Demonstrating fopoS: Theorem-Prover-Based
Synthesis of Secure Network Configurations

Cornelius Diekmann, Andreas Korsten, Georg Carle

Technische Universitit Miinchen

Abstract—In network management, when it comes to security
breaches, human error constitutes a dominant factor. We present
our tool topoS which automatically synthesizes low-level network
configurations from high-level security goals. The automation and
a feedback loop help to prevent human errors. Except for a last
serialization step, fopoS is formally verified with Isabelle/HOL,
which prevents implementation errors. In a case study, we
demonstrate topoS by example. For the first time, the complete
transition from high-level security goals to both firewall and SDN
configurations is presented.

I. INTRODUCTION

Network-level access control is a fundamental security
mechanism in almost every network. Unfortunately, configur-
ing network-level access control devices still is a challenging,
manual, and thus error-prone task [1]-[3]. It is a known and
unsolved problem for over a decade that “corporate firewalls
are often enforcing poorly written rule sets” [4]. Also, “access
list conflicts dominate the misconfiguration errors made by
administrators” [5]. A recent study confirms that this problem
persists as a “majority of administrators stated misconfigura-
tion as the most common cause of failure” [6]. In addition, not
only is implementing a policy error-prone, but also developing
it is challenging, even for experienced administrators [7].

We demonstrate our tool fopoS: a constructive, top-down
greenfield approach for network security management. fopoS
translates high-level security goals to network security device
configurations. The automatic translation steps prevent manual
translation errors. Furthermore, fopoS visualizes the results of
all translation steps to help the administrator uncover specifica-
tion errors. In addition, since all intermediate transformation
steps are formally verified, the correctness of fopoS itself is
guaranteed [8]. fopoS is built on top of recent results of the
formal methods community [7], [9], combines these results
in a novel way, and transfers the knowledge to the network
management community. The automated tool topoS is the main
technical contribution of this paper.

We first give a short overview of fopoS in Section II. Then,
in Section III, we present topoS in detail with the help of a case
study. We discuss limitations and advantages in Section IV,
present related work in Section V, and conclude in Section VI.

II. OVERVIEW OF fopoS

The security requirements of networks are usually scenario-
specific. Our tool fopoS helps to configure a network accord-
ing to these needs. It takes as input the high-level security
requirements and synthesizes low-level security device config-
urations, e.g. netfilter/iptables firewall rules or OpenFlow flow

978-3-901882-77-7 (© 2015 IFIP

{diekmann|korsten|carle} @net.in.tum.de

table entries. It operates according to the following four-step
process:

A. Formalize high-level security goals

a. Categorize security goals
b. Add scenario-specific knowledge
c. x Auto-complete information

B. % Construct security policy
C. % Construct stateful policy
D. x Serialize security device configurations

All steps annotated with an asterisk are supported by
topoS. As the x-steps illustrate, once the security goals are
specified, the process is completely automatic. Between the
automated steps, manual refinement is possible but requires
re-verification. This allows human intervention, while avoiding
human error.

The automated intermediate! *-steps are proven correct
for all inputs. The proofs are verified with the interactive
proof assistant Isabelle/HOL [10]. Isabelle/HOL is an LCF-
style theorem prover; the correctness of derived facts is based
on the correctness of a small inference kernel. This architecture
is very robust and widely used for over a decade. In general,
the formal methods community treats facts machine-verified
with Isabelle/HOL as well-founded truth. Thus, it is guaranteed
that topoS performs correct transformations [8]. As a side note,
since the transformations are proven correct once and for all
for all inputs, neither has a user to prove anything manually
to use fopoS, nor is Isabelle/HOL required to run fopoS. The
development of fopoS started over three years ago and features,
after a large rewrite, more than 10k lines of formal proof.

We will present the steps A to D in the following section.
For the sake of brevity and illustrative presentation, we only
present them by example. Mathematical background has been
presented in detail previously [7]-[9] and in this work, we
focus on its interoperability and discuss how its underlying
assumptions can be fulfilled in a real-world network. Further
details, the correctness proofs, and the interplay of the indi-
vidual steps can be found in the accompanying formalization
and implementation of fopoS.

'We did not verify the final step (i.e. serialization of security device
configurations) since it is merely syntactic rewriting of the result of the
previous step (c.f. Sect. III-D). Neither can we verify that the user expresses
the security goals correctly. Yet, with the secure auto-completion (c.f. Sect.
III-A) and the visual feedback of all intermediate results, we see reason that
input errors are uncovered early.

