a monolithic multicast stream into smaller substreams and
distributing them over individual multicast trees opens a whole
new set of possibilities for traffic engineering of multicast
streams. The individually transported streams become smaller
and can be distributed within the network more evenly, thereby
avoiding congestion on strategic links and allowing to elasti-
cally avoiding other, more important and more rigid traffic
in the network. While ISP network topologies themselves
are typically rather static as such, they have to cope with
link outages on a regular basis, caused by cable cuts or
failing network equipment [13]. Therefore, traffic engineering
mechanisms have to be able to dynamically adapt to changes
in the network topology. Thus, by distributing multicast traffic
over subtrees, a network-layer multi-tree delivery could greatly
benefit from its higher resilience, as each switch and used
link becomes less important for the overall delivery process
of a multicast stream. Together with a fast rerouting and
repair mechanisms, a multi-tree approach is expected to greatly
improve the quality of the multicast service for the users.

To realize a multi-tree extension to SDM, the tree planning
and management mechanism is refined to enable calculating
multiple multicast trees for the same entry point and client
set (cf. Figure 1). For the multi-tree case, after building the
first tree, more trees are generated iteratively, inspired by [19].
By increasing the weight of edges used by previous trees, or
even removing them from the graph, a variety of different
characteristics, such as edge disjointness can be supported [25],
[35]. In reality, edge disjointness shows to be hard to achieve
because of the structure of typical ISP networks, where in
certain parts of the topology the number of alternative network
paths to the same client is limited. Therefore, disjointness is
targeted but not enforced if no alternative paths exist. This
enables multiple trees to be built even if they share some edges.

Data-plane traffic splitting and merging: A key feature
of the original SDM approach is that, after installation, all
required features are fully run within the data path of the
network, while being transparent to content provider and
clients. This is achieved by mapping its features to actual net-
work functionality supported by standard OpenFlow switches.
DYNSDM targets the same network-layer efficiency, without
increasing the load on the control path of the SDN network.
Therefore a key contribution of this approach is the usage of
OpenFlow’s group table select type at the respective ingress
switch of the multicast group as shown in Figure 2.

Unicast
SDM Data
Packets

OpenFlow Switch

Flow Table

Group Table

Action Bucket 1 —— <
Action Bucket 2 —— <
Action Bucket 3 <

Data-path
Subtrees

Round-Robin
Distribution

Fig. 2. DYNSDM’s traffic splitting based on OpenFlow group select feature.

The OpenFlow standard specifies this feature as being
optional and being based on a switch-computed selection algo-
rithm (cf. [26]). Due to its high value for all kinds of network-
layer load balancing implementations, its support in state-
of-the-art OpenFlow switches is assumed to be very likely.
Following the specification, the select feature, in its simplest
version, allows to distribute incoming packets of a multicast
group to different action buckets. While SDM rewrites and
forward the packets according a single tree, DYNSDM uses
this feature to splits the traffic into subsets that are delivered
over individual trees (cf. Figure 3). Each tree uses its own sub-
group identifier, implemented as individual rewrite and output
actions in its respective action bucket. In case a weighted
distribution algorithm is implemented by the ingress switch,
more elaborate traffic splitting approaches can be realized,
e.g. using an ISP’s knowledge on estimated path reliability
or cost metrics to distribute traffic to subtrees with unequal
shares. At the egress switches, similar to SDM, the packets are
translated to unicast packets addressed to the individual clients.
For an efficient realization in case of multiple subtrees, per-
client header rewrite and output actions are managed using
a dedicated group table. This way, exactly one flow rule and
matcher is required per DYNSDM subtree, all pointing to the
same group table for the unicast translation. Consequently, the
required TCAM space linearly increases with exactly one new
matcher per subtree. It is independent of the number of clients
as group tables are not managed in TCAM.

