Deterministic OpenFlow: Performance Evaluation of
SDN Hardware for Avionic Networks

Peter Heise*T, Fabien Geyer* and Roman Obermaisser!
*Airbus Group Innovations, Munich, Germany
TUniverSity of Siegen, Siegen, Germany
Emails: {peter.heise@airbus.com, roman.obermaisser@uni-siegen.de }

Abstract—Due to special requirements avionic networking
devices are typically quite expensive. One way to reduce costs
is to make use of commercial off the shelf devices and configure
them in a way that gives similar performance. In this paper we
evaluate the use of OpenFlow in the avionics environment in terms
of performance and configuration. The main feature of OpenFlow
is fine-grained access to the switch’s forwarding plane. While it
was primarily designed to offer high configurability and reduction
of cost through harmonization of interfaces, in newer versions
OpenFlow added support for traffic policing. In OpenFlow this is
realized with meters that allow for quality of service enforcement
on a hardware level as well as an arbitrary mapping of meters to
flows. This paper shows how to make use of OpenFlow’s meter
commands to achieve deterministic behavior and discusses its
advantages and shortcomings. We then implement the proposed
solution on a commercial off the shelf OpenFlow switch and
compare the switching performance to a state of the art avionics
switch used in current aircraft.
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I. INTRODUCTION

OpenFlow is a protocol that allows for fine-grained access
to the switch’s forwarding plane with the intention of taking
the logic out of the switch so that hardware costs can go down.
Mechanisms to achieve quality of service were not available
in early versions, however, with OpenFlow 1.3 [1] a traffic
limitation mechanism was introduced that potentially allows
the design of safety critical networks.

The main task of safety critical networks is to provide
guaranteed delivery of all packets. Such a network must ensure
that packets are delivered before a deadline and not lost
even in case of the failure of one element of the network.
When speaking about deadline guarantee for packets, often
the term deterministic is used. For a network architecture to
be called deterministic, it must fulfill the following points:
(a) formal verification of maximum end-to-end latencies and
(b) mechanisms in the network to guarantee that ill-behaved
end-systems will not interfere with well-behaved end-systems.
This is generally achieved by the definition of a contract on the
flows of the network, which defines how an end-system must
send its packets on the network. An example of such contract is
the Virtual Link in the Avionics Full-Duplex Switched Ethernet
(AFDX) [2] technology, where packet sizes are limited as well
as the time between two packets.

This paper shows how to map the mechanisms seen in
AFDX onto an OpenFlow switch to allow the use of com-
mercial off the shelf (COTS) hardware for a cheaper overall
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network. The contribution of this paper is twofold: we show
how to achieve bounded latencies with OpenFlow by applying
metering for each packet and second we implement and
evaluate the concept on an HP E3800 COTS switch. Finally
the COTS hardware is compared to a state of the art AFDX
switch currently in use in aircraft.

The outline of this paper is as followed. We first look at the
background and related work in Section II and III. In Section
IV, we introduce the concept to achieve bounded latency with
OpenFlow and sketch the means for a mathematical model.
Then we present in Section VI some synthetic measurements
with the COTS switch and finally compare the behavior to
a real aircraft switch in Section VII. Finally Section VIII
summarizes and concludes our work.

II. BACKGROUND
A. Avionics Full Duplex Ethernet (AFDX)

The technology used in aeronautics to build safety critical
networks is Avionics Full Duplex Ethernet [2]. AFDX offers
real time guarantees through statistical multiplexing without
the need for time synchronization. All packets are mapped to
a flow called the virtual link (VL). Virtual links are unidirec-
tional flows from one end-system to one or more end-systems.
Identification of VLs is done via the packet’s destination MAC
address as seen in Fig. 1. The upper 32 bits are constant
while the lower 16 bits represent the virtual link. Each VL
is characterized by a Bandwidth Allocation Gap (BAG), the
time between two consecutive packets of the same flow, and a
maximum (S,,q,) and minimum (S,,;,) frame size. Switches
enforce compliance to this traffic description and can thus offer
a guaranteed service time. Network calculus is then used to
calculate the worst-case latency through the whole network.

