
Towards a Dynamic SDN Virtualization Layer:
Control Path Migration Protocol

Arsany Basta, Andreas Blenk, Hassib Belhaj Hassine, Wolfgang Kellerer
Chair for Communication Networks

Department of Electrical and Computer Engineering
Technische Universität München, Germany

Email: {arsany.basta, andreas.blenk, hassib.belhaj, wolfgang.kellerer}@tum.de

Abstract—Virtualization of software defined networks enables
tenants to bring their own controller and manage their virtual
resources with the full programmability provided by Software
Defined Networking (SDN). Distributed SDN hypervisors are
proposed to provide an efficient platform for the virtualization
of physical SDN networks. They address the issue of scalability
that a centralized hypervisor could suffer from. As virtualization
provides the possibility to change virtual SDN networks on run
time, a hypervisor layer needs efficient mechanisms to dynam-
ically adapt to the changing requirements. Existing proposals
provide only a static configuration setup for their distribution
of the hypervisor instances. However, in order to satisfy the
dynamics of virtual SDN networks, management protocols are
needed to support dynamic changes. In this paper, we propose
a control path migration protocol for distributed hypervisors.
Such protocol is needed to support the dynamic adaptation of
the virtualization layer. Our protocol is providing the missing
procedure that allows a dynamic change of control connections
between virtual SDN networks and the tenants’ controllers,
respectively. We provide a proof of concept implementation for
our proposal. Through measurements in a real testbed setup, we
show that our protocol is efficient in terms of control latency
overhead and provides transparency to the controllers of the
virtual SDN networks.

I. INTRODUCTION

Network Virtualization (NV) is a fundamental ingredient
of future network architectures. With NV, the physical net-
work resources, e.g., switches, are sliced into virtual networks
(slices). For example, as proposed in [1] and [2] for the
future 5G mobile network, slicing of the physical network
resources allows the management of virtual network resources
individually according to the demands of the network traffic.
Furthermore, virtual networks provide the capability to cope
with the dynamics in Network Function Virtualization (NFV)
use cases, where virtual slices can dynamically interconnect
virtual network functions according to the functions’ demands.

Software Defined Networking (SDN) is simplifying the
way to change the behavior of a network as a whole, i.e.,
to change the traffic steering dynamically based on a global
state. Accordingly, the virtualization of SDN networks is one
fundamental feature that can improve the performance of com-
munication networks. While NV provides network resources
via slices, SDN can improve the network performance through
advanced control mechanisms within a virtual network slice.

An established concept for virtualization of SDN networks
is to introduce a hypervisor layer, or shortly a hypervisor.
The hypervisor operates as an intermediate layer between

SDN controllers and their particular virtual SDN network. The
hypervisor provides the functionality that is needed to slice the
physical SDN network into multiple virtual SDN networks.
It manages and controls the access of the individual SDN
controllers to their virtual SDN networks, e.g., consisting of
multiple virtual SDN switches. It translates network messages
between SDN controllers and their slices, and isolates the data
plane and control plane traffic of the slices from each other in
order to avoid cross effects between them.

Different implementation concepts for the hypervisor have
been proposed. In favor of achieving a scalable hypervisor,
there have been several implementation concepts that rely on
a distributed architecture, e.g., FlowN [3]. Such a distributed
concept is needed, e.g., if the SDN controllers of the slices
are also distributed among a network, as it might be the case
for wide area networks or for distributed cloud networks. Fur-
thermore, a distributed hypervisor can adapt more efficiently
to changing requirements, e.g., in case slices are added and
removed or in case demands of slices are changing over
time. Changing requirements may also lead to varying load
on the distributed components. In order to adapt to changing
requirements, a distributed hypervisor requires mechanisms
that allow a dynamic and efficient adaptation of the hypervisor
virtualization layer.

Distributed hypervisors provide the capability to spread
hypervisor instances, which are hosting the functions realizing
the virtualization, among the network. The instances connect
the SDN controllers with their slices, i.e., they establish control
connections between SDN controllers and their virtual SDN
networks. As control connections are associated with load,
efficient mechanisms to change the load distribution among
the instances are necessary in order to provide an efficient
virtualization. One possibility to adapt the load could be
the migration of control connections between the instances.
Besides load balancing, energy efficiency could be another
operation target. As less hypervisor instances may provide
a better energy efficiency, instances need to be turned on
and off dynamically. Again, active control connections would
need to be migrated. Although these examples are illustrating
an important goal of hypervisor implementations, existing
distributed SDN hypervisors do not provide any mechanisms
that support the dynamic operation of the distributed instances
and their control connections.