III. topoS BY EXAMPLE

In this section, we demonstrate fopoS with a small case
study. The scenario was chosen because it is minimal and
comprehensible, but also realistic and contains many important
aspects. It runs live and is publicly available (c.f. Section
Availability & Acknowledgements).

The case study is schematically illustrated in Fig. 1. The
setup hosts a news aggregation web application, accessible
from the Internet (INET). It consists of a web application
backend server (WebApp) and a frontend server (WebFrnt). The
WebApp is connected to a database (DB) and actively retrieves
data from the Internet. All servers send their logging data to
a central, protected log server (Log).

Uplink WebFrnt
DMz
Network
Intern
Log
WebApp DB

Figure 1. Network Schematic

We implemented the scenario to utilize several different
protocols. A custom backend, the WebApp was written in
python. The WebFrnt runs lighttpd. It serves static
web pages directly and retrieves dynamic websites from the
WebApp via FastCGI. All components send their syslog
messages via UDP (RFC 5426) to Log.

A. Formalizing Security Goals

The security goals are expressed as security invariants over
the network’s connectivity structure. An invariant consists of a
generic part (the semantics) and scenario-specific information.
The generic part defines the type and general meaning. Our
generic invariants currently defined are summarized in Table I.

Table 1. GENERIC SECURITY INVARIANTS
Name ® Description
Bell LaPadula v Label-based Information Flow Security
Comm. Partners v Simple ACLs (Access Control Lists)
Comm. With X White-listing transitive ACLs
Not Comm. With X Black-listing transitive ACLs
Dependability X Limit dependence on certain hosts
Domain Hierarchy v Hierarchical control structures
Refl v Allow/deny reflexive flows. Can lift symbolic policy

identifiers to role names

Nonlnterference X Transitive non-interference properties
Security Gateway « Master/Slave relationships
Sink v Information sink
Subnets v Collaborating, protected host groups

To construct a scenario-specific invariant, a generic invari-
ant is instantiated with scenario-specific knowledge. This is
done by specifying host attributes [7]. These invariants and the
list of entities (INET, WebApp, WebFrnt, DB, Log) is the only
input needed. For this scenario, the following four invariants
are expressed, formalized in Fig. 2.

1) First, as illustrated in Fig. 1, DB, Log and WebApp are
labeled as internal hosts. The WebFrnt must be accessible
from outside and is thus labeled as DMZ member. This
is captured in the Subnets invariant.

2) Next, it is expressed that the logging data must not leave
the log server. Therefore, using the Sink invariant, Log is
classified as information sink.

3) Using the Bell LaPadula invariant, it is specified that DB
contains confidential information. Since it sends its log
data to the log server, this log server is also assigned
the confidential security clearance. Finally, the WebApp
is allowed to retrieve data from the DB and to publish
it to the WebFrnt. Therefore, the WebApp is trusted and
allowed to declassify the data.

4) Finally, an access control list specifies that only WebApp
may access the DB.

Subnets {DB — internal, Log — internal,
WebApp — internal, WebFrnt — DMZ'}

Sink {Log — Sink}

Bell LaPadula {DB — confidential, Log +— confidential,
WebApp — declassify (trusted)}

Comm. Partners {DB +— Access allowed by : WebApp}

Figure 2. Security Invariants (Case Study)

In this example, several hosts do not have attributes as-
signed for all invariants. It is sufficient to supply an incomplete
host attribute specification, since they are automatically and
securely completed by fopoS. Previous work [7] discusses the
details.> Once the invariants are specified, their management
scales well in the face of changes: When a new host is added
to the network, issues are handled by the auto-completion:
either, the new host causes a violation, which is consequently
uncovered, or it can be added without any further changes.
Invariants are composable and modular by design, helping
structured representation and archiving of knowledge. In the
worst case, inconsistent security invariants may be specified
accidentally. This only results in an overly strict security policy
being computed, which can be identified in the following step.

It has been shown that a special class of invariants, called
®-structured, exhibits several nice mathematical properties [7]
(c.f. Tab. I). A ®-structured invariant asserts a predicate for
every policy rule. This predicate must only depend on the
sender, receiver, and their host attributes. In particular, these
invariants and their derived algorithms are very efficiently
computable. It is also due to the ®-structured invariants that a
maximum-permissive security policy is uniquely defined.

