A file-system abstraction for
virtualized infrastructure

Vitalian A. Danciu
Munich Network Management Team
Ludwig-Maximilians-Universitdt Miinchen
danciu(a)mnm-team.org

Abstract—The projection of the structure and operations
of virtualized infrastructure onto a file-system structure yields
a familiar interface for management and the opportunity to
perform management operations with non-specialised tools for
file and directory manipulation. The file-system paradigm offers
a well-known information model onto which the infrastructure
data model is mapped. We describe the mapping of the static and
dynamic structure and discuss its potential and limitations. The
concepts are illustrated to the reader by means of the Virtualized
Infrastructure File-System prototype, that is discussed in terms
of architecture and operation.

Keywords: Virtualization, Management, File-system

I. INTRODUCTION

The proliferation of cloud services lead, in turn, to man-
agement and control of virtualized infrastructure being increas-
ingly layered vertically, as well as distributed horizontally.
Traditional management layers include the administration of
single resources, or structures created from them (network
management), the management of the resulting distributed sys-
tem as a whole and the management of services [1]. Horizontal
distribution originates from the co-operation between different
organisations of operators and service providers.

Management of the virtualized infrastructure is performed
in a layered architecture including (beside the hardware) the
virtualization facility (hypervisors, network abstractions, etc), a
management middleware (tool-stacks, integrated management
middleware) and a user interface (UI) as a text or graphical
interface. Heterogeneity of the interfaces is an issue in all
layers, prompting solutions that consolidate the tool landscape.

Through these efforts, virtualization solutions encompass
a large number of middleware products and tools, each using
its own flavour of interface to express common management
information and operations. Consequently, there is a lot for
administrators and tool authors to learn, disregarding whether
the tools expose graphical or textual interfaces or the program-
ming language bindings offered by middleware packages. The
management platforms employed differ per organisation (often
per IT organisation domain), and this heterogeneous manage-
ment system needs to be integrated with all management tools
pertaining to virtualization management solutions within the
organisation.

The dimensions sketched in Figure 1 illustrate the idea,
that in every organisation there are preferences based both on
existing management targets and the prevalent technology for

978-3-901882-77-7 (© 2015 IFIP

APl Xpreferred

interface
Web type
Frontend

native

Preferred
platform

view state

object state
modification

create assoc.
release assoc.
transaction
group op.
Management
operations

Management
target

Figure 1. Admin view on the management interface

the work platform, in addition to the preference of the staff
for certain types of interfaces.

Existing management solutions differ in at least:

the user interface of the provided management tools
the properties of the infrastructure, that are exposed
the operations provided to administrators

their model of virtual components and compounds
the virtualization technologies supported

Their differences have several implications for operations
and management, including:

e training administrators in all solutions/tools used in their
organisation as well as co-operating, co-managed organ-
isations.

e accepting in self-developed utilities a reliance on the
models and interfaces of the tools used

e an impact in both training and re-factoring when introduc-
ing or migrating to different virtualization technologies or
management tools

While standards have been developed early on and are
evolving, they sensibly target the lower layer interfaces of
virtualization products. But even at that level, the interfaces
exposed by the different products differ in syntactic conven-
tions and the semantics of their attributes and operations [2].
Thus, it seems interesting to experiment with a pre-existing,

ﬁ(Admin i Management

utility
: Management ogrammer
5(Admin i utility $ prog
rogrammer
$ i prog File—system abstraction

N

Specialised software

O e

Specialised software

=

Virtualization facility Virtualization facility

Figure 2. Management stack before and after introduction of FS abstraction

widely accepted interface as a “point of condensation” for
normalisation efforts.

A. Approach

This paper explores the projection of virtual infrastructure
and the management operations performed on it onto one of
the most familiar metaphors — that of a file-system (FS). By
viewing and manipulating objects in the FS, a manager (and
even a user) is able to monitor and manage the virtualized
infrastructure itself by using his favourite tools for file manip-
ulation, as illustrated in Figure 2.

The obvious benefit of the approach is the immediate
capability to view the state of and perform management
operations on the virtualized infrastructure without the need of
specialised tools: the user is allowed to employ their favourite
tools (graphical file-managers, shell commands, ...), that they
use to manipulate files and directories. In the same manner, the
FS offers an equally well-known and entrenched programming
interface for which practically any programmer has received
training.

Associated concepts such as access control and ownership
can be specified in a well-known manner, documentation can
be integrated into the tree describing the infrastructure and a
view on collaborating organisations can be integrated, as well.
Another important benefit is the choice of arbitrary platform
(all OSs have FSs) and topological location (an FS may be
remote) of the FS user in relation to the management station.