In this paper, we propose a control path migration protocol
for distributed SDN hypervisors, which are composed of
multiple hypervisor instances. Such protocol is needed to allow

978-3-901882-77-7 c© 2015 IFIP

distributed hypervisors to dynamically change virtual SDN
networks. With our protocol, control connections between
tenants’ controllers and virtual SDN networks can be changed
dynamically. We define a control connection as the connection
from the virtual SDN network, i.e., virtual SDN switch, to the
SDN controller through a hypervisor instance. The protocol
supports the migration of OpenFlow (OF) control connections.
In detail, the control connections of one hypervisor instance
can be migrated to another hypervisor instance with negligible
control latency overhead at run time. In addition to the migra-
tion protocol, we also propose an architecture for a dynamic
SDN virtualization layer. We implement our protocol for an
SDN network, that uses OpenFlow to demonstrate a proof
of concept. The measurement results are quantified in terms
of control plane performance overhead. To summarize, our
contributions include the following:

- An architecture that provides a dynamic SDN virtual-
ization layer

- An OpenFlow-based protocol for control path migra-
tion among distributed SDN hypervisors

- A proof of concept implementation of our proposed
control path migration protocol

The remainder of this paper is structured as follows. In
Section II, we provide a review for the existing state of the art
for distributed SDN hypervisors and protocols for SDN control
management. In Section III, we introduce the considered
architecture for a dynamic distributed SDN hypervisor layer.
Section IV provides a detailed explanation of the proposed
protocol that provides an online management for virtual SDN
control slices. In Section V, we show a first prototype imple-
mentation of the protocol and we present measurements from
a real testbed. Finally, we draw conclusion in Section VI.

II. RELATED WORK

In the context of SDN virtualization, there are several
existing hypervisors that propose a distributed hypervisor layer,
e.g., Carrier-grade [4], FlowN [3] and Auto-slice [5]. There
are also hypervisors that support the operation of both a cen-
tralized and a distributed hypervisor layer, e.g., FlowVisor [6],
OpenVirteX [7] and HyperFlex [8]. However, the control paths
between the SDN controllers, hypervisor instances and SDN
switches are often presented as a static configuration that
has to be decided at the initialization of the network. The
dynamic migration of the control path has not been addressed
by existing SDN virtualization solutions.

For non-virtual SDN networks, there are several architec-
tures that propose distributed SDN controllers. In [9], ONOS
is presented. ONOS is a distributed SDN operating system that
follows the steps of distributed controllers such as ONIX [10].
Their focus is on obtaining and maintaining network abstrac-
tions in a distributed SDN controllers layer. The dynamic
assignment of SDN switches to controllers has not been ad-
dressed. Another distributed SDN controllers solution has been
introduced in Pratyaastha [11]. It considers the applications
state to establish the control path between SDN switches and
distributed controllers, however, no dynamic change in the
control path is considered.

Hypervisor

Proxy

Hypervisor

Instance

Hypervisor

Proxy

Hypervisor

Proxy

Hypervisor

Instance

Hypervisor

Instance

Hypervisor

Layer

Hypervisor

Layer

Management

instantiate

configure
1

target hypervisor

starts control

path migration

(Transparent)

2

c c c

SDN Controllers

OF Switches

s

s

s

s

s s

s

s

s

c c c c c c

migrate

migrate

Fig. 1. Distributed SDN hypervisor layer, which includes hypervisor
instances, management and proxies.

There have been few recent attempts to address this lim-
itation in non-virtual SDN networks, e.g., ElastiCon [12].
ElastiCon introduces a mechanism to change the active control
connections from one controller to another, dynamically on run
time. The mechanism defines the message exchange required
to achieve the control path migration.