2The security of the auto-completion is guaranteed w.r.t. the provided
information, i.e. the auto-completion can never lead to an unnoticed security
problem, given enough information is provided. For example, information-
leakage is always uncovered, given all confidential data sources are specified.
However, if an administrator forgets to label a confidential data source,
information leakage can occur. It is trivially possible to design explicit
whitelisting invariants which auto-complete to some ‘deny’ property. On the
downside, this requires lots of manual configuration effort, which is avoided
by the invariants utilized in this paper. Roughly speaking the auto-completion
fulfills: “the more information provided, the more secure the whole system”.

B. Constructing the Security Policy

A network’s end-to-end connectivity structure, i.e. a global
access control matrix, corresponds to the security policy. Here,
we utilize the textbook definition that a policy consists of the
rules which ensure that the network is in a secure state. In
contrast, the security goals are expressed as invariants over
the policy and reside on an higher abstraction level.

Graphically, a policy can be illustrated as a directed graph.
The case study’s policy, illustrated in Fig. 3, was automatically
computed from the security invariants.

Figure 3.

Security Policy Figure 4. Stateful Policy

The algorithm to transform a set of security invariants
into a policy starts with the allow-all policy and iteratively
removes undesired rules. This is always possible if (and only
if [7], Theorem 1) the invariants hold for the deny-all policy;
a static requirement which is only to be proven once for a
generic invariant. The algorithm is sound. It is also complete
for the invariants utilized in this example (and for ®-structured
invariants in general [8]).

In our example, the administrator decides to manually
refine the policy: there is no need for the web frontend to
connect to the Internet. Therefore, this flow is prohibited. After
this manual refinement, the security invariants are re-verified.

C. Constructing the Stateful Policy

The derived policy may appear adequate from a theoretical
point of view but has one major problem when it comes to
implementation: The WebApp can connect to the Internet, but
the policy does not specify whether the Internet may answer
this request (same for the WebFrnt after manual refinement).
Obviously, for this scenario, answers should be permitted;
otherwise, no one would be able to use the service. In
contrast, the Log server uses the syslog protocol over UDP
(RFC 5426). This protocol uses a unidirectional UDP channel
and it is explicitly specified for security reasons that this is the
only way the communication with the log server is permitted.

Therefore, it must be distinguished between stateful and
purely unidirectional rules. We extend the security policy to
additionally specify whether a flow might be stateful (i.e.
answers to requests are allowed). Note that a flow with the
stateful attribute might allow packets in the opposite direc-
tion of the policy rule and thus potentially violate security
invariants. Defining the following two consistency criteria, the
stateful attributes can be computed automatically [9]:

1) No information flow violation must occur
2) No access control side effects must be introduced

To compute the stateful policy, not only a single rule but
a set S is to be upgraded to stateful rules. However, the
interaction of the rules and answer paths of S must not
introduce negative implications. Therefore, in particular to
verify lack of side effects, all security policies derived from
upgrading all subsets of S must be verified. A naive approach
would require exponential complexity. We proved that this can
be done more efficiently, particularly in linear time for -
structured invariants [9]. This insight provides an algorithm
for computing the stateful policy from the security policy and
the invariants. It is proven sound [9, Theorem 2] and complete
w.r.t. the two criteria individually [9]. Multiple solutions for a
stateful policy may exist; a user may set preferences.

For the case study, this results in a policy where the Internet
can set up connections to the web frontend, likewise, the
web backend can set up connections to the Internet. However,
the logging channels are purely unidirectional UDP (stateful
connections would introduce an information flow violation).
We will call this the stateful policy. It is illustrated in Fig. 4.

D. Serializing Security Device Configurations

Till now, the network of Fig. 1 was considered a black box.
In this section, the stateful policy is serialized to configurations
for real network security devices. Though the serialization step
is merely syntactic rewriting of the stateful policy, care must
be taken to correctly transfer the semantics. topoS must fulfill
the following three assumptions.

Structure The enforced network connectivity structure must
exactly coincide with the policy. This requires that the
links are confidential and integrity protected.

Authenticity The policy’s entities must match their network
representation (e.g. IP/MAC addresses). In particular, no
impersonation or spoofing must be possible.

State The stateful connection handling must match the stateful
policy’s semantics.

One policy entity may correspond to several entities in the
network. For example, deployed with load-balancing, WebApp
corresponds a set of backend servers. In such cases, special
care must be taken for reflexive policy rules. For the sake of
brevity, we only present a one-to-one mapping between policy
entities and their network representatives in this paper.

