Taking the Sting out of Flow Update Peaks in
Software-Defined Service Chaining

Jeremias Blendin, Julius Riickert, Sascha Bleidner, and David Hausheer
Peer-to-Peer Systems Engineering Lab, Technische Universitit Darmstadt
Email: {jblendin,rueckert,sascha.bleidner,hausheer} @ps.tu-darmstadt.de

Abstract—Dynamic network service chaining allows network
operators to apply network services to customer traffic on
demand and in a highly flexible manner. SDN and particularly
OpenFlow-based approaches have been presented that exploit
the flexibility and feature richness of OpenFlow for service
chaining in data center settings. These systems often use network
architectures similar to MPLS, where network traffic is processed
at the network edges and the network core conducts simple
packet forwarding only. This approach is suitable for many use
cases due to the complementary characteristics of the hardware
devices used in the core and the virtual switches used at the
edge on virtualization hosts. Yet, this leads to a concentration
of processing flow updates solely at the network edges, which
can cause lowered QoS during flow update peaks, e.g. when a
virtualization host fails. To tackle this problem, in this paper a
concept is presented and evaluated that offloads OpenFlow rule
updates from software-based edge switches to exploit hitherto
unused resources on hardware switches in the core of the
network. Furthermore, an analytical model is presented that
allows describing the expected gain of the approach based on
characteristics of the used OpenFlow devices.

I. INTRODUCTION

Dynamic network service chaining allows network oper-
ators to apply network services to customer traffic on de-
mand and in a highly flexible manner [1]. Service chains are
constructed by steering network connections through chains
of service instances. Each service instance implements a
part of a network service and is often operated in a VM
running on a virtualization host, which is operated in a data
center environment [2]. The optimization of OpenFlow-based
network service chaining approaches relies on the different
performance characteristics of hardware switches and software
switches, which are all assumed to be OpenFlow-enabled. In
a typical data center environment, software switches, termed
virtual switches, run on the virtualization hosts, where they
provide connectivity for VMs [3]. For this, the virtualization
hosts are interconnected by hardware switches.

OpenFlow relies on rules for implementing network be-
havior; for each incoming packet, the corresponding rule is
selected by matching bits in the packet header with a bit
matcher stored in each rule. On virtual switches, OpenFlow
rule tables are implemented by optimized data structures, while
on hardware switches these tables are often implemented by
specialized memory called TCAMs. TCAMs match incoming
network packets with stores rules in one clock cycle, which
enables high speed packet forwarding, but comes at the cost of
slow updates [4]. In contrast, OpenFlow rule table implemen-
tations in software offer lower lookup performance, but a much
higher flow update rate than hardware implementations. This

978-3-901882-77-7 © 2015 IFIP

is one reason why many SDN forwarding approaches rely on
concepts similar to MPLS, with simple and fast forwarding in
the network core and classification and routing decisions at the
edges [5]. Therefore, the most OpenFlow rules and updates are
required at the edge switches where the processing capabilities
are high, while very few rules as well as virtually no rule
updates are required in the core of the network. Approaches
for optimizing OpenFlow-based service chaining systems [6]
as well as data center traffic in general [3] rely on this concept.
As demonstrated in literature, this approach works well and
is a good match for the respective capabilities of hardware
and software switches. However, the entire workload for rule
changes in the network lies on the software switches, while
the resources available at the hardware switches are largely
unused. When peaks in the flow rule update load occur, the
software switches can be overloaded, leading to increased flow
rule update latencies and, as a consequence, to a lowered QoS.
Such peaks can be caused by a large number of changes in
the service chaining configuration e.g. by flash crowds and
the migration of OpenFlow rules from one virtualization host
to another. The latter occurs when one virtualization host in
operation fails and the affected users and their OpenFlow rules
are moved to a new virtualization host.