Practical considerations: While the proposed multi-tree
mechanism has clear benefits, it also has some limitations that,
depending on the scenario, might or might not be of practical
relevance. One is the impact of network delay on the multi-
tree delivery process. As DYNSDM aims at building distinct
and independent subtrees, it is likely that the paths between the
entry point and the same client in each tree experience different
transmission delays. As a result, the multicast traffic can be
subject to permanent packet reordering as the packet delivery
happens with different delays on each subtrees. Whether this
problem is of practical relevance depends on the actual network
structure. As DYNSDM, similar to SDM and traditional IP
multicast, targets the delivery of connectionless data streams,
applications have to be able to deal with packet reordering. In

Traffic splitting S
using group table a—
select feature

Group source

*— — Unicast addressing

Ingress switches N

Forwarding by
NL-SDM

/ ~_— "~ subgroup
identifier

SDM domain

Egress switches

C Group members

(&
—
(S —

Fig. 3. Multicast delivery in DYNSDM using multiple delivery trees.

case the level of reordering is unacceptable, subtrees could be
constructed that respect a required application-specific maxi-
mum delay difference. Certainly, video streaming applications
with large buffers of several seconds of video content are more
tolerant in this respect than more data-driven real-time appli-
cations. The DYNSDM service, therefore, could offer different
service classes for typical applications and, thereby, respect
different requirements in the subtree calculation process.

C. Handling Dynamics

Client Dynamics: To support dynamically changing client
populations, DYNSDM realizes a number of mechanisms to
quickly connect new clients to the delivery trees as well as
disconnecting them. Following the original SDM approach, the
group events are initiated exclusively by the content provider.
The content provider decides on which clients are to be
included in the multicast service and either establishes a new
DYNSDM group or adds the client to an existing group using
the service API. As a result, new clients need to be attached to
the active delivery process of a group. A trivial solution for this
would be a re-initiation of the normal tree calculation process.
Yet, this would imply a high and unnecessary overhead as
the resulting optimal trees might look different with every
new client (i.e. in case MSTs are built). Therefore, DYNSDM
adopts an approach based on a mechanism proposed in [23],
attaching new clients by finding paths using a breadth-first
search (BFS) from the new client to the active subtrees. This
way, new clients can quickly be connected by only adding new
flow rules on the BFS paths and modifying a single rule per
subtree at the switch connecting the path to the active tree. As
this can possibly result in non-optimal tree structures over time,
DYNSDM checks the established structures on each event and
incrementally optimizes them if required. For this, established
tree structures are monitored and regularly compared to the
optimal structures using a scoring function. If a client is
removed using the service API, DYNSDM traverses all subtrees
backwards starting from the client to the closest switches
performing duplication. At these switches, the branches are
pruned by deleting their output actions. At this point, the
stale branches’ remaining flow rules can be scheduled for a
later removal as no strict time constraints exist once they are
detached from the active delivery process. The content provider
is informed about the successful removal and the remaining
tree is re-evaluated for a potential optimization.

Reacting on link failures: In case a network link used
in one of the DYNSDM subtrees fails, two cases are to be

distinguished. In the first case, the failing link is directly
adjacent to the ingress switch. In this case, the group table
select feature automatically handles the failure as the outage
(i.e. the link is down) is directly detected at the switch
and the select algorithm immediately continues distributing
the traffic to the remaining subtrees. In the meanwhile, the
network controller is informed, triggering the installation of
an alternative subtree. In the second case, a link deeper in
the ISP topology is affected, thus the controller has to handle
the outage. On failure detection, it immediately disables the
affected trees by removing the affected action buckets from
the group table of the ingress switch, distributing the traffic to
the remaining trees. In parallel, new subtrees are calculated,
incrementally installed, and, finally, enabled by adding a new
action bucket. In the first case, no packet loss occurs due to
the automatic rerouting to alternative subtrees. In the second
case, packet loss is inevitable, yet only affecting a fraction of
the multicast traffic due to the multi-tree distribution.

IV. EVALUATION
Measurement Methodology

To investigate the applicability, performance, and costs of
DYNSDM, the core mechanisms were implemented as proto-
type and an emulation-based evaluation was conducted. The
implementation consists of a set of Ryu! OpenFlow controller
components, including the DYNSDM multicast group manage-
ment, the multicast tree management, and the discovery pro-
tocol. Experiments were conducted using Mininet*> and Open
vSwitch®. The Open vSwitch implementation was extended to
fully support the group table select features as described by the
OpenFlow standard. This was necessary as Open vSwitch only
supports a simplified implementation of this feature, which is
limited to the use of a hash function on the destination MAC
address of packets to select random action buckets for packet
processing. A packet header-agnostic stochastic distribution
mechanism was added to fully support the tree-splitting feature
of DYNSDM and allow splitting streams in a weighted manner.