We present two possibilities to implement the policy.

1) Firewall & Central VPN Server: All entities connect to
a central OpenVPN server which enforces the policy. Entities
are bound to their policy name with X.509 certificates. Every
entity sets up a layer 3 (tun) VPN connection with the
server. The server authenticates entities by their certificate and
centrally assigns IP addresses. IP spoofing over the tunnel
is prevented. This provides authenticity (v'). Firewalling is
applied at the server; the stateful policy is directly translated
to iptables rules, shown in Fig. 5. With this, the stateful
semantics (v') and structure (v) are enforced.

2) SDN: With complete control over the network, as is the
case with data centers, a Software-Defined Network (SDN)
may be used to implement the policy. Usually, a data center
is a flat layer 2 network [11] and we need to contain layer 2
broadcasting and attacks. For this, an entity’s switch port must
be known. We install OpenFlow rules which prevent MAC,

FORWARD DROP

-A FORWARD -i tun0 -s $WebFrnt_ipvj -o tun0 -d $Log_ipvj -3 ACCEPT

-A FORWARD -i tunO -s $WebFrnt_ipvi -o tun0 -d $WebApp_ipv) —3 ACCEPT

-A FORWARD -i tun0 -s $DB_ipvj —o tun0 -d $Log_ipv4 -3 ACCEPT

-A FORWARD -i tunO -s $DB_ipv4 -o tun0O -d $WebApp_ipvi -3 ACCEPT

-A FORWARD —-i tun0 -s $WebApp_ipvj —o tun0 -d $WebFrnt_ipvj -j ACCEPT

-A FORWARD -i tunO -s $WebApp_ipvi -o tun0 -d $DB_ipvi -3j ACCEPT

-A FORWARD -i tun0 -s $WebApp_ipvj, —o tun0 -d $Log_ipv4 -3 ACCEPT

-A FORWARD -i tunO -s $WebApp_ipv) —-o eth0 —-d $INET_ipvi -3j ACCEPT

-A FORWARD —-i ethO -s $INET_ipvi -o tun0 -d $WebFrnt_ipvj —3 ACCEPT

-I FORWARD -m state —-state ESTABLISHED -i ethO -s $INET_ ipvj -o tun0 -d $WebApp_ipv4 —3j ACCEPT
-I FORWARD -m state ——state ESTABLISHED —i tunO -s $WebFrni_ipv, -o eth0 -d $INET ipvj -3 ACCEPT

Figure 5. VPN Server Firewall Rules (can be loaded with iptables)

ARP Request

ARP Reply
priority=40000 action=output :$port_src
IPv4 one-way
action=mod_dl_dst :$mac_dst, output : $port_dst

if src (res. dst)

in_port=$port_src dl_src=$mac_src dl_dst=ff:ff:ff:ff:ff:ff arp arp_sha=$mac_src
arp_spa=$ip4_src arp_tpa=%$ip4_dst priority=40000 action=mod_dl_dst :$mac_dst, output :$port_dst

dl_src=$mac_dst dl_dst=$mac_src arp arp_sha=$mac_dst arp_spa=3$ipj_dst arp_tpa=3$ipj_src

in_port=$port_src dl_src=$mac_src ip nw_src=8ip4_src nw_dst=8ip4_dst priority=40000

is INET, replace $ipj_src (resp. $ipj_dst) with » and decrease the priority

Figure 6. OpenFlow Flow Table Template (can be loaded with ovs—vsctl set-fail-mode $switch secure && ovs—ofctl add-flows)

IP, and ARP spoofing. Figure 6 illustrates a template for
generating a stateless rule from src to dst. The first rule allows
ARP requests. Note that we rewrite the layer 2 broadcast
addresses directly to the immediate receiver’s address. Rule
two allows the ARP responses. Both rules ensure that only
valid ARP queries and responses are sent and received in the
network.? The third rule allows IPv4 traffic. For stateful rules,
the opposite direction of Fig. 6, i.e. src and dst swapped,
is added. Any unmatched packets are dropped. With this
set of rules, a mapping of policy identifiers to MAC and
IP addresses is enforced. Also, correct address resolution is
enforced (authenticity v'). Without the ARP information leak,
the desired connectivity structure (v') is enforced. The setup
does not provide stateful handling (X) by default. However, a
network firewall or SDN firewall app can provide the desired
state (v) handling.