B. Synopsis

Section II summarises related work and similar approaches
in other domains. The following Section III develops the
basic model underlying the projection of the virtualized infras-
tructure onto the structure and operation primitives of a FS.
Section IV details the mapping of infrastructure elements to
FS objects, while Section V shows the mapping of operations
on the infrastructure onto operations performed on the FS.
Section VI sketches the architecture of a prototype FS as a
proof-of-concept. We proceed with a discussion in Section VII
before concluding in Section VIII.

II. RELATED WORK

The representation of infrastructure by means of an FS
might be viewed as a metaphor of a second order, the FS
itself being a metaphor for an office archive. Thus, we create
“an abstract conceptual space from embodied experiences, i.e.
interactions with the real world”[3] as described by Guhe,
Smaill and Pease.

Kuhn and Frank have proposed a formalism for (user
interface) metaphors, that describes their essence in terms
of the objects, operators and axioms involved, thus enabling
comparison between the original (source) domain objects and
the target objects [4]. In our case, such a comparison would be
between the management view of infrastructure and its view
in the FS paradigm. While we forego the formal notation due
to the significant space it requires, the principle of projection
is similar: we project managed objects, operations and axioms,
i.e. the invariants and conventions pertaining to a certain class
of objects.

The idea of applying the FS metaphor to virtualized in-
frastructure seems new, though it has been leveraged in other
relevant areas. On some operating systems, proc [5] and sysfs
[6] are host-local pseudo-FSs, that provide some management
data and some opportunity to set system parameters.

The XSEDE project proposes to employ the familiar con-
cept of an FS to manage distributed data but also computational
resources in high-performance computing settings [7].

The containment model of the infrastructure developed in
Section III is projected onto the Portable Operating System
Interface (POSIX) [8], that is a standard developed jointly
by the IEEE and The Open Group. It specifies, as its name
implies, a common interface for operating systems. A sub-set
of it defines a model of FS and a number of basic operations
on FS objects and offers, due to its age and widespread support
a suitable projection surface.

III. LOCATION AND CONTAINMENT MODEL

As noted in the introduction, a proper representation of
virtualized infrastructure must be able to represent physical
infrastructure as well as the virtual components provided by
it. Further, it must be able to represent different organisations,
that may be in co-operation.

A suitable representation is that of a containment tree, that
represents the location of any organisational or infrastructure
entity within a containing one. The root of the tree denotes
the “infrastructure as a whole”, its children are provider
organisations (management domains). Both administrative and
technical containment needs to be modeled. From the point
of view of a provider organisation, relevant infrastructure is
within the own management domain and within associated
domains.

A. Hierarchy

We differentiate between physical locations, logical infras-
tructure partitions, physical components and structures, virtual
components and structure, and services. Vertical scoping may
be employed to define the zone of authority of administrative
roles. Figure 3 illustrates these concepts.

Physical locations include data centres, points-of-presence
or other deployment sites tied to an organisation. They may
be structured into logical infrastructure partitions arbitrarily by
the organisation they pertain to. Such partitions may be created
in order to structure the organisation itself into organisational
units responsible for a certain part of the infrastructure or
they may be employed to differentiate between different in-
frastructure partitions according to some other, again arbitrary,

Infrastructure

i 000oooo
Locstons 000 | ooie oata
ocations
0000000 | centre centre
n00mann
Admin. Admin.
Domain Domain
Logical
Infrastructure Cluster Subnet
Partitions
Physical Aggregation —
~
Components E’ .
and Structures 1 1

Router Switches

Virtual
Components
and Structures

4L ,Purpose’

L virtual LAN
vSwitch

Service e
Components

Figure 3. Containment hierarchy

criterion of the organisation (e.g., by service, by customer, by
technology).

The next fixed layer is that of physical components, includ-
ing computing elements, network elements, storage elements.
It is conceivable to model physical components as a contain-
ment hierarchy themselves, e.g. to describe an I/O component
as being contained within a computer, however, for the purpose
of this paper we will not explore that avenue further.

Physical components may support virtual components and
structures. As with physical components, a containment hi-
erarchy is possible within this layer. It is worth to note,
that the provisioning of virtual components nested in virtual
components (e.g., by the execution of a hypervisor within
a virtual machine) is a much more compelling argument to
develop the containment model within this layer.

Service instances provided by single virtual components
are said to be contained in the virtual component.

Compound entities include clusters of computing elements
and storage elements, both physical and virtual.

