
Scalable Microservice Based Architecture For

Enabling DMTF Profiles

Divyanand Malavalli

Client Manageability Group

AMD India Pvt

102-103 EPIP, Whitefield, Bangalore, KA 560066 India

Divyanand.Malavalli@amd.com

Sivakumar Sathappan

Client Manageability Group

AMD India Pvt

102-103 EPIP, Whitefield, Bangalore, KA 560066 India

Siva.Sathappan@amd.com

Abstract—This paper proposes an architecture for

implementing DMTF management Profiles in middleware layer

of a management console, using microservices. Microservices is a

software architecture style, gaining popularity for developing

Internet scale applications. This paper will also provide a

comparison with the current prevalent method of design. This

paper will also discuss how this microservice can be exposed

utilizing REST thus further making it scalable, lightweight etc.

This scalable microservice in turn can interact with the managed

device using either SOAP (as defined in DASH or SMASH) or

REST (as defined in Redfish).

Keywords—Webservices, Microservices, SOA, DMTF Profiles,

DASH, REST, JSON, SOAP, XML, Enterprise, Architecture,

Manageability

I. INTRODUCTION

DMTF publishes the management profiles, which define

the CIM model and its relationship with the management

domain. A profile consists of CIM classes, associations,

indications and methods that describe the particular

management domain. A set of these profiles are defined as

specification and released as suite for standardizing the

management actions for a particular domain. The suite defines

the semantics, protocols and enables interoperability. One such

popular suite is ‘DASH’, which is a standards based

management for secure out of band management for desktops

and notebooks.

Currently methods exist for providing access to these

profiles for developers and end-users to utilize the rich set of

information provided by the specification. Within this

specification, based on their usage, different users might be

interested in a small set of profiles and may not require all the

profiles in the suite. Users might be implementing light-weight

stack and hence might want to use limited set of profiles. The

challenge is to let the users select the profiles they are

interested in and provide access only to those profiles.

Each of these profiles defines a vast set of interfaces and

developers implementing these profiles would want proceed in

a phased manner. Depending on the requirements dictated by

the market, certain profiles might be implemented in greater

depth. Developers would want to deploy the new additions to

the end-users, without disrupting the existing infrastructure

either with minimal or zero down-time.

Based on these needs, we are proposing the microservices

architecture to overcome the current complexities involved in

providing easy access to DMTF profiles.

Terminology:

 Client: The initiator of request. Client is usually the

management console. It can also be browser or a mobile

app.

 Managed device: Device which implements DMTF

profiles and capable of being managed. Device can be

desktop computer, notebook, any handheld or fixed device

connected to network.

II. PREVALENT ARCHITECTURE

The most common model used as basis for designing

management applications is monolithic architecture. This

model is based on layered architecture. Each layer is tightly

coupled and centrally integrated.

Figure 1

Typically, 4 distinct layers can be identified in a monolith

design apart from the managed device:

978-3-901882-77-7 (c) 2015 IFIP

1) User interface layer

2) Business logic layer

3) Storage layer

4) Network layer

User interface layer presents the interface with which the

end user can interact. It takes the input from the user and

presents the output results to something the end-user can

understand. The UI layer is typically a thick client, which is a

desktop client. Web interface based on HTML & JavaScript is

also prevalent. In recent times, the user interface is also

presented as a mobile app.

Business logic layer occupies the middle layer and

implements the domain logic. This layer describes how a

particular request must be handled and what must be the

response. It coordinates the application, processes commands,

makes logical decisions and performs calculations. It also

moves and processes data between the two surrounding layers.

In the storage layer, data is stored and retrieved from

database. Usually, a single database is used in the

implementation.

The network layer enabled communication with managed

device over the network. In management applications, data is

retrieved from managed device, stored in database and then

sent to highest layer for presentation.

The architecture is centralized and the invocation of any

functionality in the component of another layer is via a

function call.

Typically, all the 4 layers are built together and packaged in

a single release. The modules within a layer is developed using

the same framework and same programming language.

Common observation made is each of these layers represents

the project teams in that organization. So the model is based

on build, test & release cycles. Every fix or new feature will

need a release vehicle. So release cycle is long.

For scaling, entire monolith must be replicated across the

servers.

III. MICROSERVICES ARCHITECTURE

Microservices is a software architecture style, where in

complex applications are composed of small independent

processes (called services). These services communicate with

each and also can be invoked via REST APIs. These services

are small, highly decoupled and focus on doing a small task. So

a microservice design consists of a suite of independent

deployable services.

The RESTful architectural style must consist of these

constraints:

1. Client-Server: Clients and servers are separated via an

interface. This separation means that, for example, clients

are not concerned with data storage, which remains

internal to each server, so that the portability of client code

is improved. Servers are not concerned with the user

interface or user state, so that servers can be simpler and

more scalable. Servers and clients may also be replaced

and developed independently, as long as the interface is

not altered.