IV. DISCUSSION
A. Limitations

The process supported by fopoS currently has two main
limitations. First, it is completely static. For example, the map-
ping of policy entity names to their network representatives is
done statically and manually. In general, naming is a complex
(but orthogonal) issue. This information should usually be
managed by a resource and account management system or
directory service. Second, only one security device as backend
is currently supported. However, related work suggests that
this gap can be easily bridged, e.g. by translating to a one

3For the sake of simplicity, this implementation is designed such that it gets
along without an SDN controller. This introduces a small hidden information
flow channel (structure X): the ARP responses. For example in Fig. 4, Log
may use a timing channel or the ARP OPER field to exfiltrate information.
However, the side-channel is easily removed when an SDN controller answers
all ARP requests (structure v'); all necessary information is present.

big switch abstraction [12], [13]. Many networks additionally
employ a variety of heterogeneous, vendor-specific middle-
boxes. In future work, it might be worth investigating to which
extent additional low-level device features (e.g. DHCP, IPv6,
timeouts for stateful rules, ...) should be configurable on each
abstraction layer.

B. Advantages

The presented process provides three novel advantages.
First, it bridges several abstraction levels in a uniform way.
The intermediate results are well-specified, which allows man-
ual intervention, visualization, and adding features. Second,
the theoretical background is completely formally verified.
Thus, topoS is more than an academic prototype but a highly
trustworthy tool. In addition, fopoS’s library can be reused,
extended, exported to several languages, and adapted to fit
the needs of other frameworks. Finally, with the formal back-
ground, fopoS is a first step towards high-assurance certifica-
tion.

Third, topoS can scale to large networks w.r.t. theory (i),
computational complexity (i), and management complex-
ity (iii). The theoretical foundation (i) scales to arbitrary
networks. The computational complexity (if) depends on the
type of security invariants. New invariants with arbitrary
computational complexity can be developed for topoS. How-
ever, we found that usually only ®-structured invariants are
needed, which implies the following computational complex-
ity: O(|invariants|-|entities|?). An evaluation of topoS’s most
expensive step has been presented previously [7]. Finally, (iii)
the complexity of managing an invariant (with exception for
the ACL invariants) is linear in the number entities. Due to
the auto-completion, it is actually better than linear. Thus,
the management complexity of topoS is roughly linear in the
number of invariants and entities.

V. RELATED WORK

To discuss related work, we first define four management
abstraction layers to subsequently classify related work.

Security Invariants Defines the high-level security goals.
Representable as predicates. For example, Fig. 2.

Access Control Abstraction Defines the allowed accesses
between policy entities. Representable as access control
matrix. For example, Fig. 3.

Interface Abstraction Defines a model of the complete net-
work topology. Representable as a graph, packets are
forwarded between the entity’s interfaces.

Box Semantics Describes the semantics (i.e. behavior) of
individual network boxes. Usually, the semantics are
vendor-specific (e.g. iptables, Cisco ACLs, Snort IDS, ...).

In Fig. 7, we summarize how related work bridges the
abstraction layers. Related work may bridge these layers
vertically or work horizontally on artifacts at one layer. A
direct arrow from the Access Control Abstraction to the Box
Semantics (and vice versa) means that the solution only applies
to a single enforcement box. Solutions such as Firmato and
Fireman achieve more and are thus listed multiple times.

Security Invariants

topoS step B

r————3%Access Control Abstraction %1
B
Fireman [2]; _one big | |3
—|| HSA [16]; Xie [14]; ;Wltch [12]; g
S| Anteater [17]; Lopes [15] Firmato [20];| ;=
g || ConfigChecker [18]; FLIP [3]; |
E1| VeriFlow [19] FortNOX 2114 |5
-’u—: Merlin [22];] [
Kinetic [23] |~
Z
Interface Abstraction =—— |5
>
translates ! rep [241:] 7
T HSA [16]; Op";‘f 1‘1’.‘” %215 b
A Anteater [17]; optin?irzler(li [onc]z’ 5
_ S
maps Iptables gﬁgfkger[18] big switch [26];|[3,
Semantics [27] NetKAT [13];] |
T . VeriFlow [19] |13
verifies) a
| Box Semantlcs::.;6
Figure 7. Four Layer Abstraction in Related Work