The evaluation scenarios used in the following were chosen
to allow a detailed studying of DYNSDM’s core mechanisms.
A sensitivity analysis is presented that focuses on the multi-
tree parameters of DYNSDM and investigates the scalability of
the approach under different parameter settings in combination
with changing topology sizes and group populations. Based
on the default parameter settings defined in this first step,
the traffic efficiency is investigated and compared to a single-
tree multicast and unicast delivery. To complete the picture,
the efficiency of DYNSDM for handling dynamics is studied.
Due to space constraints, the last part is only presented in an
extended version of this paper [28]. As DYNSDM is intended
for ISP scenarios, a representative ISP topology is used,
introduced in the following subsection. Most experiments were
repeated 50 times, the remaining ones at least 30 times, and
95% confidence intervals are reported for all mean values.

Evaluation Scenarios

The scenarios all use a representative PoP-level ISP
topology as basis, derived from a presentation by Deutsche

'Ryu v3.16, https://osrg.github.io/ryu/ [Access: June 9, 2015]
2Mininet v2.1.0, https://github.com/mininet/mininet/ [Access: June 9, 2015]
30pen vSwitch v2.3.1, http://openvswitch.org/ [Access: June 9, 2015]

Telekom [10]. This topology comprises three different parts,
the inner core (IC), the outer core (OC), and the regional or
aggregation (AGG) network as depict in Figure 4.

Ingress
Switch

Content
Provider

l (e}

il

l e}

Fig. 4. The three-part ISP topology and the connected entities: Inner
Core (IC), Outer Core (OC), and Aggregation (AGG).

The details of the aggregation and access network are
abstracted for this study, assuming that clients are directly
connected to one of the AGG switches. IC switches are
interconnected as a full mesh, OC switches are connected to
two IC switches each, and AGG switches are connected to a
single OC switch as well as to one or two other AGG switches.
To ease the deployment and configuration, the content provider,
similar to the clients, is connected to a randomly chosen AGG
switch, which in this case becomes the ingress switch for the
scenario. The number of switches in the different areas was
varied to maintain the characteristic structure of the network
but investigate different network sizes. Table I summarizes the
different topology parameters used. If not otherwise stated, the
underlined (default) parameters are used.

TABLE 1. SCENARIO PARAMETERS (DEFAULT VALUES UNDERLINED).
Scenario Parameter Variations
IC switches 1,3,6,9, 30
OC switches 3,7,9, 12
AGG switches per OC switch 3,7,9, 12
Number of active clients 1, 15, 31, 63, 126, 189

As a typical application scenario, the delivery of live
video streams is considered. To study the core mechanisms
of DYNSDM in the emulation environment and the spec-
ified topology sizes, the actual delivery of video streams
was required to be simplified. A realistic packet rate was
derived, while actual video payload was not sent to reduce
the load on the software switches, allowing to emulate larger
scenarios on the used emulation server machine. The packet
rate was calculated in the following way: An Ethernet MTU
of 1,500 Bytes is assumed as well as a maximum video
payload of 1,000 Byte, after subtraction of delivery protocol
overheads. Of this remaining payload size, roughly 10% are
required for transport stream encoding, e.g. as typically seen
for MPEG-TS [4]. For a typical bitrate of 2.5 Mbit/s as recently
reported for Akamai-based video streaming [20], this results in
343.75 pps or 1 video packet every 2.909 ms being delivered.
This rate was used for delivering emulated video packets
for all scenarios used in the following. The delivered traffic
volume is deduced from the number of delivered video packets,
multiplied by the above stated packet size.

A. DYNSDM multi-tree parameters

The most important parameter of DYNSDM is the num-
ber of subtrees used per multicast group. To show that the
multi-tree approach improves the traffic distribution in the
ISP network, random multicast groups were generated with
the default topology size and a number of active clients as
stated in Table I. Each experiment was repeated 50 times for
varying numbers of subtrees, where the single-tree variant is
named multicast. For a comparison, also a unicast delivery
was performed with the same settings and using the shortest
paths between content provider and each individual client. This
case, thus, describes a traditional OTT delivery where each
individual stream is routed according the shortest path in the
topology. Figure 5 shows the resulting traffic distribution as
the relative traffic share per link in the topology.