B. Horizontal aggregation

Containment may represent single entities, but not horizon-
tal structures. Horizontal aggregation, i.e., grouping by purpose
is employed for networks or clusters spanning several tree
branches. The purpose may be the delivery of a service or
the creation of a structure. The aggregation of switch ports to
a virtual LAN (VLAN) shown on the right side in Figure 3
illustrates a horizontal aggregation. Its purpose is the creation
of the VLAN, a virtual structure.

C. Goals and principles

Having concluded the generic containment model, we
proceed by projecting it onto the features offered by common
FSs, after discussing the goals and principles of the projection.

Replacing a specialised interface with a metaphor—and one
intended for another use, no less—requires careful balancing
between retaining the intuitive use of the resulting system and
replicating the function of the specialised interface. We require
at least the following properties:

1) The resulting FS should be capable to represent:

a) objects within the infrastructure

b) binary associations between objects

¢) native attributes of technical objects

d) translated (harmonised) attributes and meta-attributes
of managed objects

2) The resulting FS should conform sufficiently in order to
be usable with existing, common file-management tools,
graphical or otherwise.

3) A minimal set of additional conventions to the FS
metaphor should be introduced.

To ensure the independence of the approach from specific
implementation, we rely on POSIX [8] as an accepted and
well-implemented standard for operating systems. Thus, the
approach is viable for implementation on any platform, that
complies to POSIX. In the following sections, we will first
project the model structure onto FS objects (Section IV;
then we will proceed by tying semantics to operations on
those FS objects, that represent elements of the virtualized
infrastructure.

IV. PROJECTION OF STRUCTURE

File-systems contain three types of objects, that are of
interest: directories, regular files, and symbolic links. We will
represent all aspects of the virtualized infrastructure by using
these object types.

The general idea is simple: Managed objects are rep-
resented by directories. Their attributes are represented by
(hidden) files within those directories. Relationships between
MOs are represented by symbolic links, e.g., the connection
of the virtual network interface of a VM to a port of a virtual
switch. Entities are arranged within the location/containment
tree.

A. Entity addresses

Without loss of generality, we will in the following assume
a UNIX-like syntax with a slash delimiting path elements. In
addition, we follow the convention that file names beginning
with a period denote hidden files.

In consequence, every entity within the infrastructure,
including organisational constructs, can be addressed by
path. For example, the leftmost VM in Figure 3 is de-
scribed by: /Data Centre 1/Admin. Domain 2/Cluster
1/Server 2/VM1l/

It is important to note, that this containment hierarchy
is distinct from the DNS (Domain Name System) domain
and zone hierarchies or other directory hierarchies commonly
employed to maintain models relevant to management. Thus,
while the use of Uniform Resource Identifiers (URI) might
seem to lend itself to addressing entities, its use of domain
names depicts a different hierarchy than that of containment.

Prefix Name Semantics

period component attribute
_ underscore special file (meta-data)
+ plus sign push-button file

Table 1. FILE PREFIXES

B. Attributes

An entity’s attributes are represented as text files within
the directory representing the entity itself. The file name
is patterned after the attribute name, and the file con-
tains the attribute’s value as a text string. For exam-
ple, the attribute of a Xen VM (“domain”), that describes
the maximum memory for the domain in KiB will be
stored in: /Data Centre 1/Admin. Domain 2/Cluster
1/Server 2/VMl/max_memkb

Its content is a text string representing the value, that can
thus be viewed with the basic tools provided by the OS.

We use prefix-based meta-typing of attributes to differen-
tiate between those originating in the entity itself, those de-
scribing the entity from a management system perspective and
other files within an entity’s directory. Prefixes are proposed
in Table I.

1) Special attribute files: The interaction with the FS
requires contextual information. In particular, users need to
be able to differentiate between the types of entities being
represented by a directory, and to be able to determine the
state of that entity, the technology that it uses and the source
of its configuration. To accommodate this requirement, each
directory representing an infrastructure entity contains special
attribute files with reserved names, that contain meta-data. As
with files representing an entity’s attributes, these files contain
the value of the meta-data attribute. For example, _type is
the type of the managed object represented by the directory.
An alternative representation mechanism using the extended
attributes supported by some FSs might seems attractive; we
discuss it in Section VII-C.

2) Meta-data: Some information can be projected onto FS
standard built-in features.

a) Time stamps: Three different time stamps are speci-
fied for POSIX FS objects: last access time, last modification
time and last status change time. In a simplified view, the
“access” means the file was read, “modification” means the
file was written and “change” refers to changes to attributes
such as ownership or access mode.