However, the existing procedures cannot be applied to
virtual SDN networks directly. In virtual SDN networks, there
is an add-on complexity as the control connection spans
hypervisor instances as well. Thus, new protocols are needed
in the context of virtual SDN networks to enable the dynamic
migration of the whole control connection, i.e, controller to
hypervisor as well as hypervisor to switch connections. The
coordination between both migrations needs to be additionally
defined and evaluated. In this work, we introduce an OF-
based protocol that enables the migration of active control
connections for virtual SDN networks. Our aim is to enable a
dynamic and scalable SDN virtualization layer.

III. DYNAMIC SDN VIRTUALIZATION LAYER

In this section, we outline a virtualization architecture that
provides a dynamic distributed SDN hypervisor layer. We
consider a hypervisor layer that dynamically adapts to changes
in the network state. The changes in network state can be in
terms of, e.g., over utilization for the resources of a hypervisor
instance [8]. It can be also in terms of new requirements from
the virtual SDN networks, e.g., requested control latency. The
adaption is realized by instantiating or terminating hypervisor
instances and using our proposed protocol to achieve the mi-
gration of the active control connections. The hypervisor layer
is comprised of three main entities: 1) hypervisor instances
2) hypervisor proxies and 3) hypervisor layer management, as
illustrated in Figure 1.

The hypervisor instances are the controllers of the physical
SDN network, which can be considered as the main workforce
in the hypervisor layer. They implement the functions needed
for SDN virtualization, e.g., topology abstraction, policy trans-
lation, control and data paths isolation [13]. The hypervisor
functions are extended in our work to include a migration
function that executes the proposed protocol.

We aim at providing a dynamic virtualization layer that
adapts its structure without interrupting or even notifying the
tenants’ SDN controllers, i.e., changes in the hypervisor layer

are transparent to the virtual SDN slices. For this purpose,
we add hypervisor proxies on top of the hypervisor instances.
The hypervisor proxies would act as an interface between
the hypervisor layer and the SDN controllers. In case direct
control connections are established between the hypervisor
instances and the SDN controllers, a change in the control
path would require the SDN controller to establish an OF
control connection with the target hypervisor and to close the
existing OF control connection towards the initial instance.
This would mean that the dynamic scaling of the hypervisor
layer would not be transparent anymore to the tenants’ con-
trollers. Moreover, it might lead in many cases to control path
performance issues depending on the controller’s supported
OF version and implementation. For instance, if the controller
does not support OF auxiliary connections that are introduced
in OF v1.3.0 [14], a control connection interruption would
occur during the hypervisor migration. Thus, we place a proxy
that maintains the control connection with the SDN controllers
and has a connection to the running hypervisor instances.
The proxy contains forwarding policies which specify how to
forward the control messages from the SDN controllers to the
designated hypervisor, and vice versa.

Finally, a management entity is needed to make the de-
cision of adding and removing hypervisor instances based on
the network state information that it collects from the network,
i.e., performance of the switches and running hypervisor
instances, or based on the requirements that it receives from
the SDN controllers. The decision includes the location of a
new hypervisor instance that has to be added or the identifier
of the instance that should be terminated. Once a decision is
made, the management starts the instantiation or termination of
the hypervisor instances. The management is also required to
install the configuration at the target hypervisor, which contains
the addresses of its assigned proxies, controllers and switches.
The target hypervisor uses this configuration to trigger and
start the migration protocol, i.e., establishing the connections
to the configured proxy and switches.

Figure 1 illustrates an example where a decision has been
made by the management entity to add a hypervisor instance
to the SDN virtualization layer. The additional hypervisor
instance is instantiated through the management entity. The
instantiated hypervisor instance uses the proposed protocol to
take over a set of OF switches, i.e., physical network domain,
and a set of SDN controllers. In other words, the instantiated
hypervisor triggers the migration of the control path, i.e.,
connections to designated proxy and switches.

IV. CONTROL PATH MIGRATION PROTOCOL

In this section, we present our proposed protocol to enable
a dynamic migration of the control path for virtual SDN
networks, i.e., between SDN controllers, hypervisors and OF
switches. The protocol is composed of three phases: 1) ini-
tialization, 2) controller path migration and 3) switch path
migration. The procedure is illustrated in Figure 2.