2. Stateless: The necessary state to handle the request is

contained within the request itself, whether as part of the

URI, query-string parameters, body, or headers. So the

server need not maintain, update or communicate that

session state.

3. Cacheable: Responses must define themselves as

cacheable, or not, to prevent clients reusing stale or

inappropriate data in response to further requests.

4. Uniform Interface: The uniform interface constraint

defines the interface between clients and servers. It

simplifies and decouples the architecture, which enables

each part to evolve independently.

5. Layered System: A client need not know whether it is

connected to an end server or to an intermediary.

Intermediary servers improve system scalability by

enabling load-balancing.

A typical microservices architecture style based RESTful

interfaces is shown in figure 2:

Figure 2

Each of these small services run within their own process

and communicate with HTTP API. Clear constructs and clear

agreements are defined and established between these services.

So any programming language can be used for developing

these services as long as they adhere to the agreed protocol.

Hence a microservice design can consists of services developed

with different languages and different frameworks. So the best

tool can be used for developing any service. Every service can

have its own build cycle and can be deployed independent of

each other. Each component is a service. Each component is

complete in itself. The component is usually developed by

cross-functional teams. The development is done by product

teams, which own and run the services.

Each service performs a business capability. Microservice

is based on these principles,

 Each service does one thing well

 Portability is preferred over efficiency

Services are the end points and are smart. The pipe

connecting these services is assumed to be dumb. The

invocation of any service is via HTTP request APIs and

response is also via HTTP, response APIs. Hence messaging

communication framework is lightweight. The invocation of

any functionality in the component of another layer is via a

HTTP call.

The architecture is de-centralized and data can be stored in

one or more databases. The database micro service will abstract

all the database operations from other services.

The architecture enables the paradigm of continuous

delivery & rapid deployment. It provides a mechanism to

handle elasticity to demand. Latest tools can be employed for

building the services. New concepts can be implemented and

showcased without affected the existing functionality.

Failure of one or more components won’t bring down the

whole system. Failure of one service means the system won’t

offer that particular service. The rest of the system works

normally.

For monitoring all the services in the system, a dashboard is

required.

Scaling is simple. It can be done in 2 ways. Within the

same server, multiple instances of the service in demand can be

instantiated to handle additional requests. Other way is to

distribute these services across servers. Since the messaging is

based on HTTP, scaling is transparent to requesting entities.

IV. PROPOSED ARCHITECTURE

The concept of microservices is adapted in the business

logic layer for implementing DMTF profiles in management

application. The proposal for middle tier, business logic layer

consists of 2 distinct layers:

1. Web API Interface Layer

2. Services Layer

Internally, the web API interface layer consists of 2 parts -

Web layer and API Gateway layer. The services layer consists

of different microservices which address different requests.

Some of these microservices implement DMTF profiles, some

network communication stack and some storage points.

The user interface raises a request based on REST API. The

API interface layer would interpret this request and proxy the

request to one or more microservices. Each microservice would

fetch data from either storage or fetch via network from

managed device. The result data would be sent back as

response to user interface in the format it requested.

The key idea is illustrated in the diagram below.

Figure 3

a) The web layer provides the HTTP interface and acts as

load balancer. It sends the request to API gateway layer

and later sends the response back to the original requester.

Depending on the implementation, if there are multiple

API gateways, the web layer acts as reverse proxy and

proxies the request to a specified API gateway, and gets

the response.

b) The API gateway layer is the single entry point for all

requests. Depending on the request, it either sends the

request to the appropriate microservice or it fans out

multiple microservices to handle the request. This layer

insulates the clients from how the application is partitioned

into microservices. Though this layer adds complexity to

the application, it provides faster service by reducing the

number of requests from client to server. It simplifies the

client by moving logic for calling multiple services from

the client to API gateway.

c) Services layer consists of 3 types of microservices,

 DMTF profiles services

These services implement the various profiles as per

DMTF specification. These services typically format

the request as per managed device. They decode the

response from managed device and sends back to API

gateway layer for customizing the response as per

client.

 Network connectivity services

These services provide end point connectivity to

managed devices. Typical connectivity is over HTTP.

It also provides secure connectivity. Depending on the

implementation of the managed device, this layer can

provide both SOAP & REST services. Hence can

connect to both legacy managed devices implemented

on SOAP interfaces and newer managed devices

implemented on REST interfaces.

 Data storage services

Certain data points might be required to be stored for

later access. The data services layer provides the

storage functionality. Typically time-consuming tasks

are performed in the background and the respective

services update the results in the database with the

help of data services. