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Abstract—With the advent of social media, Internet of Things
(IoT), widespread use of richer media formats such as video, and
generally increased use of mobile devices, volume of online data
has seen a rapid increase in recent years. To cope with this data
explosion, businesses and cloud providers are scrambling to lower
the cost of storing data without sacrificing the quality of their
service using space reduction techniques such as compression and
deduplication. Capacity savings, however, are achieved at the cost
of performance and additional resource overheads. One draw-
back of compression techniques is the additional computation
required to store and fetch data, which may significantly increase
response time, i.e., I/O latency. Worse yet, inefficient compression
algorithms that fail to compress data satisfactorily suffer from
the latency penalty with marginal capacity savings, e.g., deciding
to compress data that is encrypted or already compressed. There-
fore, from a data center administrator’s perspective, we should
pick the set of volumes that will yield the most compression space
saving with the least latency for a given amount of computation
capacity, without exhaustively inspecting the data content of
volumes. To fill this void, this paper proposes an approach to
manage compression for a very large set of volumes. It maximizes
capacity savings and minimizes latency impact without scanning
the actual data content (to avoid security concerns). Our pilot
deployments show significant capacity savings and performance
improvements compared to benchmark compression strategies.

I. INTRODUCTION

With hyper connectivity, pervasive computing, Internet of
Things (IoT), we are experiencing an ever increasing rate
of data generation in social media, commerce, finance, and
many other industries & domains. In 2014, according to
Domo, email users sent 200 million messages, Facebook users
shared 2.5 million pieces of content, and Instagram users
posted nearly 220,000 photos every minute [14] — and this
is just social media. We live in a world where every click,
phone call, financial transaction, etc. is logged. Businesses
and cloud providers must find ways to store these massive
(and continuously growing) amounts of data in a manner that
lowers the cost rate to themselves and their clients while also
not sacrificing the quality of their service.

Currently, many effective solutions exist such as storage
tiering, deduplication, compression, the use of magnetic tape,
or the use of commodity storage — in many cases, best results
are achieved when employing a combination of these solutions
(e.g. deduplication then compression [10]). Space reduction
techniques such as compression and deduplication can help
improve operational efficiency by significantly reducing the
data footprint. Capacity savings though come at the cost of
performance and additional resource overheads. Focusing on
compression, we found it widely deployed on inactive &
infrequently accessed data as well as on particular types of data
such as multimedia (e.g. photos, videos, etc.) but application
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to active data in production data centers was practically non-
existent. We found the idea of deploying compression across
all data, both active and inactive, having the potential to yield
immense storage capacity savings.

With recent advancements in real-time compression algo-
rithms, we explored how well real-time compression fared
when deployed on both active and inactive data. We explored
using IBM’s Real-time Compression [19] since it bench-
marked well when compared to other industry solutions [16].
IBM’s Real-time Compression operates by compressing asso-
ciated data, accessed at approximately the same time, together
into chunks. For example, a set of project files typically opened
together would be compressed within the same chunk. One
drawback of real-time compression is that it is computationally
more expensive to read and write compressed data, response
times may significantly increase, which brings to light the
commonly seen fragile balance between space savings and
performance — one is typically attained at the cost of the
other. Real-time compression turns out not to be impervious
to these issues. Further, compression of certain types of data
such as encrypted data and multimedia files that tend to use
some internal form of compression do not yield any capacity
savings, however, on the flip side consume resources and add
to overall latency of access.

Because of limited computation resources, data center stor-
age devices generally have a hard limit to the number of data
volumes that can be compressed. This additional constraint
requires any compression deployment solution to not only
compress the optimal subset of volumes at a given point in
time but to maintain the optimal subset of volumes compressed
over time (e.g. a compressed volume with high capacity
savings today may provide poor savings in the future).

In this paper we present an effective approach to both small
and large-scale deployment of data compression in a cloud
or enterprise data center in a manner that yields significant
capacity savings without incurring the heavy performance cost.
We formulate this as an optimization problem and propose
a system that efficiently finds and compresses a near op-
timal subset of volumes over time. Our solution finds and
compresses volumes with high compression ratios using a
heuristic-based compression prediction algorithm. Over time,
it uncompresses volumes in favor of others yielding better
capacity savings. The remainder of this paper is organized
as follows, Section II provides background on compression,
Section III highlights the motivation and challenges for online
compression, Section IV presents our proposed heuristic based
selective compression approach, Section V provides results of
initial evaluation and that of a pilot deployment, Section VI
provides summary and future directions.