1 e 1.0
0.8 : 0.8 ¢
[" ’
_ 06 . B 0.6}
b3 : : X
VI ' VI '
X R I RmT X, |
o o '
0.4 : '
v | = Multicast o4 = Multicast
H DynSDM 2T : DynSDM 2T
0.2 : DynSDM 3T 0.2t . DynSDM 3T
: DynSDM 10T : DynSDM 10T
t | ==+ Unicast i ==+ Unicast
e s - 0.0 S I @ > ©®
NN AN SN NN NN

Rel. Traffic Share per Network Link Rel. Traffic Share per Network Link

(a) Distribution per group. (b) Accumulated for 50 groups.

Fig. 5. Traffic distribution over links for different number of subtrees.
Here, Figure 5a depicts the distribution for one group over
50 repetitions and Figure 5b the overall traffic distribution
within the topology after the 50 repetitions. In both figures,
a clear difference between the traffic distributions of unicast,
single-tree multicast, and DYNSDM is observable. As expected,
unicast results in a distribution with a wide range of loads,
where most load is carried by a small fraction of links (note
log scale of first figure). Multicast removes this inequality
between links, resulting in 36% of the links being equally used
to deliver the stream. The DYNSDM variants further distribute
the load, reducing the unused share of links from 64% (1 tree)
to 49% (2 subtrees), 47% (3 subtrees), and 45% (10 subtrees).
This translates to a reduction in unused links by 15-19%.
Besides, the distribution of shares changes as smaller streams
are distributed across more links. Figure 5b shows the effect
for the delivery of a large number of OTT streams in parallel.
It depicts the aggregated statistics as retrieved from the flow
statistics of the switches after running 50 random multicast
groups on the same topology. Here, the strength of the multi-
tree approach is clearly visible, where links are used in a more
equal manner (see steepness of DYNSDM curves). To capture
this difference in an intuitive measure, the fairness index metric
by Raj Jain [17, p. 36] is used. It translates the traffic share
distribution to a single fairness value and is calculated using
(2), based on the observed per-link traffic shares (z1, .., z,).

f(mla-'awn) = W (2)

The metric ranges between 0 and 1, where 1 depicts the highest
fairness and the best distribution of load across the links.
Similar to the CDFs, this metric is calculated over all shares
of the 50 repetitions, leading to the results as listed in Table II.

TABLE II. OBSERVED FAIRNESS OF TRAFFIC DISTRIBUTION.
Approach Fairness index Fairness index
(per group) (50 groups)
Unicast 0.0466 0.2381
Multicast 0.3552 0.7131
DYNSDM 2T 0.4621 0.8839
DYNSDM 3T 0.4527 0.8905
DyNSpMm 10T 0.4459 0.8529

Here, it can be observed that DYNSDM and its multi-
tree variants clearly achieve a higher fairness and thus better
traffic distribution. Besides, it is to note that increasing the
number of subtrees to more than two, does only result in minor
or no improvement of the distribution. The reason for this
behavior can be found in the used ISP topology. Figure 6a
shows the ratio of disjoint edges that the different approaches
are able to establish. It is not surprising that for a single
tree all edges are disjoint. Yet, for an increasing number of
subtrees, the number of joint edges quickly rises. Already
with 3 trees, the median of disjoint edges drops below 5%.
This clearly is a result of the ISP topology structure, were
only a limited number of alternative paths exists. Figure 6b
additionally shows the costs in terms of network state (i.e. the
number of flow rules per switch). It shows that the network
state linearly increases (correlation coefficient: r = 0.999)
with the number of subtrees. This was expected since for each
subtree a separate flow is installed at the switches. In sum,
the distribution characteristics and cost dependencies led to
DYNSDM with 2 subtrees being considered the best choice for
the used type of topology. For other topologies more subtrees
could be desired to further improve the traffic distribution.

1.0

-
N
N

=
o

o
©
o
©

©

g
o)
o
2}

o
~
1N
IS
'

Ratio of Disjoint Tree Edges
iy
4

o
i

Ratio of Disjoint Tree Edges
o
)
]
Number of Flow Rules per Switch
(o)

B

0.0 7
123 510 123 510
Num. Subtrees Num. Subtrees

N

4
T—F-1
—F-

B bmee

0[] HEE .
12 3 5 10
Number of Subtrees (n,)

0.0

(a) Disjoint edges. (b) Costs: network state.

Fig. 6. Sensitivity analysis: Influence of number of subtrees.

As last part of the sensitivity analysis, Figure 7 shows how
the traffic share achieved by DYNSDM with two subtrees is
influenced by different topology sizes and client populations.
For the topology sizes, Table III lists the different topology
configurations and their names as used in the following. For
an increasing ISP topology size, it can be observed that

the fairness index for unicast decreases as more links are
added but cannot be used (fs=0.3866, f\=0.2281, f1.=0.1933).
DYNSDM, in contrast is able to maintain a stable and high
fairness index (fs=0.8928, fu=0.8838, f.=0.8912). For the
costs (not shown here), only minimal changes are observed as
the overall network state mainly becomes more distributed and
only slightly increases in case the SPTs include more switches.

TABLE III. TOPOLOGY CONFIGURATIONS AND THEIR NAMES.
Topology IC ocC AGG Number Number
Name Switches Switches Switches® Hosts Receivers
Small (S) 3 6 3 54 18
Medium (M) 3 9 7 189 63
Large (L) 5 12 7 252 84

For changing client populations, the fairness index for
DYNSDM stepwise increases until 126 active clients and
slightly drops again for 189 clients (f1=0.2728, f53=0.8839,
f128=0.9134, f159=0.87254). The reason for this drop can
be seen in Figure 7b, where the CDF for no=189 shows
clear steps, caused by links that are used more than once by
different subtrees and, thus, carry more traffic, which is in
line with the above observations on edge disjointness. For the
costs (not shown here), more receivers lead to more flow rules
being installed. Yet, no linear correlation could be observed
(r=0.848) as for a small number of receivers the number of
rules increases quickly until most switches are involved in the
delivery. From there on, the increase is smaller, converging
to a median of just below 2 rules per switch and group, i.e.
roughly 1 rule per subtree. These results show that DYNSDM
scales well with the topology size and number of clients.

0.8]
_ _06
>\§\ >V<‘
x X,
o — S: DynSDM %04
==+ 8: Unicast
M: DynSDM — n=t
M: Unicast n.=63 ||
— L:DynSDM © n=126
+ L: Unicast ~ n.=189
Oﬁge Q-Q\ Q& Qgrb Q& b»éa UQQ) U& N 0@ NN é’@m@j@@s&b@@

Rel. Traffic Share per Network Link Rel. Traffic Share per Network Link

(a) ISP topology size. (b) Client population.

Fig. 7. Sensitivity analysis: Influence of scenario parameters.

B. DYNSDM efficiency

For the efficiency, it is important to show that introducing
the multi-tree approach, has only limited impact on the overall
amount of traffic. By that, the traffic should be well below the
traffic of unicast deliveries to maintain the original incentive
for the ISP to use an SDM-based service. Therefore, Figure 8
compares the total number of network transmissions (per video
packet) performed to serve all active clients for different

4 Aggregation switches per outer core switch

topology sizes (exemplary shown for number of OC switches)
and client populations. Each time an individual packet traverses
a link of the network it is counted. From this metric, the total
network traffic can be easily calculated by multiplying the total
number of transmissions with the packet rate and bitrate of the
stream. The results show that the efficiency of DYNSDM, in
average, is at the same level as the single-tree multicast and,
as expected, way below unicast. This is true for all studied
topology sizes and client population, confirming the efficiency
of the approach following the relevant aspects proposed in [18].

w
a
o

10°

w
o
o

N
o
o

N
o
o

N
%)
—

N
=)
=

10’

3
o

Total Network Transmissions per Packet
Total Network Transmissions per Packet

- 1 - 1
9 12 1
Number of Outer Core Switches

(=)

Bl Unicast
H [Multicast
[DynSDM

3 6

B meEmeEe
15 31 63 126 189
Number of Clients

(a) ISP topology parameters. (b) Number of clients.

Fig. 8. Traffic reduction for different exemplary scenario parameters.

V. RELATED WORK

In 1999, Keshav and Paul [18] proposed a separation of
control and data plane of IP multicast, introducing a logi-
cally centralized control entity. This work coins fundamental
concepts that inspired today’s SDN-based multicast solutions.
Although it is not fully compatible with recent SDN/OpenFlow
works, conceptually, the work can be seen as an archetype for
core parts of DYNSDM and other state-of-the-art approaches.
Yu et al. [36] propose OFM (OpenFlow Multicast) which
follows this approach and centralizes the multicast control at
the controller of an SDN/OpenFlow network. They show that
this centralization allows reducing the join time for new clients.
While they do not introduce particular new functional aspects
relevant to DYNSDM, they consider an interesting multi-
controller scenario, where controllers can agree on a common
multicast tree connecting their individual networks. With the
same objective to reduce group events delays, Marcondes et
al. [24] introduce CASTFLOW. The approach pre-calculates
network-wide per-group MSTs, allowing the controller to
quickly push newly populated parts of the tree to the switches.
This way, CASTFLOW trades a reduced processing time during
group events for increased memory requirements to manage the
MSTs. In realistic ISP scenarios with millions of clients, this
would imply a substantial overhead. Therefore, DYNSDM uses
a more efficient BFS-based attachment from [23], avoiding
unnecessary calculations and making groups easier to manage.

Kotani et al. [19] present an SDN-based multicast approach
based on IGMP and using multiple data-path trees to reduce
packet losses on network link failures. Inspired by [33],
they enable pre-installed backup trees on link failures. While
DYNSDM’s multi-SPT calculation approach was inspired by
this work, the work does not improve the traffic distribution as

only one tree is active at a time. Zou et al. [38] also use IGMP
but focus on secure group management. Similar to DYNSDM,
the controller implements the group and tree management. The
approach differs from DYNSDM in that it uses a single data-
path tree and does not consider traffic distribution features.

Finally, Lee et al. [23] present a closely related approach
that, in fact, inspired some mechanisms of DYNSDM. A major
difference is that DYNSDM is a general multicasting service,
while Lee et al. specifically focus on video streaming. Most
commonly, both aim at traffic distribution across network links,
although, Lee et al. motivate it with robust stream delivery,
which in DYNSDM is only considered a positive side effect. To
achieve robustness, they use a loss-tolerant multi-layer video
codec and deliver the individual layers over different subtrees.
This allows compensating packet losses by reducing the video
quality. The approach is limited to the used video codec, which
contradicts the objective of DYNSDM to be transparent to
the clients. Besides, the approach is not transparent to the
content provider due to the content encoding and explicit
substreams exposed to the network. DYNSDM, in contrast,
splits the multicast stream at the network layer, making the
multi-tree delivery transparent for the content provider. Other
contributions by the authors are seen orthogonal to this work.

VI. CONCLUSION

In this paper, DYNSDM is presented, introducing a novel
approach to make OTT multicast traffic delivered by SpM
more flexible and to achieve a better traffic distribution across
links in the ISP network. For this, it proposes a mechanism
to enable a fully network-supported multi-tree delivery of
multicast streams that is transparent to the content provider and
the clients. DYNSDM also adds the so far missing support for
dynamic multicast groups and the ability to react on network
events, such as link failures. The result of the emulation-based
evaluation using realistic ISP topologies allowed to derive ade-
quate settings for core parameters of DYNSDM and shows their
impact on the traffic distribution. Using the multi-tree approach
enables tuning the traffic distribution of DYNSDM to fully
exploit the actual ISP network structure and, thereby, achieve
a fair balancing of traffic across the links of the network.
DYNSDM is shown to be scalable with the network topology
size and the number of active clients with limited costs in
terms of network state. Its traffic efficiency is at the level of
single-tree multicast, where the traffic also scales linearly with
the topology size and the number of clients, as desired for
multicast approaches. Dynamic reaction on group and network
events is possible at low costs in terms of flow rule changes
as presented in more detail in the extended version of this
work [28]. Overall, DYNSDM shows to be highly promising
to be applied in a future ISP scenario, finally enabling an
efficient and well-managed delivery of OTT multicast traffic,
maintaining traffic efficiency and full flexibility for the ISP.

ACKNOWLEDGMENT

This work has been funded in parts by the European Union
(FP7/#317846, SmartenIT and FP7/#318398, eCOUSIN) and
the German Research Foundation (DFG) as part of project
CO03 within the Collaborative Research Center (CRC) 1053 —
MAKI. The authors would like to thank Dominik Stingl and
Timm Wichter for their valuable input and contributions.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet,”
RAM Glottometrics, vol. 3, no. 1, pp. 143-150, 2002.

C. F. Bazlamagci and K. S. Hindi, “Minimum-weight Spanning Tree
Algorithms a Survey and Empirical Study,” Elsevier Computers &
Operations Research, vol. 28, no. 8, pp. 767-785, 2001.

J. Blendin, J. Riickert, T. Volk, , and D. Hausheer, “Adaptive Software
Defined Multicast,” in IEEE Conference on Network Softwarization
(NetSoft), 2015.

Brightcove Inc., “Announcing the Cloud’s Most Efficient HTTP Live
Streaming,” Blog post, Dec 2011, http://blog.zencoder.com/2011/12/08/
announcing-the-clouds-most-efficient-http-live-streaming/ [Accessed:
August 24, 2015].

Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
2013 — 2018,” Tech. Rep., 2014.

S. E. Deering, “Host Extensions for IP Multicasting,” RFC 1112, Aug
1989. [Online]. Available: https://tools.ietf.org/rfc/rfc1112.txt

Die Medienanstalten, “Digitisation 2013 - Broadcasting and the Internet
- Thesis, Antithesis, Synthesis?”” Tech. Rep., 2013.

E. Dijkstra, “A Note on two Problems in Connexion with Graphs,”
Springer Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959.

C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, ‘“De-
ployment Issues for the IP Multicast Service and Architecture,” IEEE
Network, vol. 14, no. 1, pp. 78-88, 2000.

M. Dueser, A. Gladisch, M. Jaeger, F. Westphal, and H. Foisel,
“Evaluation of Next Generation Network Architectures and Further
Steps for a Clean Slate Networking-Approach,” ITG EuroView,
Presentation, 2006. [Online]. Available: http://www3.informatik.
uni-wuerzburg.de/euroview/2006/presentations/talk_Dueser.pdf

Ericsson ConsumerLab, “TV and Media 2014 - Changing Consumer
Needs are Creating a New Media Landscape,” Tech. Rep., 2014.

M. R. Garey, R. L. Graham, and D. S. Johnson, “The Complexity
of Computing Steiner Minimal Trees,” SIAM Journal on Applied
Mathematics, vol. 32, no. 4, pp. 835-859, 1977.

M. Gunkel, F. Wissel, W. Weiershausen, M. Franzke, V. Fiirst, and
A. Mattheus, “Multi-layer interworking with rate-adaptive transmission
technology-benefit and challenges of a new use case,” in Proceedings
of the VDE/ITG Symposium on Photonic Networks, 2015.

G. Hasslinger and F. Hartleb, “Content Delivery and Caching from a
Network Provider’s Perspective,” Computer Networks, vol. 55, no. 18,
pp- 39914006, 2011.

H. W. Holbrook and D. R. Cheriton, “IP Multicast Channels: EXPRESS
Support for Large-scale Single-source Applications,” vol. 29, no. 4, pp.
65-78, 1999.

M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A Survey of Application-layer Multicast Protocols,” IEEE Communi-
cations Surveys and Tutorials, vol. 9, no. 3, pp. 58-74, 2007.

R. Jain, The Art of Computer Systems Performance Analysis. John

Wiley & Sons, 1991.

S. Keshav and S. Paul, “Centralized Multicast,” in IEEE International
Conference on Network Protocols (ICNP), 1999.

D. Kotani, K. Suzuki, and H. Shimonishi, “A Design and Implemen-
tation of OpenFlow Controller Handling IP Multicast with Fast Tree
Switching,” in IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT), 2012.