A. Initialization Phase

In non-virtual SDN networks, the control connection is
defined by the OF specification to be initialized by the OF
switch. The controller IP address is configured on each OF

SDN

Controller

Hypervisor

Proxy

Hypervisor

Instance (Target)

Hypervisor

Instance (Initial)

OF

Switch

Instantiate
SYN

SYN, ACK

ACK

OF_hello

OF_feat_req

OF_hello

OF_feat_reply

OF_set-config

recv switch to controller

msgs (do nothing)

OF_flow_add

(dummy)

start controller

migration

SYN

SYN, ACK

ACK

connect to ip:port

(policy: forward control of controllers(i))

OK

start switch

migration

buffer controller

to switch msgs

OF_flow_mod

(remove dummy rule)

OF_flow_rem OF_flow_rem

close switch

connection

send buffered

control msgs to

switch

CTR->SW msgs

SW->CTR msgs

SW->CTR msgs

forward to

new hypervisor

SW->CTR msgs

forward switch to

controller msgs

CTR->SW msgs

in
it

ia
li
z
a

ti
o

n
c

o
n

tr
o

ll
e

r
p

a
th

 m
ig

ra
ti

o
n

CTR->SW msgs

SW->CTR msgs

CTR->SW msgs

s
w

it
c

h
 p

a
th

 m
ig

ra
ti

o
n

(*) asynchronous

send buffered

control msgs to

controller

Fig. 2. The message exchange and states of the control path during migration
from an initial to a target hypervisor instance.

C

P

INIT H TRG H

S

C

P

INIT H TRG H

S

C

P

INIT H TRG H

S

C

P

INIT H TRG H

S
* *

a) before procedure b) initialization c) controller migration d) switch migration

Fig. 3. Phases of control path migration from an initial to a target hypervisor
instance. Connections: solid black. Switch to controller messages: dashed red.
Controller to switch messages: dashed blue. (*): asynchronous OF messages.

switch, where each switch attempts to initiate the connection to
its configured controller. In the context of SDN virtualization,
hypervisors act as controllers for the OF switches. In case of
a dynamic on-demand instantiation of hypervisors, switches
require to know the IP addresses of the target hypervisors.
The first option is to install a pre-determined set of addresses
for hypervisors at each switch. This acts as a limitation as it
sets an upper bound to the maximum number of distributed
hypervisors that can be instantiated. It can also induces a
waste of switch resources in case of a high number of active

hypervisor instances since the switches have to store this
set of possible addresses of hypervisors. It also requires a
trigger during run time to inform the switch about the active
hypervisor that the switch should use.

Therefore, we propose a novel method to use the listening
ports of OF switches. Almost all available protoype and com-
mercial switches, e.g., Open vSwitch, CPqD, HP, Brocade and
Pica8, implement a listening port that can be used to initialize
the control connection from the hypervisor. That means the
switch-controller TCP connection initialization is the counter
opposite of the OF specification. The target hypervisor in-
stance is configured by the cnetralized hypervisor management.
This configuration includes the switch IP addresses and their
respective listening ports to which it needs to initiate the
connection. After the connection establishment, the OF Hello
and configuration procedures follow the OF specification.

Once the target hypervisor is connected to the OF switch,
it acts as a second controller to the switch as illustrated in
Figure 3b compared to Figure 3a. This means that asyn-
chronous OF messages,i.e., not in a request-reply form, e.g.,
OF Pckt in, would be also sent to the target hypervisor as
well. However, at that phase, there is no connection yet
between the target hypervisor instance and the proxy, i.e.,
towards the controller. Hence, the target hypervisor can simply
discard the received messages from the switch momentarily till
the whole procedure is finished.

B. Controller Path Migration Phase

After the initialization phase, the target hypervisor instance
initiates a TCP connection to the designated proxy from
its configuration. The proxy addresses are pre-configured in
the hypervisor instance by the management. The hypervisor
informs the proxy of its assigned controllers. Consequently, the
proxy installs policies to forward the control messages of those
SDN controllers to the target hypervisor instance as shown in
Figure 3c. An example adaption of the forwarding policy at
the proxy can be as follows. (remove: connection controller
C1 ⇔ connection hypervisor H1) and (forward: connection
controller C1 ⇔ connection hypervisor H2). Since controller
path migration is executed before the switch migration, the
target hypervisor is required to buffer controller to switch
messages till the switch migration is completed.