48 bit MAC Destination Address
Virtual Link
16 bits

Constant Bitfield
32 bits

Fig. 1. AFDX Destination MAC Structure [2]

For applications with higher reliability demand, a second
network is available. The two networks are called network A
and network B. End-systems running critical applications are
connected to both networks via two network cards and submit
the packets once via each network. Deduplication only takes
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place at the receiving end-system and is transparent for the
network. To identify the second packet a sequence number at
the end of the packet payload is used as shown in Fig. 2.

B. OpenFlow

OpenFlow [1] is a communication protocol that controls a
switch’s forwarding behavior. It is running between a controller
and multiple switches. Packets can be matched on different
fields (i.e. destination MAC address) and then associated to an
action or a set of actions. Actions include forwarding to ports,
but also rewriting of certain parts of the packet like TTL or
VLAN tags. In version 1.0 of the OpenFlow protocol the action
set is modified by a single matching table entry and the action
list associated to this match. In versions after 1.1.0 the action
set is modified by instructions. Whenever a packet matches a
table entry, one or several instructions are associated to this
table entry. An instruction may then update, add or overwrite
the action set of each packet.

Also starting with version 1.1.0 multiple tables were intro-
duced. The example in Fig. 3 is based on the switch we had
at hand. Packets arrive at the switch and will first be matched
by a wild card entry in table 0. This wild card entry has an
instruction with an immediate GOTO action which restarts the
matching in table 100. Usually two kinds of tables will be
present at a switch, one (or several) tables that match and
forward packets on a hardware level and another (or several)
tables that do the matching and forwarding in software. While
hardware based matching will offer better throughput, its
capabilities and matching entries are limited. Whenever more
advanced capabilities are needed the software based matching
can do so at the cost of losing hardware acceleration and thus
performance.

Beginning with version 1.3.0 METER actions were intro-
duced. A meter is for example a simple token bucket policer
that can be instantiated and configured to a certain rate and
burst. Whenever a flow exceeds the bucket’s rate, the packet
is dropped. If the packet complies with its traffic definition and
the burst is not exceeded, the remaining actions in the action
set will be executed. While the main application of meters
is to rate limit packets sent to the controller it can also be
reused to achieve quality of service behavior which is what is
investigated in this paper.

III. RELATED WORK

Sonkoly et al. [3] propose a framework to provide quality
of service (QoS) in the Openflow enabled Ofelia testbed. The
framework implements controllers that are aware of vendor-
specific extensions of the switches in use to allow the use of
different vendors.

Seddiki et al. [4] introduce FlowQoS with per flow band-
width guarantees on a user’s home router. It aims for an end-
user style application where controllers dynamically install
QoS rules on switches upon user requests for services like
video or voice over IP with decisions and rules based on
current bandwidth utilization. The solution is implemented
by instantiating a two-switch virtual topology based on Open
vSwitch and the use of different queues on the vSwitches. The
switches are controlled by OpenFlow.

Egilmez et al. [5] propose a new OpenFlow controller
design supporting end-to-end quality of service. The controller
continuously collects statistics from the switches to then
dynamically place new requests on the correct path. As the
controller only reacts on occurring congestion, such a monitor
and react solution will not be able to handle hard guarantees.

He. et al. [6] conducted a measurement study on OpenFlow
switches, measuring the latencies between an incoming packet
that is not matching any rule towards the controller and
installation of rules. They concluded, that the time needed for
installation of new rules vastly depends on the implementation
details of the specific switches and propose means on how to
reduce the installation times.

Azodolmolky et al. [7] present an analytical model based
on network calculus to determine an upper latency and buffer
sizes in a controller-controlled switch. The model assumes
that packets have to go into the controller first and then be
forwarded on the switch. To prevent a single point of failure we
assume to not have any controller interaction during operation,
therefore approach in our paper can be based on normal,
OpenFlow unaware, network calculus.

Jacobs et al. [8] studied the use of Gigabit Ethernet
switches in aircraft networks and concluded, that the evaluated
Gigabit Ethernet switches offer reliable low latency switching
in over-provisioned or slightly under-provisioned scenarios.