To soften the effects of rule update peaks, in this paper a
system is proposed that exploits hitherto unused resources in
core switches to reduce the load on the edge switches. The
described approach transfers compatible rules from software
switches on the virtualization hosts to hardware switches in the
core of the network. The impact on the failure time in case of
a failing virtualization host is analyzed in a testbed with three
virtualization hosts and a Broadcom ASIC-based OpenFlow
hardware switch (HwSwitch). Furthermore, an analytical model
is derived that describes the reduction in the failure time for a
given OpenFlow rules installation performance ratio between
software and hardware switches. To the best knowledge of
the authors, an investigation of the peak rule update load of
OpenFlow-based dynamic network service chaining systems
has not been reported yet. Many of the existing approaches are
expected to benefit from the findings presented in this paper.

The remainder of this paper is organized as follows: The
system design is presented in Section II. The prototype, its
evaluation and results are presented as well as discussed in
Section III. Related works are discussed in Section IV. Finally,
a conclusion in drawn in Section V.

II. SYSTEM DESIGN

A typical usage environment for service chaining systems
today is the Gi-LAN, which is the reference point in the

architecture of cellular networks, where mobile networks are
interconnected to the packet networks [2]. Figure 1 depicts a
conceptual service chaining network. Mobile users, which are
denoted by H; and H, in the figure, initiate connections to
hosts on the Internet. Two example hosts are denoted as Hs
and H, in the figure. Network connections are automatically
steered through a subset of the available service instances
and denoted by SI; — SI; as well as DPI and Firewall in
the figure, as specified by the service chain selected by the
mobile user. Mobile users are connected through the mobile
network to the edge switch of the dynamic service chaining
system. The same is true for the Internet link. Inside the
service chaining system, the edge switches are connected to
core switches that interconnect not only the edge switches
but also the virtualization hosts. On the virtualization hosts,
the interconnection is provided by virtual switches, denoted
by VS; and VS in the figure. All switches in the service
chaining system are managed by an OpenFlow controller. The
core switches are assumed to be hardware devices, with a
high port density and a high forwarding capacity but with a
low OpenFlow rule update performance. The virtual switches
inside the virtualization hosts are software switches. Although
their forwarding performance is lower than that of hardware
switches [7], it is sufficient for interconnecting the locally
attached service instances. The edge switches are not the focus
of the investigation in this paper, they can either be hardware
or software switches.

Virtualization Hosts Legacy Service Instance Routing Service Instance

Switch.

1l |—I
Service Function Core Core
Instances Switch, Switchz

Core Network
Edge Edge
Switch: Switcho
Mobile

Dynamic Network Service Chaining and its Entities

Fig. 1.

The dynamic service chaining system is based on the
approach described in [2], a previous work by the authors.
It is not described in detail in this document, for a complete
description please refer to [2]. The approach aims at easing the
deployment of service instances compared to other approaches
and exhibits a less complex approach to managing rules and
user flows compared to StEERING [6] and SIMPLE [8]. Each
service instance is connected by at least two ports to the
virtual switch running on the virtualization host. The service
instances are isolated from the rest of the network, enabling to
use the same network settings on each service instance, with
the only exception being the MAC address of the interfaces.
However, as the forwarding system presented in [2] is not
optimized, an improved approach is introduced. It is based on
SwitchReduce [3] and uses a source routing approach, where
packets are steered through the network by a stack of VLAN
tags in each packet header. On the switches, a VLAN tag

is popped from the stack whose ID encodes the output port
that the packet is sent to. Thereby, each core switch contains
exactly one rule per network port in use. At the edge switch,
users are identified by the IP address of their mobile device.
The OpenFlow controller retrieves the service chain selected
by the user and calculates the path to the first service instance
in the chain. Then, the VLAN tags corresponding with the
output ports on each switch on the path to this service instance
are pushed to the stack and the packet is forwarded to the next
core switch. When the packet arrives at the virtualization host,
the last VLAN tag is popped, the required packet modifications
are applied and the packet is forwarded to the service instance.
After the service instance has completed the processing, the
packet is forwarded back to the virtual switch. There, it is
processed again and the path to the next service instances is
encoded as VLAN tags in the packet header. The service chain
for each user is implemented individually by a chain of point-
to-point connections.