C. Switch Path Migration Phase

The final phase to complete the control path migration is
the switch path migration. We have developed a protocol that
uses OF messages to do the switch migration, that can be used
starting from OF v1.0 [15]. Switch migration is initialized with
the target hypervisor sending a dummy OF flow add message
to the switch. This Flow add message can be defined from OF
flowspace fields which are not utilized by the controllers and
are known by all hypervisor instances, e.g., OF cookie field,
which is a controller issued ID and has 64 bits.

Afterwards, the target hypervisor starts switch path migra-
tion by sending an OF flow mod to the switch that deletes
the dummy flow from the switch. The reason for this is
that deletion of a flow dictates an OF switch to send an
OF flow rem to all its assigned controllers, and hence the
initial as well as the target hypervisors would receive it. In

SDN

Controller

OFTest

SDN

OVS
u u

Virtual SDN

Controller

VM

Hypervisor

Layer

Physical SDN

Network

OF_FEAT_REQUEST

OF_FEAT_REPLY

Hypervisor

Proxy

policies

VM

Hypervisor

Instance

(target)

Hypervisor

Instance

(initial)

c

VM

VM

10 ms 10 ms

5 ms 5 ms

VM

Fig. 4. Evaluation setup for the control path migration protocol.

this way, the initial hypervisor can be notified of the switch
migration and withhold the responsibility for that switch.
Meanwhile, the target hypervisor instance would know that
it can take over the switch, thus meaning the control path
migration completion. The target hypervisor then starts to
send the buffered control message to the switch and continues
normal operation as illustrated in Figure 3d.

V. IMPLEMENTATION AND EVALUATION

We have conducted an initial evaluation of a prototype
system that has been developed in a real SDN testbed. The
evaluation setup can be seen in Figure 4. The setup includes
an established virtual SDN network, with an SDN controller
and an OF switch. The control connection between the switch
and the controller is assigned to the initial hypervisor instance.
We evaluate the scenario where a new hypervisor instance,
i.e., target hypervisor, is instantiated. The target hypervisor
triggers our proposed protocol to take over the assignment
of the SDN controller and switch by migrating the control
connection, i.e., hypervisor to switch as well as hypervisor to
proxy connections.

For the hypervisor layer, we have implemented a hy-
pervisor instance in Python. The hypervisor implementation
uses OpenflowJ Loxi library [16], which is an open source
library. This library provides an OF protocol API that can be
used for OF message parsing and generation. The library can
support OF v1.0 up to v1.3. The hypervisor implementation
also includes the proposed protocol. Additionally, a hypervi-
sor proxy has been implemented in Python. It contains the
forwarding policies, i.e., mapping, for the connections to the
SDN controller and hypervisor instances.

The physical SDN network is realized as an Open vSwitch
(OvS) [17], running an OF v1.2 and controlled by the imple-
mented hypervisor. We use the listening port 6634 on the OvS
in the initialization phase of the migration protocol. The SDN
controller is realized by OFTest [18], a test suite framework

19.0 19.5 20.0 20.5
timestamp request [sec]

0.030

0.035

0.040

0.045

0.050

0.055

0.060
la

te
nc

y
[s

ec
]

(a) OF rate 100

19.6 19.7 19.8 19.9
timestamp request [sec]

0.030

0.035

0.040

0.045

0.050

0.055

0.060

la
te

nc
y

[s
ec

]

(b) OF rate 500

19.70 19.75 19.80 19.85
timestamp request [sec]

0.030

0.035

0.040

0.045

0.050

0.055

0.060

la
te

nc
y

[s
ec

]

(c) OF rate 1000

Fig. 5. Time-series for three runs with different OF message rate 100, 500, 1000. Red dot shows the start of the migration procedure. The highlighted area
shows the duration of the migration protocol and the affected OF messages.

for OF switches. The default OFTest can only be configured to
generate a total number of OF message, without controlling the
message sending rate. We have extended OFTest extensively to
generate an average constant sending rate of OF messages to
evaluate the impact of the assignment protocol on the control
plane performance. Taking control latency as a performance
metric, we use OFTest to generate OF feat request messages
at an average rate and we measure the latency to receive
the corresponding OF feat reply back at OFTest, by using
message xids which are unique transaction identifiers used to
match requests to replies.