The time stamps can be leveraged to provide meta-data
about the managed objects or attributes represented by directo-
ries and files in the same manner. In particular, the modification
time of an attribute is the time when the attribute value was
procured from the source.

b) Ownership and access control: File-system objects
are owned by a user and a group. Both are identified by integer
values for user-ID (UID) and group-ID (GID), respectively.
The conversion to corresponding textual values (login name
of a user, name of a group) is provided by the OS, which may
employ different means to perform the mapping. The most
common include reading from a file (/etc/passwd on UNIX-
like systems) or retrieving the value from a directory service

such as an LDAP directory service. Therefore, the management
of users and groups are not an issue of the FS itself (which
deals only with the numerical values). To control access to the
objects within the FS, an implementation needs to introduce
administrator identities (user-IDs) and roles (group-IDs) into
whatever directory or other source is used on the machine
where the FS is executed. Once implemented, this mechanism
allows fairly fine-grained control of the objects represented in
the FS. Alternatives and its scalability are discussed further in
Section VII-C.

3) Push-button files: So-called push-button files offer the
possibility to execute management operations on an MO by
simply updating the modification time of the file. This can be
realised for example with the POSIX command touch (1),
which opens the file and sets the modification time to the
current time. The content of a push-button file documents
the effect of “pushing the button”. For example, the file
+shutdown within a directory representing a virtual machine
can be modified in order to shutdown that virtual machine.

The use of push-button files is discussed in Section V-B.
Although they introduced in this section (for closeness to
other structural conventions), push-buttons are actuators, not
attributes. However, their presence in an entity directory sig-
nifies the availability of the operations they represent.

C. Volatile and persistent data

Dynamically created FS objects are volatile, as their life-
time is tied to the existence of some managed object. If that
managed object is destroyed, the corresponding FS object is
meaningless.

Other objects within the FS are persistent. These include
manually created objects such as the directory tree describing
the organisation’s structure or documentation files added to
directories corresponding to MOs. In this context, “persistent”
means that the object persists across the termination of the FS
program; in contrast, a volatile object will be destroyed when
the FS is unmounted.

In summary, the FS contains a directory hierarchy, where
each directory represents an organisational or technical element
of the infrastructure. Sub-directories of a directory represent
contained elements. All files within a directory represent
attributes or meta-attributes of the element represented by the
directory. The content of these files is the textual representation
of the attribute’s value. Any symbolic link to a directory or file
represents an association between source and target of the link.

V. PROJECTION OF OPERATIONS

To allow effective management by means of manipulating
FS objects, management operations must be mapped onto the
set of operations supported by the FS. In the following, we
will first assess the operations exposed by the FS, then discuss
their mapping onto a set of desired management actions.

A. File-system operations

We differentiate roughly between three classes of opera-
tions. The first two are read-only operations, where the content
of the FS is queried and modifying operations, the execution
of which modifies the FS. They correspond to monitoring and

Class Function Description (informal)
stat read the attributes of a file
access check active user’s permissions for a file

Read- readlink read the target of a link

only read read from an open file
readdir read the contents of directory
mount mount a FS
umount unmount a FS
creat create a file and open it
link create a (hard) link
mkfifo create a uni-directional pipe
Modi- unlink remove a file name, decrease link count
fying symlink create a symbolic link
mknod create a device file, pipe, or socket
mkdir create a directory
rmdir delete an empty directory
rename rename an FS object
chmod change access mode
chown change ownership and group ownership
utime change time stamps
write write to an open file
Auxili- open open a file
ary release close a file
fsync synchronise memory contents with storage
contents
Table II. FILE-SYSTEM OPERATIONS (READ-ONLY, MODIFYING,

AUXILIARY)

control operations, in management terms. The third class of
auxiliary operations includes opening/closing files. Table II
summarises the relevant selection of POSIX FS operations
according to this classification.

Read-only operations include reading the contents of a
directory (listing the files and directories contained within it),
reading the contents of a file, reading the target of a symbolic
link, reading the attributes (ownership, time-stamps, access
mode) of an FS object and reading the state of the FS itself.

Modifying operations include the creation of FS objects,
the modification of their attributes, renaming and moving FS
objects, changing the target of links and modifying the content
of files.

Auxiliary operations bound the modification phase of an
FS object. Thus, they signal the beginning and the end of a
process that modifies the content or the attributes of an object.

B. Management operations

In this section, we discuss the realisation of management
actions by means of the FS operations. The set of projected
operations is not comprehensive: it is intended as a subset of
possible actions for examination and discussion.

Operations on the FS can be viewed as management
actions where the operation type corresponds to the method
identity (the “function name”) and the FS objects acted upon
represent its parameters. The limitations of this model and
the possibly constraints on the breadth of the management
operation repertoire is discussed further in Section VII-B.