TABLE L OPENFLOW RULE METRICS
Metric Switch Type Number of Flow Rules
Max. number of rules Edge SW'ltCh 2 X (Num. users in the system)
or switch Core switch (Num. local ports in use)
P Virtual switch 4 X X {Locat s1} SI' (Num. users)
Edge switch 2 % (Num. users in the system)
Max. rule updates per Core switch None

user modification

Virtual switch 4% (Num. service instances of user)

Performance metrics related to the OpenFlow rule usage
of this approach are listed in Table I. On the core switches,
the maximum number of rules per switch and the number of
rule updates per user modification are fixed values and do not
change with the load in the system. These corresponding rule
update capacities are free to be used for other purposes. Rule
update peaks for virtual switches are identified by comparing
the update rate with a configurable threshold. When a rule
update peak occurs, the rule update load is automatically dis-
tributed between the virtual switch and the directly connected
hardware switch. The distribution of the load is configured
based on the flow update performance ratio of virtual and
the hardware switch. The selection of an appropriate value
is investigated in Section III. However, not every rule can be
moved from a virtual switch to a core switch. The movement of
rules to another switch should not impact the performance of
the whole service chaining system. Hence, rules that forward
packets that stay inside the same virtualization host are not
moved. Only rules, which are involved in forwarding packets
from one virtualization host to another, and therefore pass
through a core switch anyway, are eligible for moving. A rule
is installed on each virtual switch that forwards all traffic that
is not matched by a local rule to the next core switch. On the
core switch the packets are identified by the IP address of the
user and the source MAC address, which identifies the packets
source port. Thereby, the rules can be used in a similar manner
than on the virtualization host. Matching on incoming ports is
replaced by matching the corresponding MAC address.

III. PROTOTYPE & EVALUATION

The approach is evaluated using a testbed with three servers
as virtualization hosts and a Broadcom ASIC-based OpenFlow
hardware switch termed HwSwitch. The failure of a virtu-
alization host in the service chaining system is investigated
with different shares of the rule update load moved from the

software switch to the HwSwitch. The goal of the evaluation
is to analyze the reduction of the total service outage for the
affected users by utilizing hitherto underused resources.

A. Scenario & Workload

The service chaining topology used is depicted in Figure 2.
It consists of a representative, yet small part of a service
chaining system. The edge of the service chaining network
is not relevant for the analysis; therefore a virtual switch
running on the same server with the emulated users is used.
The core network of the service chaining system is represented
by HwSwitch, which interconnects the virtualization nodes 1
and 2 with the edge switch and users to the two virtualization
hosts. Several service instances, denoted by SI in the figure,
are hosted on each of the two virtualization hosts. To emulate
a realistic service chaining system, both systems carry load,
there are no dedicated virtualization nodes on standby. The
focus for the investigation is the OpenFlow rule installation
performance; a realistic traffic load on the network is not
necessary. Therefore, using 1GbE interfaces as done in the
testbed is appropriate, even though in a real service chaining
system 10GbE interfaces are state of the art.

The node failure is emulated by disabling the network
connection between Virtualization Host 1 (VH1) and the core
switch. This event triggers the installation of all rules that were
used on Virtualization Host 1 before on Virtualization Host 2
(VH2), creating a spike in the OpenFlow rule installation load.
Before the failure event, both virtualization hosts are used for
user traffic. One half of the users, termed User Group A, use
four service instances on Virtualization Host 1 and 2 each. The
other half of the users, termed User Group B, are assumed to
use four service instances on Virtualization Host 2 only. The
time from a failure of Virtualization Node 1 until all members
of User Group A are successfully moved to Virtualization
Node 2 is referred to as failure time. The objective of the
evaluation is to investigate if moving parts of the OpenFlow
rule update load from the virtual switch to the adjacent core
switch reduces the failure time for affected users.