II. BACKGROUND

One of the first data compression techniques proposed was
by Shannon et al.[17] and Fano et al.[12]. Symbols were sorted
by frequency and encoded using a growing number of bits so
more frequently seen symbols were encoded with less bits.
Building on this work, Huffman et al.[13] proposed a more
efficient encoding strategy that minimized the average output
bits per symbol. The dawn of modern data compression came
in 1977 when Abraham Lempel and Jacob Ziv proposed a
technique for encoding repeating text patterns [21][22]. Build-
ing on this work, Welch et al.[20] proposed a more efficient
technique that currently serves as the basis of many modern
compression algorithms including the real-time algorithm used
in our work.

In modern cloud computing, compression is traditionally
used for infrequently accessed data (such as archived files,
snapshots, & backups), multimedia, and to reduce the size of
data transmission. For example, Nasuni appliances leverage
compression to shrink snapshots and data transmission [6].
Omnicloud, a company focused on secure but not high perfor-
mance storage, compresses data before encrypting & storing
[7]. Cloud services such as Amazon Web Services, Google
Cloud Storage, and Microsoft Azure enable users to manually
compress files, snapshots, and backups but lack automated
compression as well as real-time compression solutions for
primary data [2][4][5]. Enterprise storage providers such as
EMC, NetApp, and HP provide compression but advocate
compressing backup and secondary but not primary data
[81[151[9].

III. MOTIVATION & CHALLENGES

During our initial investigation into the use and deployment
of compression within a data center, we discovered numerous
challenges as well as how current deployment methods failed
to address them. In this section, we list and explain each of
these challenges.

When initially deploying the use of compression in a data
center, data volumes that fail to produce significant capacity
savings or exhibit significantly higher response latency when
compressed should remain uncompressed. Typical deployment
methods such as compressing data volumes that are accessed
infrequently, stored in a particular storage pool, or belonging
to a particular account fail to guarantee either goal.

The next challenge is efficiently transforming data volumes
(from uncompressed to compressed and vice versa) since the
transformation is not instant but, in fact, consumes compu-
tation, storage, and bandwidth resources over an extended
period of time. When transforming a data volume, the volume
must remain accessible without any loss of data. Volume
transformation can take minutes (for a small volume) to
hours (for a relatively large volume) so taking a volume
offline is not an acceptable solution for most applications. If
volume transformation involves having the volume partially
uncompressed and partially compressed at any point in time,
any form of device failure can result in complete data loss (or
partial data loss if a backup of the data volume is taken before
transformation began).

Once a volume is transformed, if compression failed to
produce adequate results (i.e. significant space savings and
low latency), the volume should be rolled back and remain
uncompressed. Transforming volumes back to uncompressed
should similarly be non-disruptive and result in no data loss.
Observing that volume transformation consumes resources, ac-
curately predicting the data volumes that compress well would
drastically reduce overall resource usage during compression
deployment. Compression prediction itself is made difficult by
the fact that sampling (e.g. method used by NetApp’s Space
Savings Estimation Tool [15] and IBM’s Comprestimator [3])
in many cases is not permissible due to security concerns (e.g.
medical records, personal financial data, etc.).

In data centers, the use of compression is typically limited
by the virtualization device(s) due to limited computation
resources [19]. An additional challenge then is to compress
the volume set resulting in the greatest cost savings (or
capacity savings if all storage is priced the same). Many data
centers typically have different tiers of storage ranging from
high performance, mid-performance, and near-line with each
tier varying in cost — typically the higher the performance
capabilities the higher the cost. Compression of volumes
on the higher cost, high performance devices can result in
significantly sizeable cost savings but cloud providers are
typically hesitant to compress data on these devices due
to concerns over significant performance degradation. This
scenario illustrates the need for a compression solution that can
compress data volumes across the different tiers of storage in a
manner that maximizes cost savings while ensuring acceptable
performance.

Once compression has been deployed, there is the issue
that data volumes change over time. Data volumes that had
yielded high capacity savings and acceptable performance may
no longer do so after some time. The compression solution
deployed should include the discovery and uncompression
of these data volumes. On the other end, there may now
be volumes eligible for compression that initially did not
meet the capacity savings or performance requirements. The
compression solution should also include the discovery and
compression of these data volumes.

In one data center we investigated, the policy to compress
data volumes found to have low activity (i.e. low read & write
I/O access) was deployed. Data volumes that had averaged
1.5ms response times rose to 4.5ms — a 290% increase! Of
the 550 compressed volumes roughly 20% yielded no capacity
savings — the performance cost was incurred with no benefit
in return.

IV. SELECTIVE REAL-TIME COMPRESSION

Our proposed Selective Real-time Compression system (re-
ferred to as Real-time Compression Automation (RTCA) tool)
is designed with goal of optimal selection of data for com-
pression. In this section, we describe how RTCA addresses the
concerns in the previous section to efficiently, non-disruptively,
and safely deploy data compression within a data center.

RTCA is implemented as a web service (deployed on
a WebSphere Application Server Liberty Profile [11]) and
uses a lightweight embedded database (Apache Derby [1])
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Fig. 1. Selective Real-time Compression (RTCA): System Model

for persistently storing job status and execution history as
shown in figure 1. RTCA connects to the storage virtualization
device(s) within a data center to retrieve host & storage
configuration data as well as to compress and uncompress data
volumes. Since storage virtualization devices enable the non-
disruptive transformation of data volumes from uncompressed
to compressed (and vice versa), they are a key component in
any online compression deployment solution.

Once a volume is compressed by RTCA, the storage vir-
tualization device services I/O requests by decompressing the
appropriate data chunks on reads and updating the appropriate
data chunks on writes; making data compression invisible
to applications running on the host devices. RTCA operates
by having a user execute a job. Since an RTCA job uses
computation, storage, and bandwidth resources, it is typically
run during a maintenance or low-peak usage window. If the
job does not complete within the time window, it can be run
again during the next window. Since volume data changes over
time (e.g. a compressed data volume yielding high capacity
savings today may not do so in the future), an RTCA job can
be executed periodically (e.g. daily, weekly, monthly, etc.) to
maintain the optimal set of volumes compressed within the
data center. An RTCA job is composed of the following three
phases: sampling, planning, and execution. We now discuss
each in turn.

1) Sampling: The sampling phase is only executed when
RTCA is run for the first time in a data center. Sampling is
executed to jump start the compression prediction algorithm
RTCA uses to predict the capacity savings of a particular
volume. Since sampling is resource intensive, we first looked
into the range of compression ratios (uncompressed size /
compressed size) of 359 volumes (accounting for 27.4TB) in
two data centers to verify whether compression prediction was
necessary. For example, if volumes skewed to having relatively
high compression ratios then no compression sampling and
prediction scheme is necessary since compressing the largest
volumes would yield the greatest cost savings (assuming all
storage is priced the same).

Plotting the compression ratios of the production data
center volumes displayed a wide spectrum of results — some
volumes showed no compressibility while others showed up
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Fig. 2. Cumulative distribution of compression ratios among volumes within
a data center

to a compression ratio of 50 (i.e. on average every 50GB
compressed down to 1GB). A wide distribution of compression
ratios necessitated finding a method to predict compression
ratios.

In analyzing the configuration (e.g. volume size, volume
to host mapping, etc.) & performance (e.g. average read and
write I/O requests per second) data of volumes within two
production data centers, we found a correlation among the
compression ratios of volumes mapping to the same host. This
led to the hypothesis that applications generally stored similar
data across most or all of their data volumes. To verify this
hypothesis we looked at the variance of compression ratios
among three volume sets: (1) volumes mapping to the same
host, (2) similarly sized volumes, and (3) all volumes.

Variance
A >
Groups vaue:éeze Average | Median
Host 51 12 20.0 23
Size 5 72 35.7 16.4
Overall 1 359 40.2 4.7

Table 1: Variance among volumes grouped by host or size as
well as all volumes

As seen in Table 1, the average variance among host
volumes is 20.0 (44% and 50% less than that of similarly sized
volumes and all volumes, respectively). The median variance
among host volumes is 2.3 (86% and 52% less than that of
similarly sized volumes and all volumes, respectively).

RTCA’s compression prediction algorithm leverages this
host heuristic to predict the compression ratio of a given
volume by averaging the known compression ratios of any
other volumes mapping to the same host. To validate this
prediction algorithm, we again used the compression ratio
information of the 359 volumes. We measured the compression
ratio differences of every pair of volumes that belonged to the
same host (6,544 pairs in our study), denoted by vector A,
and the compression ratio differences of every pair of volumes
that belonged to different hosts (107,326 pairs in our study),
denoted by vector B. The mean values of A and B were 3.8 and
4.4. The medians of A and B were 1.5 and 1.8, respectively.
To evaluate the statistical significance of such differences, we
performed unpaired Mann-Whitney U test on A and B where
the alternative hypothesis was that the population mean of A
is less than the population mean of B. Our test rejects the null



hypothesis at a significance level of 5% (confidence 95%),
which corroborates our heuristic that the compression ratio
differences of two volumes with the same host are usually
smaller than those across different hosts.

When RTCA is first run in a data center, there are no known
compression ratios so there is insufficient information to make
predictions. To address this cold start problem, we execute
a one-time sampling phase. During the sampling phase, a
randomly selected volume from each host is compressed, their
compression ratio is logged, and they are subsequently rolled
back (to uncompressed).

2) Planning: Having compression ratio information, RTCA
moves on to the planning phase where it predicts the compres-
sion ratio of every volume in the data center. It proceeds by
selecting the subset of volumes with known or predicted com-
pression ratios above a user-specified threshold and ordered by
expected cost savings (cost/GB * Expected[capacity savings]),
from highest to lowest.

3) Execution: In the final execution phase, RTCA starts
from the top of the volume list and begins to transform
(compress) data volumes — those with the highest expected
cost savings are compressed first. To control data center
resource usage, the user can limit the number of volume
transformations running in parallel. To compress a volume,
RTCA creates a compressed copy of the volume. Once the
original and compressed copies are in sync, RTCA removes
the original copy. This process requires up to the size of the
volume in additional capacity for a second copy (worst case)
and doubles the work of writes (writes are propagated to both
copies) during the length of the process but it does guarantee
no data loss, non-disruptive compression (and uncompression),
and instant roll-back. If a volume’s compression ratio was pre-
dicted inaccurately and falls below the acceptable threshold,
it is instantly rolled back (compressed copy deleted).

During the execution phase, RTCA also finds volumes
with compression ratios below the acceptable threshold and
transforms them back to uncompressed. Optionally, RTCA
can retrieve performance data from a monitoring program
and transform compressed volumes exhibiting unacceptable
response times back to compressed. To avoid re-compressing
these volumes in subsequent RTCA jobs, RTCA tracks each
volume’s transformation history and feeds it into the compres-
sion prediction algorithm to improve further predictions and
recommendations.

V. EVALUATION

We deployed RTCA in a 190TB production data center
consisting of 1,287 volumes virtualized by IBM’s SAN Vol-
ume Controller [18], an in-band virtualization device, where
compression (IBM’s Real-time Compression [19]) was already
in use. Compression had been deployed following the policy
of compressing volumes found to have relatively low activity
(i.e. low read & write I/O access). Following this policy, 551
volumes were compressed yielding 28TB of capacity savings
(an average of a 40% capacity reduction per volume) but of
the 551 compressed volumes roughly 20% yielded no capacity
savings. Compressed volumes also experienced an increase

in average response time from 1.5 to 5.8ms (approx. 290%
increase).

We ran a daily RTCA job to uncompress volumes with a
compression ratio below and to compress volumes predicted
to have ratios above 1.7. Jobs ran during low peak hours (i.e.
evening & night). RTCA jobs were limited to execute at most
20 transformations in parallel with each transforming a volume
at 64MB/s leading to the use of at most 1.25GB/s of bandwidth
during execution. With the average size of a volume being
151GB, there was an additional use of 3TB of storage capacity
on average during execution. Negligible changes in volume
response times suggest computation resources were not over-
utilized or exhausted during the transformation windows.

Low Af:tlv1ty RTCA
Policy
Compressed Count 551 381
Aver'age ‘ 17 33
Compression Ratio
A
verage 5.8 1.8
Response Time (ms)
Total Savings (GB) 28,101 37,563

Table 2: Comparison between low activity policy & RTCA

After a week of daily RTCA jobs, the data center stabilized
and volume transformations ceased. By compressing a more
optimal set of volumes, RTCA reduced overall computation
utilization, compressed fewer volumes (i.e. 551 to 386), re-
duced the average compressed volume response time (i.e.
5.8ms to 1.8ms), and increased capacity savings by 36% (i.e.
28TB to 38TB).

VI. CONCLUSION

In this paper, we first investigate the feasibility of deploy-
ing compression techniques in large scale data centers. Our
study shows that poorly selecting data volumes to compress
could result in significantly increasing response time latency
while yielding marginal capacity savings. Moreover, limited
computation resources allow only the compression of a limited
number of volumes so selecting the right volumes to compress
is of great importance from a data center administrator’s
standpoint. In addition, the transformation of volumes was a
process that needed to be executed carefully to not lose data,
waste resources, or disrupt actively running applications. To
address these challenges, we developed RTCA which is a tool
for deploying compression within a data center that used a host
heuristic based compression prediction algorithm to compress
a near optimal set of volumes. We validate the effectiveness
of RTCA by deploying it in a 190TB production data center
where compression was already in use. Our study shows that
RTCA was able to compress fewer volumes thus reducing
overall computation utilization, reduce the average compressed
volume response time, and increase capacity savings.
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