When the user (administrator) executes an operation on a
part of the FS, that represents an infrastructure element or sub-
tree, their operation is intercepted and triggers the execution
of a management operation. The original operation on the FS
succeeds if and only if the management operation succeeds.

We will constrain ourselves in the following to basic
management operations from common management categories;
their re-combination is up to the FS user. We also discuss the
FS operations that are intercepted (hooks), in order to execute
the management tasks they trigger.

1) Monitoring infrastructure state:

a) Navigating: The FS can be navigated with common
tools in order to view its structure. No interception is necessary.

b) Reading attribute values: Dynamically changing at-
tributes are re-read on-demand, when the user attempts to read
the attribute value. Thus, the read () function is intercepted.

2) Configuration management:

a) Changing attribute values: Configuring an attribute
is done by writing the desired value into the file that represents
it. The intent of changing the attribute value is bound to the
release () function (that closes the file). If the value in
the file is valid and differs from that before all write ()
operations since the file was opened, the attribute is re-
configured. Internally, the open () function is intercepted in
order to cache the old value of the attribute for comparison.

An attempt to open an immutable attribute for writing (such
as the amount of RAM of a physical machine) fails. If the new
attribute value is deemed to be invalid, or if its effective re-
configuration in the infrastructure fails, the value is read again
from the infrastructure element it pertains to, and an error is
logged.

b) Creating associations: A directed association be-
tween to elements is instantiated by creating a symbolic link
from the directory of one of the elements to that of the other.

A prominent example is the link between a network in-
terface of a virtual machine to a virtual switch. This case
is realised by creating a symbolic link within the directory
representing the virtual switch, pointing to the directory repre-
senting the virtual machine and being named after the interface
of the virtual machine. Note that this manner of representing
a binding between a network interface and a switch is a
convention. It is conceivable to create a file within the VM’s
directory to point to, or even have the symbolic link point the
other way, i.e. from such a file to the virtual switch.

For the creation of associations, the symlink () function
is intercepted.

c) Destroying associations: For the destruction of asso-
ciations, the symbolic link representing them is removed with
the function unlink (). The function will fail if the operation
is not permitted. This can be the case if the user has insufficient
privileges (i.e., due to FS semantics) or if the association may
not be removed due to management policy, or if the association
is immutable (e.g., a physical link).

d) Changing an association: Changing an association
can either reduced to destroying the old association and creat-
ing a new one, or it can be atomic. When the association link
is simply modified, the function rename can be intercepted,
and the change is atomic. Such an operation can either succeed
or fail. The deletion of the link and subsequent creation of a
new one cannot be intercepted, as there is no state in which
the management intent is clear. The deletion and the creation

operations (i.e., calls to unlink () and symlink () can fail
independently.

3) Access control:

a) Testing access control: The access control attributes
of an FS object are not modified dynamically. Therefore, they
can be tested (with the access () function, internally) as
usual.

b) Changing ownership: User and group ownerships
are changed as usual, with the chown () function. This function
need not be intercepted, but it may be if a record of changes to
privileges is desired, or if it is desired to enforce a management
policy.

c) Changing access mode: Access mode bits may also
be set as usual with the function chmod. The same rational as
with changing of ownership applies.

4) Life-cycle: Life-cycle management operations include
the creation and destruction of virtual components, as well as
suspend/resume operations for most infrastructure components.

a) Initialisation: The FS is initialised with pre-
configured administrative domains and the physical compo-
nents assigned to them. Virtual components are queried dy-
namically. This initialisation can be realised by means of
configuration files or by evaluating persistent state information
from preceding executions of the FS. See Section VI-A2 for a
description of how this is realised in the prototype presented
in this text.

b) Activating and deactivating components: Virtual
components can be configured but inactive. For example, an
administrator might have prepared images and configuration
files for the creation of a VM, but the VM is presently not
running.

c) Adopting sub-trees for management: Introducing
previously unknown components into the managed set requires
the creation of a directory containing a _type file, that
contains the correct type. The name of the component should
reference it in its container. The component will be adopted
into the tree when a special file with the name _managed is
created in its directory, if the component’s location and type
are valid.

For example, adding a previously unknown VM host ma-
chine into a cluster would require the following three steps:

1) Create a directory with the DNS name of the machine
within the directory representing the cluster.

2) Within the VM host’s directory, create a file named _type
containing the type vmhost.

3) Within the VM host’s directory, create a file named
_managed.