Firmato [20] is the work closest related to fopoS. It defines
an entity relationship model to structure network management
and compile firewall rules from it, illustrated in Fig. 8. Firmato
focuses on roles, which correspond to policy entities in our
model. A role has positive capabilities and is related to other
roles, which can be used to derive an access control matrix.
Zones, Gateway-Interfaces and Gateways define the network
topology, which corresponds to the interface abstraction. As
illustrated in Fig. 8, the abstraction layers identified in this
work can also be identified in Firmato’s model. The Host
Groups, Role Groups and Hosts definitions provide a mapping
from policy entities to network entities, which is Firmato’s
approach to the naming problem. Similar to Firmato (with
more support for negative capabilities) is FLIP [3], which
is a high-level language with focus on service management
(e.g. allow/deny HTTP). Essentially, both FLIP and Firmato
enhance the Access Control Matrix horizontally by including

layer four port management and traverse it vertically by
serializing to firewall rules.

Interface Abstraction ‘ Zone ‘

|
\Gateway-lnterfacei Gateway |

=| HostGroup |1 Host \
’; Role |

naming [
| Service Group

mapping| __ Role Group
[
Access Control Abstraction

[
Capability |
Service |

Figure 8. Firmato ERM

As illustrated in Fig. 7, Fireman [2] is a counterpart to Fir-
mato. It verifies firewall rules against a global access policy. In
addition, Fireman provides verification on the same horizontal
layer (i.e. finding shadowed rules or inter-firewall conflicts,
which do not affect the resulting end-to-end connectivity but
are still most likely an implementation error). Abstracting to
its uses, one may call rcc [28] the fireman for BGP.

Header Space Analysis (HSA) [16], Anteater [17], and
ConfigChecker [18] verify several horizontal safety properties
on the interface abstraction, such as absence of forwarding
loops. By analyzing reachability [14]-[18], horizontal con-
sistency of the interface abstraction with an access control
matrix can also be verified. Verification of incremental changes
to the interface abstraction can be done in real-time with
VeriFlow [19], which can also prevent installation of violating
rules. These models of the interface abstraction have many
commonalities: The network boxes in all models are stateless
and the network topology is a graph, connecting the entity’s
interfaces. A function models packet traversal at a network
box. These models could be considered as a giant (extended)
finite state machine (FSM), where the state of a packet is
an (interface xpacket) pair and the network topology and
forwarding function represent the state transition function [15],
[29]. Anteater [17] differs in that interface information is
implicit and packet modification is represented by relations
over packet histories.

Most analysis tools make simplifying assumptions about
the underlying network boxes. Diekmann et al. [27] present
simplification of iptables firewalls to make complex real-world
firewalls available for tools with simplifying assumptions.

NetKAT [13] is a SDN programming language with well-
defined semantics. It features an efficient compiler for local,
global, and virtual programs to flow table entries.

Craven et al. [30] present a generalized (not network-
specific) process to translate access control policies, enhanced
with several aspects, to enforceable device-specific policies;
the implementation requires a model repository of box seman-
tics and their interplay. Pahl delivers a data-centric, network-
specific approach for managing and implementing such a
repository, further focusing on things [31].

FortNOX [21] horizontally enhances the access control
abstraction as it assures that rules by security apps are not
overwritten by other apps. Technically, it hooks up at the access
control/interface abstraction translation. Kinetic [23] is an SDN

language which lifts static policies (as constructed by fopoS)
to dynamic policies. To accomplish this, an administrator
can define a simple FSM which dynamically (triggered by
network events) switches between static policies. In addition,
the FSM can be verified with a model checker. Features are
horizontally added to the interface abstraction: a routing policy
allows specifying paths of network traffic [26]. Merlin [22]
additionally supports bandwidth assignments and network
function chaining. Both translate from a global policy to local
enforcement and Merlin provides a feature-rich language for
interface abstraction policies.

VI. CONCLUSION

We presented fopoS, a fully verified tool to manage
network-level access control. It was demonstrated by example;
nevertheless, the correctness proofs are universally valid and
topoS is applicable to any larger network. The example demon-
strates that a traditional network segmentation into internal
and DMZ cannot cope with complex security goals and the
traditional thought model of structure by IP ranges is no longer
appropriate. In contrast, fopoS only requires the high-level
security goals and can automatically translate them to low-level
configurations, such as firewall rules or SDN flow table entries.
During the translation, all intermediate results are well-defined,
accessible, and can be visualized. This provides feedback and
allows manual refinement of them, including manual optimiza-
tions on lower abstraction layers. After manual refinement, re-
verification is run to avoid human error. For the first time, the
complete, automated, and verified transition from high-level
security goals to both Firewall and SDN configurations was
presented.