Research regarding implementation of AFDX with COTS
hardware has been performed in [9]. A commercial single-
board computer was used running VxWorks with modified
network drivers. The send and receive functions to access the
driver are handled in a specific pseudo-partition of VxWorks,
to allow communication from application partitions to the
network. Only end-systems are considered and no switches.
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IV. DETERMINISTIC OPENFLOW

The way bounded latencies are achieved in AFDX is based
on two steps: (1) Mapping of each incoming packet to a
specific flow based on its MAC destination address and (2)
assuring conformance to a predefined traffic behavior for this
flow. If a packet can’t be mapped to a flow in (1) or exceeds the
rate allowed in (2), the packet will be dropped before entering
the switch’s backplane. This way only conformant packets are
allowed in and with knowledge about the switch’s line speed
the maximum queuing time and buffer size can be calculated
by using network calculus.

A. Token Bucket in AFDX and OpenFlow

The OpenFlow 1.3 [1] standard allows to instantiate meters
with different types. One of the types in the standard is a
simple rate limiter called OFPMBT_DROP. The DROP band
models a token bucket behavior which allows to drop any
packet that exceeds a certain flow’s rate. It can calculate this
rate either in kilobits/sec or in packets/sec.

The DROP band is based on the token bucket in Fig. 4
which works as follows. Tokens get added at a specific token
rate r into a bucket with the size b. Whenever a packet arrives
at the token bucket, it is allowed to consume all the tokens in
the bucket.

If not enough tokens are available, the packet can either
be delayed or dropped. For a bounded latency packets will
be dropped, as packets not following their traffic contract will
likely not do so in the future. The advantage of token buckets
against other schedulers is its independence of a global time
base as well as it allows for some burstiness in the traffic
behavior.

Mathematically the traffic constrained by a token bucket
can be modeled using network calculus [10] (NC). In NC
traffic flows are modeled as o, ,(t) = (rt +b) for ¢ > 0
with r = %Té and b = Sy, and S;,4, being the maximum
packet size. A typical service curve 3 for a switch or router
will usually look like S r(t) = R[t —T']* with R being the
output port bandwidth and T the static processing delay.

By applying NC the traffic characteristic of the output flow
o™ through a switch offering a service curve § can then be
calculated to according to

a® = agf(t) = sup,>o{a(t +u) = Bu)} (D

B. Deterministic behavior and end-to-end latencies

The above mechanism explains how to describe a single
system. The service curse experienced through a series of
concatenated systems can be described as Bri,71 ® Br2,12 =

Bmin(R1,R2),T1+72- With that an end-to-end delay bound Dg
can be calculated as
b

with R = min;(R;), T = ), T; and b the burst of the
arrival curve. This formula is known as the Pay Bursts Only
Once theorem [10].

Besides the calculated traffic no other traffic is allowed on
the network and all devices have to follow their traffic contract.
Devices sending more packets than allowed will experience
packet drops at the ingress. Such behavior is acceptable, as
such devices can be considered broken and are not likely to
be fixed by any means of the network itself.

C. Matching of Virtual Links

The matching of virtual links is based on the packet’s
destination MAC address. OpenFlow allows for exact and
wildcard matching of destination MAC addresses. To separate
the flows from each other an exact matching entry for each
MAC address is needed, each mapped to an individual meter.
To allow for AFDX’s multicast behavior, multiple actions can
be associated to each entry, e.g. by having multiple output
actions.

D. Role of the OpenFlow controller

OpenFlow allows for installation of rules during the run-
time of a switch. Such behavior is not desired in avionics,
especially not during flight. While a single point of failure
could be prevented by using multiple controllers, we assume
the controllers only to install rules during a maintenance phase
on ground and then leave all configuration as-is until the next
maintenance. The controller will therefore be turned off during
flight. The OpenFlow standard already supports this option by
setting the switch to fail-secure mode. The switches will keep
their configuration and unknown packets will be dropped.

V. EXPERIMENTS AND RESULTS

The primary focus of this study is to see if available
COTS switches can provide reliable low latency data transfer
services and enforce traffic to guarantee such behavior even
in failure cases. Therefore we compare a commercial off the
shelf Hewlett Packard E3800 switch with a state of the art
Rockwell Collins AFDX-3800 switch that is being used in
current aircraft such as Airbus A380 and A350. The HP
E3800 is running the latest firmware KA.15.16.0008 and offers
support for OpenFlow 1.3. In the latter we will refer to the
switches as COTS switch and AFDX switch.