Server: Virtualization Host 2

Server: Virtualization Host 1

User Group A

* 5 " et
o Wdseswien | | Gholer
pen vSwitch Ryu Framework

Server: EdgeSwitch & Users Server: Controller

Fig. 2. Testbed Topology and the Evaluated Service Path

To the best knowledge of the authors, no data sets of real
service chaining systems are available for research. Therefore,
assumptions are made for determining the load in the testbed
for evaluation. A maximum of 3,000 users per server in normal
operations and 6,000 in case of a failover are used. User Group
A use a service chain containing eight service instances, User

Group B uses four network services as depicted in Figure 2.
The failing Virtualization Host 1 runs four service instances,
the other one eight. The service instances are assumed to
be shared between all users. The resulting number of used
OpenFlow rules for a single virtual switch can be derived by
the formula given in (1).

local

OpenFlow Rulesyg = 2 X Xy, i, users(1 + (Num. SI} 1))
1)

When Virtualization Host 1 fails, users of Group A are
relocated to use additional service instances on Virtualization
Host 2. It is assumed that all same service instances that
are available on Virtualization Host 1 are also available on
Virtualization Host 2. Between 5 and 50% percent of user
rules are moved from the virtual switch to the core switch
during rule installation. However, as not all rules are eligible
for movement, two rules per user, the ones from and to the
edge switch, are moved. All parameters used in the evaluation
are listed in Table II.

TABLE II. PARAMETER VALUES USED IN THE EVALUATION
Parameter Investigated Values

Users in the service chaining system 1,000 2,000 5,000 6,000
Users in Group A that are affected by 500 1,000 2,500 3,000
the node failure
Total number of rules installed during 5,000 10,000 25,000 30,000
failover
Total number of rules installed during 1,000 2,000 5,000 6,000
failover & eligible for movement
% of total number of rules installed 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
during failover & eligible for movement
& moved to the core switch

B. Measurement Methodology

Measuring time in OpenFlow networks requires detailed
investigation of the components and consideration of potential
sources of errors. All time measurements are conducted on the
same server to ensure accurate results. The completion time
of the OpenFlow rule updates is measured through the Barrier
command of the OpenFlow protocol. The OpenFlow controller
sends an OpenFlow barrier request after the transmission of
the rule installation commands. The point in time when the
resulting barrier reply is received by the Controller Server is
used as completion time of the rule installation process. Since
the barrier request is known to not be processed according to
the OpenFlow standard by all implementation, the behavior of
the HwSwitch and Open vSwitch is investigated to this end.
The results for the HwSwitch are depicted in Figure 3. The
barrier replies are measured using the tcpdump tool to ensure
the results are not skewed by added processing overhead in-
troduced in the OpenFlow controller. In parallel, ping requests
are send through the switch every 500ms. They are crafted to
be forwarded only when the new OpenFlow rules are installed.
The results indicate that the device behaves according to the
OpenFlow standard. The discrepancies in the data for 3,000
and 4,000 users can be explained by measurement artifacts
that are caused by the small durations of the measurement.
While high-precision measurements with earlier versions of
Open vSwitch revealed discrepancies between the barrier reply
and the passing of the first packet through the switch [9], the
results at the measurement granularity of 500ms did not reveal
significant differences. An investigation of the OpenFlow rule
installation characteristics of both Open vSwitch and hardware

switch reveal that using different OpenFlow rule priorities
leads to a signification rule installation performance reduction
on the HwSwitch. Therefore, all OpenFlow rules used use the
same priority and some matching network traffic is applied
during the evaluation.

1.0 1.0+

3000 User | 4000 User J

— Ping Ping
0.8 — BarrierReply J 08 — samerneny e
[
(
~ 06- J . _06-
B %
5 [— 5 /
o o
0- T 04- s
s f
0.2- f - 02- /]
= e
0.0+ 0.0 !