AVAILABILITY & ACKNOWLEDGEMENTS

Our tool topoS and the correctness proofs can be obtained at
https://github.com/diekmann/topoS/ or [8]

The formalization of the case study is Distributed_WebApp.thy
It runs live at: http://otoro.net.in.tum.de/goals2config/

This work has been supported by the German Fed-
eral Ministry of Education, EUREKA project SASER, grant
16BP12304, and project SURF, grant 16KIS0145, and by the
European Commission, project SafeCloud, grant 653884.

REFERENCES

[1] F. Mansmann, T. Gobel, and W. Cheswick, “Visual analysis of complex
firewall configurations,” in VizSec. ACM, 2012, pp. 1-8.

[2] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“FIREMAN: a toolkit for firewall modeling and analysis,” in S&P.
IEEE, May 2006, pp. 199-213.

[3] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Speci-
fications of a high-level conflict-free firewall policy language for multi-
domain networks,” in SACMAT. ACM, 2007, pp. 185-194.

[4] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, IEEE, vol. 37, no. 6, pp. 62 — 67, 6 2004.

[5] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” IEEE ComMag, vol. 44, no. 3, pp. 134 — 141, Mar. 2006.

[6] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” SIGCOMM, pp. 13-24, 2012.

[7] C. Diekmann, S.-A. Posselt, H. Niedermayer, H. Kinkelin, O. Hanka,
and G. Carle, “Verifying security policies using host attributes,” in
FORTE. Springer, Jun. 2014, pp. 133-148.

(8]

(91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

C. Diekmann, “Network security policy verification,” Archive of
Formal Proofs, Jul. 2014, http://afp.sf.net/entries/Network_Security_
Policy_ Verification.shtml.

C. Diekmann, L. Hupel, and G. Carle, “Directed security policies: A
stateful network implementation,” in ESSS, May 2014, pp. 20-34.

T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, last
updated 2015, vol. 2283.

M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny,
M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data center network
virtualization: A survey,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, pp. 909-928, 2013.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software defined networks.” in NSDI. USENIX, 2013, pp. 1-13.

S. Smolka, S. A. Eliopoulos, N. Foster, and A. Guha, “A fast compiler
for netkat,” in ICFP, Sep. 2015, pp. 328-341.

G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. G. Greenberg,
G. Hjalmtysson, and J. Rexford, “On static reachability analysis of IP
networks,” in INFOCOM, vol. 3. 1EEE, 2005, pp. 2170-2183.

N. P. Lopes, N. Bjgrner, P. Godefroid, and G. Varghese, “Network
verification in the light of program verification,” Tech. Rep., Sep.
2013. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=201589

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
static checking for networks,” in NSDI. USENIX, 2012.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011,
pp- 290-301.

E. Al-Shaer, W. Marrero, A. El-Atawy, and K. Elbadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security,” in ICNP, Oct 2009, pp. 123-132.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in NSDI. USENIX,
2013, pp. 15-27.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in S&P. IEEE, 1999, pp. 17-31.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for OpenFlow networks,” in HotSDN.
ACM, 2012, pp. 121-126.

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
CoRR, vol. abs/1407.1199, 2014.

H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” in NSDI. Oakland, CA:
USENIX, 2015, pp. 59-72.

M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in NSDI. USENIX, 2005, pp. 15-28.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” CCR, vol. 38, no. 2, pp. 69-74, 2008.

N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the “one big
switch” abstraction in software-defined networks,” in CONEXT. ACM,
2013, pp. 13-24.

C. Diekmann, L. Hupel, and G. Carle, “Semantics-preserving simplifi-
cation of real-world firewall rule sets,” in Formal Methods, Jun. 2015.

N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in NSDI. USENIX, 2005, pp. 43-56.

S. Zhang, S. Malik, and R. McGeer, “Verification of computer switching
networks: An overview,” in Automated Technology for Verification and
Analysis, ser. LNCS. Springer, 2012, pp. 1-16.

R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Policy refine-
ment: Decomposition and operationalization for dynamic domains,” in
CNSM, Oct. 2011, pp. 1-9.

M.-O. Pahl, “Data-centric service-oriented management of things,” in
IM, Ottawa, Canada, May 2015.