As OpenFlow controller we use a modified version of NOX
supporting OpenFlow 1.3 available on GitHub [11] and the
utilities contained within this software. To measure latency and
received packet rates an Anritsu MD1230B Ethernet Tester was
used. The device offers network latency measurements with a
precision better than 1us. The rules should be installed without
no timeout and the switch’s operational mode set to fail-secure
mode. This way in case of controller failure, the switch will
keep all installed rules and drop all non-matching packets.



Ethernet
Tester

Switch

OpenFlow Controller Under Test

Fig. 5. Measurement setup used in Section V

In a first step we evaluate the impact and differences of
hardware and software matching of rules on the COTS switch.
The instructions will then be extended by actions for policing
and the accuracy of such mechanism is checked. In a next step
multiple policing meters will be activated and multiple flows
matched. In a final step, the switch will be configured with
a realistic airplane configuration and directly compared to the
AFDX switch.

The following subsection presents and discusses results
of our measurements. All measurements were done with the
COTS switch set to 100 Mbps full-duplex mode for compar-
ison to the AFDX switch. All measurements in this section
used a measurement set-up as seen in Fig 5, where the Ethernet
Tester is exclusively connected to the switch to measure loads.

A. Hardware vs. software matching

In a first step we evaluate the COTS switch’s capabilities
in basic switching. Therefore we instantiate a single matching
rule without any meters to get information about the switch’s
line performance. We then change the amount of packets per
second (pps). In Fig. 6 it can be seen, that the hardware
based matching and forwarding works as expected and offers
a constant static forwarding delay of around 7us.

Packets that are switched based on software-based match-
ing experience a much higher latency. While those packets
have to go through the hardware matching first and be for-
warded to the switch’s general purpose processor, put through
a hash function and then send back down to the switching
plane. The experienced latency is around 30 to 100 times
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switch (errorbars indicate stdev of measurements)

higher than the hardware-matched rules and slightly increasing
for higher pps values for the average case. Further the CPU
load is slightly bigger for larger packets, which could be based
on the internal hashing function in the switch that needs to
process more payload. Also seen in Fig. 6 the load linearly
increases up to 10.000 pps and then later converges at around
50% processor load.

This convergence is mainly based on the fact that packets
are simply dropped above 10.000 pps at the hardware level
instead of being forwarded to the software matching function.
This seems sensible as the processor is also in charge of
running maintenance and management tasks on the switch and
without such a limit the switch would be an easy target for
denial-of-service attacks.

A close-to-zero packet loss can only be observed at speeds
of less than 2.000 pps on the whole switch. Between 2.000 and
10.000 pps some sporadic packet losses appear. Such behavior,
however, might improve with further firmware updates for the
software stack.

B. Meter accuracy

In a next step we evaluate the switch’s capability of
policing certain flows once matched by a hardware rule. Each
meter is realized by a token bucket mechanism that needs
configuration of a rate and a burst. In Fig. 7 it can be seen,
that tested rates from 1 to 10.000 Kbps can be policed with
the switch. The meter error was calculated according to Eq.

Q).

_ |AllowedRate — Received Rate]
= AllowedRate

3)

The higher error in the lower meter rates can be explained
by the granularity of the measurement using 64-byte packets
being transmitted at full speed and the received rate being
recorded.

The processor load is constant in idle, which indicates that
the metering is certainly done on a hardware level and not
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Fig. 7. Meter accuracy test on COTS switch
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passed up to software. The COTS switch that was available
allowed us to instantiate around 2000 meters which will be
tested and used in the next section.

C. Multiple metered streams

The next section evaluates the switch’s capabilities to
handle multiple matching of flows including metering of those.
The switch we had at hand was not able to map software
matched flows to meters. The chart seen in Fig. 8 is composed
of 4 separate measurements of the maximum latency seen.

The first measurements were done using normal switching
without any OpenFlow features activated. We see a similar per-
formance as seen before in Fig. 6. Removing the transmission
delay, the switch offers a constant static processing delay of
around 7us. No dependence on the number of flows can be
seen, as the switch does not make a difference of the flows
here and broadcasts all packets to all ports.

The next two measurements were done using OpenFlow
HW matching, switching and metering of the matched flows.
The latency again stays constant across the whole number
of flows with an OpenFlow incurred delay of around 400ns
compared to classical switching. No difference is seen between
the use of meters and direct forwarding. Furthermore - not
depicted here - no difference was seen between forwarding to
one output port or several output ports for multicast purposes.