520 540 560 580 600 620 640 660
Flow Installations per Second

520 540 560 580 600 620 640 660 680 700
Flow Installations per Second

0~ \ \ | | | | . 0~ \ | | | |
8000 User e 13000 User ~
— Ping 7 — Ping (
0.8- Barrier Reply / ~ o8- Barrier Reply f
= 0.6~ // —~ 0.6 I g
a3 12 X t
5 f & J
©04-) © 04
/ //
0.2 / 0.2 //
—
L= i
00+ 7/ i | . . i - 004 /7 i i i . -
380 390 400 410 420 430 440 450 330 340 350 360 370 380 390
Flow Installations per Second Flow Installations per Second
Fig. 3. Comparison of the Barrier Reply Time and the Effective Flow Rule

Installation Time on the HwSwitch

C. Implementation & Testbed

The relevant parts of the service chaining systems are
implemented using on the Ryu OpenFlow controller. The
VLAN-based forwarding mechanism could not be used with
the HwSwitch, because it does not support adding and remov-
ing VLAN tags. Although not identical to the VLAN-based
approach, a MAC address-based mechanism is used similar to
PortLand [10] that is equivalent for the evaluated scenario;
modifying MAC addresses is supported by the HwSwitch.
Instead of a VLAN tag stack, the MAC address is used as an
array of tags. Figure 4 depicts an example tag, which stores
the user ID, the output port on the edge switch, as well as the
output port on the core and the virtual switch. The drawback
of this encoding scheme is that it does not support paths with
more than three hops. However, such paths are not required
for the evaluation.

00:01:2D:01:03:02,

Switch Port: 3 Switch
Port: 1 Port: 2

User-ID: 300

Fig. 4. Destination MAC Path Information Encoding

The topology of the testbed as well as its components is
depicted in Figure 2. Information on the soft- and hardware
used for the components is listed in Table III. The hardware
used for the virtualization hosts is considered low end com-
pared to a modern server CPU. However, the main task of
the virtualization host is to run service instances and forward
packets. Therefore, only a fraction of a state-of-the-art server
CPU is likely to be dedicated to the process that processes the
rule updates; the performance level of the servers in the testbed
is considered similar to this fraction of processing resources. A
small amount of traffic is passed through the system to ensure

it is working. The performance required for the forwarding of
this traffic through the virtual switch and the service instances
is negligible.

TABLE III. HARDWARE INFORMATION OF THE PROTOTYPE
Node Hardware Software
Edge Switch Intel Pentium G640 CPU, 8GB Ubuntu 12.04, Open

& Users RAM, Intel 82579LM NIC
Virtualization Intel Pentium G640 CPU, 8GB Ubuntu 12.04, Open
Host RAM, Intel 82579LM NIC vSwitch 2.3.1

Core Switch Broadcom ASIC-based Hardware -

Switch (HwSwitch), 48 1GbE & 4
10GbE ports

Intel Core i5-3470 CPU, 32GB
RAM, Intel 82579LM NIC

vSwitch 2.3.1

Controller Ubuntu 12.04, Ryu 3.19

D. Results & Analysis

A comparison of the OpenFlow rule installation perfor-
mance of Open vSwitch 2.3.1 and HwSwitch is given in
Figure 5. For this measurement, both switches are investigated
individually. For both switches, the performance is not depen-
dent on the total number of OpenFlow rules installed on the
devices. The number of flow installations per second is, with
about 800, more than an order of magnitude slower on the core
switch than on the virtual switch with about 10,000. The large
performance difference is surprising; a previous investigation
with Open vSwitch version 1.7.0 running on an Intel Xeon
3210 resulted in about 400 flow updates per second [11].