The creation of the special file will be intercepted and
the sub-tree representing the machine (attributes, other special
files, pushbutton files) will be instantiated. In addition, as
the machine in our example is a VM host, directories will
be created and populated for every virtual component (VMs,
virtual switches, etc.) hosted on the machine in question.

| Clients |

| POSIX |

File—system
Object
Hooks state

I
| Management procedures |

Specific Interfaces

| Managed infrastructure |

Figure 4. Architecture overview

d) Releasing sub-trees from management: Releasing a
sub-tree from management can be performed by deleting the
special file _managed from the top directory of the tree. Re-
leasing the components within the sub-tree from management
does not imply that they are shut down or destroyed. They
simply cease to appear in the FS.

e) Creating virtual components: Creating components
is a complex matter, due to the need for additional conven-
tions: while components can be created from templates, the
parametrisation of the templates and the actuation of the vir-
tualization facility to create a component require recognisable
structures that must be agreed upon instead of being intuitive
to FS users. Further investigation is necessary to determine
the minimum of conventions necessary for the extension of
this part of the FS metaphor.

f) Destroying, suspending and resuming: Components,
that support suspend and resume operations offer correspond-
ing push-button files (see Section IV-B3 called +suspend
and +resume within the directories, that represent them. The
dynamic attributes of the component are removed while it is
suspended and re-created when it is resumed. Creating files
with the names of those attributes in the mean time will fail.

Destroying components implies the destruction of all con-
tained components. The consistent manner of supporting this
operation would be to employ push-button-files, as with sus-
pend/resume. In order to prevent accidental destruction, we
require in addition, that the keyword destroy be written into
the push-button file.

g) Migration: VM migration is represented by the
movement of the directory tree representing the VM from
the containing directory representing its host to a directory
representing the target host of the migration. This operation
corresponds to the POSIX rename () system function.

VI. ARCHITECTURE

The realisation of the projection can be accomplished
in an architecture as the one depicted in Figure 4. The
FS itself exposes the POSIX standard interface that can be
accessed by clients. Calls to this interface may trigger hooks
to management procedures, that (via an adaptation layer)
perform the salient management operations on the managed
infrastructure. The FS organises the state of the represented
managed objects. The quality and timeliness of this state is a

matter of implementation: infrastructure state can be queried
constantly or on demand, when an FS object is accessed.

A. Prototype

A FS called VIFS (Virtualized Infrastructure File-System)
as described in the previous sections has been implemented by
the author as a FUSE (Filesystem in USErspace) application.
This prototype has bindings to the Xen hypervisor with the
xenlight (x1) tools-stack and to the Open Virtual Switch (OVS).
Bindings to other virtualization technology can be added easily
by extending only the management hooks of the FS, without
interfering with the actual FS code. A synopsis of features and
functions can be found in [9]. In the following, we discuss
selected implementation-specific topics with regard to this FS.

1) Notifications with management semantics: Notifications
presented to the user as a consequence of manipulating the
FS are in terms employed for FSs. This behaviour is intrinsic
to the approach. It implies, that the management semantics of
the notification must be interpreted by the user. However, the
constrained set of notifications specified for POSIX operations
is not sufficient to unambiguously interpret the meaning of the
notification in management terms.

For example, if a user attempts to migrate a VM between
two hosts (by moving one directory to another) and the
operation fails, the FS will issue the error code EFAULT,
which is specified to mean, that either the old location path
or the new location path point outside the “accessible address
space”. This error code was chosen to avoid misinterpretation
by client programs, but it gives no hint as to the reason of
the failure in management terms, which would indicate the
reason for the failure of the migration operation: the failed
operation may have been an attempt to migrate a physical
host or another meaningless operation in management terms.
In addition, that error code may not even be presented to the
user: the manual page of the common GNU implementation
of the mv (1) command merely differentiates between zero
and non-zero return codes; graphical clients typically present
their own interpretation of the error in a dialogue window.

To address this problem, the prototype provides a special
file within the FS that delivers textual status and error messages
with management semantics. In this manner, the notifications
are made available to the user even when the FS is used
remotely, over a protocol such as NFS or CIFS/SMB (Network
File System, Common Internet File System; specified in [10],

[11], [12]).

2) Persistence: The non-volatile portions of the FS are
written to a file when the FS is unmounted. They are read
and interpreted when the FS is re-mounted. The differentiation
between volatile and persistent files is made internally. All
dynamically created attributes originating from queries to a
component are deemed to be volatile. In addition, all virtual
components are deemed to be volatile. Organisational structure
and physical components are persistent.

VII. DISCUSSION

The projection of structure and state (Section IV and V-B)
suggests that a large number of management-relevant informa-
tion items and operations can be mapped in a fairly intuitive

Generic data Feature—full
storage and Management
representation System

Trade-off between specialised and intuitive use

Figure 5.

manner to FS objects and operations. In this section we discuss
possible extensions, after outlining the limitations inherent to
the “abuse” of file-system semantics for management purposes.