Throughout each run, we instantiate a new hypervisor
instance and trigger the migration protocol. Hence, we can
evaluate the impact of the migration on the control plane
performance in terms of control latency. Each of the system
components runs on a separate virtual machine (VM). In order
to emulate a more realistic system, we have added an artificial
latency of 10 millisecond on the link between the proxy and
the hypervisor instances. In addition, a latency of 5 millisecond
has been added on the link between the hypervisor instances
and the switch, as shown in Figure 4. For evaluation, we iterate
over an OF sending message rate from 100 requests/sec to
1000 requests/sec. For each rate, we repeat the evaluation run
40 times. Each run has a duration of 40 seconds.

Figure 5 illustrates the impact of the control path migration
protocol on individual packets under different rates. Figures 5a,
5b and 5c show the time series for a sample run with an
OF message sending rate of 100, 500 and 1000 requests per
second, respectively. We identify the start of the migration
protocol with the xid of the last OF feat request sent from
the SDN controller to the initial hypervisor instance. The end
of the protocol is marked by the xid of the first OF feat reply
sent from the target hypervisor instance to the SDN controller.
This indicates the duration needed to complete the migration
protocol and the number of affected OF packets as well.

For one evaluation run, we observe an increase in the
control latency during the migration execution compared to
normal operation. During the migration execution, the max-
imum, i.e., peak, control latency goes to 43 milliseconds at
100 requests per second (Figure 5a). At 1000 requests per
second (Figure 5c), the maximum control latency goes to 57
milliseconds. Hence, the maximum increase in control latency
can be noted to be proportional to the OF rate on the control
plane up to 1000 requests per second. The same observation
can be made for the number of affected packets by the control
path migration, where it increases in a proportion to the OF

100 200 300 400 500 600 700 800 900 1000

OF rates [requests/sec]

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

la
te

nc
y

[s
ec

]

Fig. 6. Latency of OF packets during migration process. Green (bottom) bars
show the average latency, blue (intermediate) bars show the average latency of
affected packets, red (upper) bars show the average of the maximum latency
with standard deviation of all runs. For all bars, the standard deviation is added
via black error bars.

100 200 300 400 500 600 700 800 900 1000

OF rates [requests/sec]

0

10

20

30

40

50

O
F

pa
ck

et
s

Fig. 7. Number of affected OF packets during migration process. The error
bars indicate the standard deviation of the average values for all runs.

control rate. We consider the number of affected packets as
an indicator to the operational duration in which the control
channel is affected by the migration to another hypervisor. It
is important to note that there is no packet loss (0%) due to
migration for all evaluated OF rates. This implies that we could
achieve a control path migration that is transparent to the SDN
controllers in terms of control packet loss.

In Figure 6, we demonstrate statistical evaluation for the
control latency over 40 runs for all marked packets affected by
the migration. The green (bottom) bars show the average and
standard deviation of the control latency in normal operation.
This is the average of the 50 packets before the migration starts

and of the 50 packets after the migration finished. The average
and standard deviation of the control latency during migration
is represented via the blue (intermediate) bars. Finally, we
calculate the average and standard deviation of the maximum
latency reached during migration, which is illustrated via red
(upper) bars.

The first observation is that the average control latency
in normal operation, i.e., green bars, is not affected by the
control rate. The average control latency during migration,
i.e., blue bars, confirms the correlation between the increase
in the control latency during migration and the OF control
rate. The same observation can be shown for the average
of maximum control latency, i.e., red bars, during control
path migration. This can be explained as follows. During
the migration, the protocol starts with the controller path
migration, afterwards it initializes the switch path migration.
All SDN controller to switch messages are buffered at the
target hypervisor till the switch migration is completed, then
it sends all buffered control messages to the switch. Thus,
the number of affected, i.e, buffered, packets during migration
increases with increasing the control rate as shown in Figure 7.
However, note that the number of affected packets during
migration is negligible compared to the total number of packets
during operation. For example, at 1000 requests per second
and for a run duration of 40 seconds, the average number of
affected packets is 45 packets out of a total of 40000 packets,
which is only 0.1%.