E .
S 10000?
O :
b :
wn)
-
o 1000-
o B
m :
c)
o
= 100~
i) :
Ic ,
0
10-
c E
2 Open vSwitch 2.3.1 median — HwSwitch median
o - Open vSwitch 2.3.1 Q,/Q, — HwSwitch Q,/Q,
(. 1-

5000 10000 15000 20000 25000

Number of Flow Rules

Fig. 5. Comparison of the OpenFlow Rule Installation Performance of Open
vSwitch 2.3.1 and the HwSwitch

The results of varying the percentage of users whose
eligible rules are moved from the virtual switch to the core
switch are depicted in Figure 6 and Figure 7 for 3,000 users
affected by the node failure. The percentage of users whose
eligible flows are moved is varied in 5% steps between 0 and
50%. When the eligible flows of 50% of the affected users are
moved to the core switch, the total number of newly installed
OpenFlow rules on the virtual switch decreases by 10% from
30,000 to 27,000. The median of the total installation time for
all rules drops from nearly 4s to 3.75s. However, the drop
in installation time is less than the 10% reduction in flow
rules. The reduction of the number of rules is deterministic,
the resulting time reductions feature some variation, which is
denoted by the 1 and Q3 quartiles. The receiver of the moved
flow rules, the core switch, increases the number of installed
flow rules from O to 3,000. The total rule installation time on
HwSwitch increases to more than 6s.

The resulting failure times for both switches, the virtual
switch on Virtualization Host 2 and the Core Switch are

35000- ! | | | | (-

w
[N
-

30000 - -

IS
|
|

25000 - -

w
|
|

20000 - -

15000 - -

N
|
|

10000 - -
3000 Users B
VH2 Switch median
VH2 Switch Q,/Q,

Number of Flow Rules
=

5000 - 3000 Users |-
VH2 Switch
0-7 | | | | - 0~ | | | | r
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Percentage of Moved Users Percentage of Moved Users

Total Time in Seconds [s]

Fig. 6. Flow Rule Installation Performance of Open vSwitch

3500- ! | | | | o 74 | | | | "
= s

§ 3000- 5 6- -
3 ©
o 2500- g 5- .
3 @
© 2000- & a- _
w
5 1500 <5

- o 3- _
g E
2 1000- E 2 B
g = 3000 Users
=Z 500- 3000 Users 5 1- —— Core Switch median _

mmm Core Switch [— Core Switch Q,/Q;
oo HEEES____J ", -~
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Percentage of Moved Users Percentage of Moved Users

Fig. 7. Flow Rule Installation Performance of the Broadcom-based Hardware
Switch

depicted in Figure 8 for 500, 1,000, 2,500, and 3,000 users
affected by the node failure. The total failure time is the
maximum of the flow update completion time of the virtual
switch and the Core Switch. The solid line depicts the median
of the completion times; the dotted lines depict the ()1 and Q3
quartiles. The rules that are moved to the Core Switch quickly
become the bottleneck as the number of moved users increases.
‘While for 500 and 1,000 affected users the decrease in the total
failure time seems at least signification with the respect to the
25% and 75% percentiles, it becomes barely visible for the
scenarios with 2,500 and 3,000 users. It can be concluded that
the flow installation performance gap between the HwSwitch
and an Open vSwitch 2.3.1 on the server hardware used in the
evaluation testbed to too big for the rule movement to show
and significant reduction of failure time. The performance
gap was not expected to be smaller based on literature; the
performance of Open vSwitch has been greatly improved in the
latest releases of the software. Nevertheless, the measurement
shows the potential of the presented service chaining concept.

The total failure time of a hardware and a software switch
combination in relative terms depends only on the relative
flow rule installation performance for the hardware switch
Py, and the software switch P;,,. For Py, < Ps,, the total
time reduction for rule update operations is determined by the
percentage M of the moved flow operations and the relative
performance of Py, in terms of Pj,, as described in (2).

Phuw !
o

——1
M

The relation is depicted in Figure 9 as well as the values for
the HwSwitch and the NoviFlow NoviSwitch 1132 [12]. The

)

£0.8- 216 -
c [=

o o

S 0.7- -3 1.4- -
ol s

8 0.6- -8 1.2- -
@ @

= =

= 0.5- = 1.0- -
K=} o

o 04- - 0.8- -
«“ b

b 0.3 o 0.6

g 500 Users g 1000 Users

[0.2- VH2 Switch median _j{— 0.4 - VH2 Switch median ~ _
= VH2 Switch Q, /Q; = VH2 Switch Q, /Q;