A. Double-edged conventions

Concepts and tools become specialised in order to more
precisely suit a particular intent. In particular, the concept
of a file-system has been devised for the organisation of
data in files, and management systems have been devised for
controlling a specific type of objects. If one is used for the
purposes of the other, it is natural that a subset of features
will not constitue an exact fit and require conventions of use
to be introduced in order to replicate the feature set of the
projected concept. For example, we have introduced name
prefixes to distinguish file with special meaning: some life-
cycle operations on managed objects have been realised as
push-button files (see Section V), others represent attributes or
meta-attributes. While similar conventions exist in normal use
of FS (e.g. the use of name extensions to signal data format),
but they are different from those introduced in this work.

All conventions must be conveyed to users before they are
effective. Thus, at the same time the FS abstraction offers a
beneficially familiar interface and poses the challenge of how
to project specific management artefacts onto it: any additional
convention constitutes a specialisation and requires effort. The
trade-off is between intuitive use on one hand and powerful
operations on the other, as illustrated in Figure 5. In essence,
this is a challenge of human-computer-interface (HCI) design
which may require the examination of convention candidates
based on users’ response to them; such an examination goes
beyond the scope of this paper.

B. Operations

We have discussed how operations on FS objects are pro-
jected onto management operations in Section V-B. Although
this projection is straight-forward on the surface, changing the
purpose of the interface exposed towards clients raises the
possibility that they may use it in a different manner than
anticipated.

1) Unanticipated client behaviour: One such possibility
is the use of an unanticipated sequence of operations, that
would lead to the same (anticipated) result when operating on
files, but would fail to trigger the corresponding management
operations. For example, it is conceivable, that a rename
operation be performed by copying every relevant file to the
new location before deleting the original structure. A mapping
expecting to detect a rename (2) function call would instead
observe a sequence of open (2), read(2), close(2) and
unlink (2). Hitherto, I have not observed such behaviour in
the FS clients on GNU/Linux, including Nautilus, the Rox filer,

GNU Bash, the standard file-utilities (cat, mv, 1n, ...);
they behave as expected, though this does not eliminate the
issue in principle.

2) Group operations: A more acute issue involves group
operations, i.e. operations on groups of managed objects.
While they can exploit the support for regular expressions, that
is widely implemented for files-system tasks, the knowledge
about the set of objects being manipulated is retained by the
FS tool, that performs the operation. To use the example above,
moving a set of directories representing VMs might be actuated
by a drag-and-drop gesture in a graphical file-manager, that
will generate a sequence of rename (2) operations to the FS.
Thus, instead of the single operation on a group of objects,
as the gesture might lead an operator to believe, the FS
will observe a sequence of single operations, instead. This
behaviour obviates the opportunity to optimize the resulting set
of migration operations performed on the VMs. Furthermore,
moving the same set of “VM directories” to a directory repre-
senting a cluster would ideally trigger a placement algorithm
to distribute the VMs on the target cluster. An approach to
counter this issue is the trap-correlate-execute scheme: the FS
might “pretend” to perform the first rename call by returning
a success value and wait for a short time for the next function
call that might form a group operation together with the first
one. When a time-out is experienced, the list of operations
accumulated until then is executed as a whole, enabling the
introduction of optimization. This, approach, however, intro-
duces other issues, such as concurrent access to the FS from
different clients performing unrelated (group) operations, the
possibility of failure of the operation on one of the objects
(which had been returned as successful) and the choice of time-
out parameter for differently loaded FSs. Some management
group operations might require transaction semantics, and it is
difficult to ascertain that a group of operations correlated into
a single operation contains all members.

C. Expressive power

The meta-data items of FS objects were intended to de-
scribe simple files, directories and links — not to serve as a
replacement for the more elaborate management information
one would wish for to describe managed objects.

An administrator may be assigned multiple roles, which is
reflected by users being members in multiple groups. Access
control with the basic POSIX attributes alone can be cum-
bersome when many roles are employed, as FS objects can
only pertain to a single group-ID. Access control lists (ACL)
constitute a more powerful alternative to this traditional access
control mechanism. Unfortunately, they are by far not as well
standardised across platforms, even when they are available.
Thus, while it might be possible to employ the ACLs specified
in POSIX, their use may undermine the applicability of many
standard file manipulation programs. Therefore, we prefer the
more common, albeit simpler mechanism.