VI. CONCLUSION

In this paper, we introduce an SDN virtualization architec-
ture that provides a scalable and dynamic distributed SDN hy-
pervisor layer. The virtualization layer should adapt to changes
in network state and virtual SDN requirements. In order to
support this dynamic changes, we propose an OpenFlow-
based control path migration protocol for distributed SDN
hypervisors, that can adapt the virtualization layer without
interrupting the virtual SDN networks, i.e., transparent. A
prototype has been implemented for the introduced protocol
and an evaluation system has been setup on a real testbed.
We have evaluated the impact of our proposed control path
migration protocol on the performance of the virtual SDN
control plane through measurements of the control latency with
varying OF message sending rates. Our evaluation shows that
the control latency and the number of packets affected during
migration are proportional to the OF rate. We have observed
no control packet loss for all OF rates. Additionally, we could
observe that the number of packets affected by the migration
can be negligible compared to the total umber of packets
in normal operation. Hence, we conclude that the dynamic
migration of the control path in the virtualization layer has no
significant impact on the virtual SDN slices, thus transparent
to their operation.

For future work, we plan to extend our evaluation to
observe the control plane performance in case of migrating
the control paths of several switches and controllers, simultane-
ously. Additionally, it would be valuable to evaluate the overall
migration latency including the management configuration
time. Finally, evaluating the impact of migration with higher
OF control rates can show more insights.

ACKNOWLEDGMENT

This work is part of a project that has received funding
from the European Research Council (ERC) under the Euro-
pean Unions Horizon 2020 research and innovation program
(grant agreement No 647158 - FlexNets). This work reflects
only the authors’ view and the funding agency is not responsi-
ble for any use that may be made of the information it contains.

REFERENCES

[1] 5G Initiative Team, “NGMN 5G Initiative White Paper,” Feb. 2015,
https://www.ngmn.org/uploads/media/NGMN-5G-White-Paper-V1-
0.pdf.

[2] Mobile and wireless communications Enablers for the Twenty-
twenty Information Society (METIS), “Final report on architec-
turer (Deliverable D6.4),” Feb. 2015, https://www.metis2020.com/wp-
content/uploads/deliverables/METIS-D6.4-v2.pdf.

[3] D. Drutskoy, E. Keller, and J. Rexford, “Scalable Network Virtualization
in Software-Defined Networks,” IEEE Internet Computing, vol. 17, pp.
20–27, 2013.

[4] P. Skoldstrom and W. John, “Implementation and Evaluation of a
Carrier-Grade OpenFlow Virtualization Scheme,” Second European
Workshop on Software Defined Networks, pp. 75–80, Berlin, 2013.

[5] Z. Bozakov and P. Papadimitriou, “AutoSlice: automated and scalable
slicing for software-defined networks,” Proceedings of the ACM con-
ference on CoNEXT student workshop, pp. 3–4, New York, 2012.

[6] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[7] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe, W. Snow, and
G. Parulkar, “Openvirtex: A network hypervisor,” Open Networking
Summit (ONS), Santa Clara, 2014.

[8] A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: An sdn virtualization
architecture with flexible hypervisor function allocation,” IFIP/IEEE
International Symposium on Integrated Network Management (IM), pp.
397–405, Ottawa, 2015.

[9] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed SDN OS,” Proceedings of the third workshop on
Hot topics in software defined networking (HotSDN), pp. 1–6, New
York, 2014.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” Proceedings of
the 9th USENIX conference on Operating systems design and imple-
mentation Article (OSDI), pp. 1–6, Berkeley, 2010.

[11] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,
“Pratyaastha: an efficient elastic distributed SDN control plane,” Pro-
ceedings of the third workshop on Hot topics in software defined
networking (HotSDN), pp. 133–138, New York, 2014.

[12] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: an elastic distributed sdn controller,” Proceedings of the
tenth ACM/IEEE symposium on Architectures for networking and com-
munications systems, pp. 17–28, New York, 2014.

[13] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, pp. 862–876, 2008.

[14] ONF, “OpenFlow Switch Specifications 1.3.0,” Oct. 2012,
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[15] ONF, “OpenFlow Switch Specifications 1.0.0,” Oct. 2009,
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf.

[16] “Openflowj loxi OpenFlow Library.” [Online]. Available:
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi

[17] “Open vSwitch (OvS).” [Online]. Available: http://openvswitch.org/
[18] “OFTest.” [Online]. Available: https://github.com/floodlight/oftest