D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the
Video Transcoding Workflow in Content Delivery Networks,” in ACM
Multimedia Systems Conference (MM), 2015.

Y. Liu, Y. Guo, and C. Liang, “A Survey on Peer-to-Peer Video
Streaming Systems,” Peer-to-Peer Networking and Applications, vol. 1,
pp. 18-28, 2008.

Y. Liu, Z. Liu, X. Wu, J. Wang, and C. Yang, “IPTV System Design: An
ISP’s Perspective,” in IEEE International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), 2011.
M.-W.Lee, Y.-S. Li, X. Huang, Y.-R. Chen, T.-F. Hou, and C.-H.
Hsu, “Robust Multipath Multicast Routing Algorithms for Videos
in Software-Defined Networks,” in IEEE International Symposium of
Quality of Service (IWQoS), 2014.

[24]

[25]

[26]

(271

[28]

[29]

[30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

C. Marcondes, T. Santos, A. Godoy, C. Viel, and C. Teixeira, “CastFlow:
Clean-Slate Multicast Approach using In-Advance Path Processing in
Programmable Networks,” in IEEE Symposium on Computers and
Communications, 2012.

M. Médard, S. Finn, and R. Barry, “Redundant Trees for Preplanned
Recovery in Arbitrary Vertex-redundant or Edge-redundant Graphs,”
IEEE/ACM Transactions on Networking (TON), vol. 7, no. 5, pp. 641—
652, 1999.

B. Pfaff, B. Lantz, and B. Heller, OpenFlow Switch Specification,
Version 1.3.0, Open Networking Foundation, 2012.

K. Pires and G. Simon, “YouTube Live and Twitch: A Tour of User-
Generated Live Streaming Systems,” in ACM Multimedia Systems
Conference (MMSys), 2015.

J. Riickert, J. Blendin, R. Hark, T. Wichter, and D. Hausheer,
“An Extended Study of DYNSDM: Software-Defined Multicast using
Multi-Trees,” Peer-to-Peer Systems Engineering Lab, TU Darmstadt,
Germany, Tech. Rep., 2015, http://www.ps.tu-darmstadt.de/fileadmin/
publications/PS-TR-2015-01.pdf.

J. Riickert, J. Blendin, and D. Hausheer, “RASP: Using OpenFlow
to Push Overlay Streams into the Underlay (Demo Paper),” in IEEE
International Conference on Peer-to-Peer Computing (P2P), 2013.

——, “Software-Defined Multicast for Over-the-Top and Overlay-based
Live Streaming in ISP Networks,” Springer Journal of Network and Sys-
tems Management (JNSM), Special Issue on Management of Software-
defined Networks, vol. 23, no. 2, 2015.

Sandvine, “Fall 2014 Global Internet Phenomena Report,” 2014.

R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, “Overlay
Networks: An Akamai Perspective,” in Advanced Content Delivery,
Streaming, and Cloud Services. John Wiley & Sons, 2014.

D. Wang and G. Li, “Efficient Distributed Bandwidth Management for
MPLS Fast Reroute,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 2, pp. 486-495, 2008.

R. White, J. Ng, D. Slice, and S. Moore, “Enhanced Interior Gateway
Routing Protocol,” RFC Draft, April 2014. [Online]. Available:
https://tools.ietf.org/html/draft-savage-eigrp-02

G. Xue, L. Chen, and K. Thulasiraman, “Quality-of-Service and
Quality-of-Protection Issues in Preplanned Recovery Schemes Using
Redundant Trees,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 8, pp. 1332-1345, 2003.

Y. Yu, Q. Zhen, L. Xin, and C. Shanzhi, “OFM: A Novel Multicast
Mechanism Based on OpenFlow,” Advances in Information Sciences
and Service Sciences, vol. 4, 2012.

X. Zhang and H. Hassanein, “A Survey of Peer-to-Peer Live Video
Streaming Schemes - An Algorithmic Perspective,” Computer Networks,
vol. 56, no. 15, 2012.

J. Zou, G. Shou, Z. Guo, and Y. Hu, “Design and Implementation of

Secure Multicast based on SDN,” in IEEE International Conference on
Broadband Network Multimedia Technology (BNMT), 2013.