1) Time: Time attributes cover only the most basic tem-
poral aspects of FS objects: access and modification times
for the object itself and the change time of its meta-data. In
contrast, effective management of IT components may require
to track, for example, transitions between states and life-cycle
phases. Accounting management may require to record access

times and durations, service management processes might
require information on incidents and time-to-repair. Due to
the plethora of conceivable requirements on the time-related
attributes of a managed object, it is perhaps cautious not to
attempt a projection of some of these information items onto
the core elements of the FS but instead favour the mechanism
provided by “special files” as described in Section IV-BI.

2) Extended attributes: Modern FS support so-called “ex-
tended attributes” that enable the association of name-value
pairs with any FS object. Extended attributes could be em-
ployed instead of files to store the values of the attributes
of entities within the infrastructure. While this possibility
is tempting, it appears that popular remote FS protocol im-
plementations do not have practical support for extended
attributes. In addition, it would require tools (e.g., file-manager
applications) with good support for extended attributes. In the
future, when extended attributes are more widely supported
and entrenched, their use would facilitate a more elegant
information model.

3) Management data sources: Component internals may
be exposed as FS objects as well. Infrastructure components
commonly offer consoles and logfiles, that can be mapped onto
character device files or specially named logfiles, respectively,
in order to integrate in-component data sources into the man-
agement FS.

VIII. CONCLUSION

We have introduced a mapping of virtualized infrastructure
state and operations onto FS state and functions. The purpose
is to explore the use of a familiar interface and tools familiar to
any user in a context dominated by specialised management
software. The research prototype constructed as a proof-of-
concept shows as expected, that the basic operations can
be mapped successfully for one of the major virtualization
platforms.

However, experimentation also reveals a few intrinsic short-
comings of the use of the POSIX interface as a front for
management operations. Experimentation in the domain of
group operations and transactions could show if there is a
chance to detect and group operations speculatively.

Finally, although the FS metaphor is well-known, its use
for active management merits examination in usability testing:
it remains to see if what has become intuitive for files remains
just as intuitive for managed objects and their attributes.

REFERENCES

[1] H.-G. Hegering, S. Abeck, and B. Neumair, Integrated Management of
Networked Systems — Concepts, Architectures and their Operational
Application. Morgan Kaufmann Publishers, ISBN 1-55860-571-1,
1999.

[2] V. Danciu, N. gentschen Felde, M. Kasch, and M. Metzker, “Bottom—
up harmonisation of management attributes describing hypervisors and
virtual machines,” in Proc. 5" Int. DMTF Wsh. Systems and Virtualiza-
tion Management: Standards and the Cloud (SVM 2011), Distributed
Management Task Force (DMTF). IEEE Xplore, 2011.

[3] M. Guhe, A. Smaill, and A. Pease, “A formal cognitive model of
mathematical metaphors,” in Proceedings of KI 2009, ser. LNAI,
B. Mertsching, M. Hund, , and Z. Aziz, Eds. Springer Verlag, 2009.

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

W. Kuhn and A. U. Frank, “A formalisation of metaphors and image-
schemas in user interfaces,” in Cognitive and Linguistic Aspects of
Geographic Space, ser. NATO ASI Series D, A. U. Frank and D. M.
Mark, Eds. Dordrecht, The Netherlands: Kluwer Academic Publishers,
1991, vol. 63.

J. Birnbaum, “The linux /proc filesystem as a programmers’
tool,” The Linux Journal, Jun. 2005. [Online]. Available:
http://www.linuxjournal.com/article/8381

P. Mochel, “The sysfs filesystem,” in Proceedings of the 2005 Linux
Symposium, Ottawa, Canada, 2005.

F. Bachmann, I. Foster, A. Grimshaw, D. Lifka, M. Riedel, and
S. Tuecke, “XSEDE architecture level 3 decomposition,” version 0.972,
Jun. 2013. [Online]. Available: http://hdl.handle.net/2142/50274

“POSIX.1-2008,” IEEE and The Open Group, Specifica-
tion IEEE 1003.1, The Open Group Technical Standard
Base Specifications, Issue 7, 2013. [Online]. Available:
http://pubs.opengroup.org/onlinepubs/9699919799/

V. Danciu, “Presenting the cloud as files and directories,” in Proceedings
of the 11th IEEE International Conference on eScience. Munich,
Germany: IEEE, Aug. 2015, (To appear.).

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck, “Network File System (NFS)
version 4 Protocol,” RFC 3530 (Proposed Standard), Internet
Engineering Task Force, Apr. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3530.txt

Common Internet File System (CIFS) Protocol, Microsoft Corporation,
Oct. 2012.

Server Message Block (SMB) Protocol Versions 2 and 3, Microsoft
Corporation, Oct. 2012.