5 0.1- — Core Switch median -5 (0.2 - — Core Switch median
= — CoreSwitchQ,/Q, — Core Switch Q,/Q,

0.0 | I | | - 0.0+ | I | | -
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Percentage of Moved Users Percentage of Moved Users

2500 Users
VH2 Switch median
VH2 Switch Q,/Q,

~— Core Switch median ~— Core Switch median

— Core Switch Q,/Q, — Core Switch Q,/Q,

0- i I | | - 0- I i | | -
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Percentage of Moved Users Percentage of Moved Users

3000 Users
VH2 Switch median
VH2 Switch Q,/Q,

Total Time of Flow Installation [s]
w
|
|

Total Time of Flow Installation [s]

Fig. 8. Failure time for 500, 1,000, 2,500, and 3,000 users affected by the
node failure

latter is an example for a commercial hardware OpenFlow
switch that is advertised with an OpenFlow rule update
performance of 3200 flow operations per second, which is
very high compared to the performance of HwSwitch. The
measurements conducted with the HwSwitch and the Open
vSwitch 2.3.1 showed that a performance level of less than
10% of the core switch in comparison to the virtual switch
is too small to improve the total failure time significantly.
However, new devices promise an increase OpenFlow rule
update performance. Furthermore, the presented system design
introduces no costs other than a single additional OpenFlow
rule per virtual switch.

50% ' ' ' . N

Ph’ll]
40% - P,

30%-

NoviFlow 1132
20%-

Time Reduction [%]

10%-
Broadcom ASIC-based
Hardware Swlitch

-

0% 20% 40% 60% 80% 100%
P,, in Relation to P, [%]

Fig. 9. Failure Time Reduction for when using Open vSwitch as Edge switch
on the Evaluated Testbed with Different Core Switches based on (2)

IV. RELATED WORK

One of the first works to optimize SDN-based service
chaining is StEERING [6]. StEERING utilizes OpenFlow rules
in a highly optimized manner on the virtualization hosts, where
the service instances are running. SIMPLE [8] proposes to
implement service chaining behavior by using tunnels between
the network nodes where service instances are attached. While
both papers introduce relevant optimization concepts, they do
not investigate the behavior of the respective system under
a peak rule update load. However, the approaches use a
forwarding architecture that is similar to the concept presented
in this paper. Therefore, the flow rule update hotspots are
similar and thus, both approaches will likely benefit from the
load shifting concept introduced in this paper. Besides SDN-
based approaches, which do not require the cooperation of
service instances, Network Service Headers (NSH) [13], based
on a new network protocol have been proposed. However, these
approaches require the virtualization hosts and the service
instances to support the NSH protocol.

CacheFlow [14] introduces the idea of combining the
capabilities of hardware and software switches to improve
the performance of SDN networks. The approach supplements
hardware switches with their limited TCAM memory with
software switches to relieve them from a large number of
small, low-bandwidth flows. The approach described in this
paper uses a similar approach in the opposite direction: un-
used resources on hardware switches are used to supplement
software switches during rule update peaks.

V. CONCLUSION

An OpenFlow-based dynamic service chaining system with
OpenFlow rule installation offloading during rule update peaks
was presented in this paper. The concept combines the scala-
bility of the MPLS-like forwarding approach of SwitchReduce
[3] with the ease of service instance deployment of [2]. The
rule installation offloading mechanism lowers the load on the
edges of the network, which host most of the forwarding
logic, to help them coping with rule update peaks during node
failures or other exceptional events. The approach relies on the
exploitation of hitherto unused resources, by moving eligible
OpenFlow rules from the edge of the network to a core switch.
Thereby, the approach does not incur any performance and
resource costs, while it helps to use available resource more
efficiently. The presented approach has not been investigated
in literature before. Still, other SDN-based service chaining
approaches are likely to benefit from it as well.