The last measurement in Fig. 8 concerns the software
based matching of packets. The packets were limited to below
10.000pps in total because of the limitations seen in section
V and only their diversity was increased. The maximum
experienced latency is quite unreliable and a factor 30 to 6000
higher than hardware based ones.

D. Failing End-system

A failure in avionics networking is, for example a system
that gets stuck in a loop and transmits data at a faster rate than
expected. This failure is known in the literature as babbling
idiot. To motivate the use of the proposed solution we evaluate
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Fig. 9. Failing end-system comparison

the non-availability of quality of service enforcement in a real-
time system and emulate a crashed end-system that is sending
with up to line-speed. It can be seen in Fig. 9, that a failure
which would lead to 100% line load affects all other traffic
as well and would as such break the communication network.
The only means to prevent such behavior is to disconnect the
failing end-device from the network or block all its traffic.

VI. REALISTIC SCENARIO

In a last step we took a real aircraft AFDX switch config-
uration and tried to map it onto the COTS switch. We selected
the switch with the highest load in a real aircraft configuration
with its key parameters shown in Table I and II. Due to the
limitations seen in the previous sections, only a mapping to
the hardware matching was sensible but therefore also giving
the limitation of being able to match 512 flows. The limitation
to 512 matches however also meant, that the switch will not
be capable to handle a real aircraft configuration yet.

Therefore, we reduced the configuration to the switches
capabilities of 512 flows and ran tests from there to compare
the COTS switch to the real AFDX switch. As seen in Fig. 10,
we used a PC that replayed synthetically created PCAP files.
The PCAP files were based on the switch configuration and

TABLE 1. REALISTIC PARAMETERS USED FOR MEASUREMENT STUDY
Number of VL on switch 649
Number of ports used on switch 19
Worst-case number of incoming packets | 33736 pps
Number of VL destination ports 1to 19
Traffic specification of VL see Table II
TABLE II. AFDX CONFIGURATION OF A380 AIRCRAFT (FROM [12])
Bag | Number Frame length | Number
(ms) of VL (bytes) of VL
2 20 0-150 561
4 40 151-300 202
8 78 301-600 114
16 142 601-900 57
32 229 901-1200 12
64 220 1201-1500 35
128 255 >1500 3
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resembled thus the worst-case load the switch would see in a
real aircraft. All virtual links had random starting offsets and
multiple seeds were used during the measurements.

The generated load was fed into a 24 port switch that
distributed the load across all its port according to the desired
configuration. The distribution switch was also set-up with
OpenFlow for easier configuration. All incoming traffic was
then fed back into the distribution switch and forwarded to
the load generator and logged to ensure the functionality of
the tested switch.

At the same time an Ethernet Tester was directly connected
to the switch under test and measured the latency through the
switch by sending one test virtual link in and out of the switch.

The results in Fig. 11 indicate, that the COTS switch
is very well capable of handling the reduced configuration
with a similar latency characteristic. The AFDX switch has
a minimally smaller processing delay of 5us compared to 7us
in the COTS switch. The COTS switch on the other hand has
a smaller average latency which might be due to the higher
bandwidth in the switching backbone. The maximum values
seen on both switches, however, are similar which therefore
leaves us to conclude that the COTS switch is indeed able to
handle the traffic.
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VII. CONCLUSION

This paper evaluated the use of COTS switches in avionic
environment. An approach was presented to achieve bounded
latencies on standard OpenFlow switches. The approach was
explained and a mathematical framework for calculation of
upper bounds sketched. It was then implemented on a COTS

switch supporting OpenFlow 1.3 and a measurement study was
conducted.

Software based forwarding did not work as expected and
results in a factor 30 to 6000 higher latency. However, when
hardware based forwarding was used the switch offered good
performance, with the limitation of only having 512 entries
available. Newer generation switches will likely be able to
handle more entries. A promising candidate, that was not
available to us at the time of writing, is the Centec V350 switch
which according to its data sheet would be able to handle and
meter up to 2000 flows.

While this shortcoming did not allow the switch the handle
the full aircraft traffic, it was able to handle most parts of it
and offer similar performance as a state of the art switch that
is currently in use in aircraft.
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