Open vSwitch is used as virtual switch software on the
virtualization hosts and a Broadcom ASIC-based OpenFlow
hardware switch (HwSwitch) as core switch. An important
finding is that the OpenFlow rule installation performance gap
between the two switches is an order of magnitude bigger
than described in literature before. The main reason for this is
a huge increase in the OpenFlow rule installation performance
from version 1.7.0, with about 400 flow modifications per
second [11], to version 2.3.1, which was measured to perform
around 10,000 flow modifications per second. Due to the
large performance gap between the hardware and the software
switch, the approach on smoothing rule update peaks during
node failure does not significantly reduce the failure time in

the testbed used in this paper. However, an analytical approach
is presented that shows that newer, high-performance devices
promise to offer a better performance compared to Open
vSwitch and therefore significantly reduce the failure time
during a virtualization host failure. The evaluation shows that
the OpenFlow rule update performance of the core switch
should be at least 20% of the virtual switch for significant
improvements.

Potential next steps are the investigation of a high-
performance core switch in the testbed and the investigation
of bigger topologies. The rule movement in the failover case
could be split to multiple core switches and other virtualization
hosts that have available resources. Therefore, an approach
for efficiently distributing the flow rules on multiple devices
should be investigated.

ACKNOWLEDGMENTS

This work has been funded in parts by the European Union
(FP7/#317846, SmartenIT and FP7/#318398, eCOUSIN) and
the German Research Foundation (DFG) as part of project CO3
of the Collaborative Research Center (CRC) 1053 — MAKI.

REFERENCES

[1] W. John, K. Pentikousis, G. Agapiou et al., “Research Directions in
Network Service Chaining,” in IEEE SDN for Future Networks and
Services (SDN4FNS), 2013.

[2] J. Blendin, J. Riickert, N. Leymann et al., “Position Paper: Software-
Defined Network Service Chaining,” in European Workshop on Software
Defined Networks (EWSDN), 2014.

[3] A. S. Iyer, V. Mann, and N. R. Samineni, “SwitchReduce: Reducing
switch state and controller involvement in OpenFlow networks,” in IFIP
Networking Conference, 2013.

[4] M. Kuzniar, P. Peresini, and D. Kostic, “What You Need to Know About
SDN Flow Tables,” in Passive and Active Measurements Conference
(PAM), 2015.

[S] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: a
retrospective on evolving SDN,” in ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN), 2012.

[6] Y. Zhang, N. Beheshti, L. Beliveau er al,, “StEERING: A Software-
Defined Networking for Inline Service Chaining,” in /[EEE International
Conference on Network Protocols (ICNP), 2013.

[71 P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Assessing Soft-
and Hardware Bottlenecks in PC-based Packet Forwarding Systems,”
in International Conference on Networks (ICN), 2015.

[8] Z. A. Qazi, C.-C. Tu, L. Chiang et al., “SIMPLE-fying Middlebox
Policy Enforcement Using SDN,” in ACM SIGCOMM, 2013.

[9] C. Rotsos, N. Sarrar, S. Uhlig et al., “OFLOPS : An Open Framework
for OpenFlow Switch Evaluation,” in Passive and Active Measurements
Conference (PAM), 2012.

[10] R. N. Mysore, A. Pamboris, N. Farrington et al, “PortLand : A
Scalable Fault-Tolerant Layer 2 Data Center Network Fabric,” in ACM
SIGCOMM, 2009.

[11] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity Switch
Models for Software-defined Network Emulation,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined (HotSDN), 2013.

[12] NoviFlow, “NoviSwitch 1132 Data Sheet,” http:/noviflow.com/
wp-content/uploads/2015/07/NoviSwitch- 1132-Datasheet- V2.0.pdf
(accessed July 27, 2015).

[13] P. Quinn and U. Elzur, “Network Service Header,” IETF, https://tools.
ietf.org/html/draft-ietf-sfc-nsh-01 (accessed July 27, 2015), 2015.

[14] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite Cacheflow
in Software-Defined Networks,” in ACM SIGCOMM Workshop on Hot
Topics in Software Defined (HotSDN), 2014.

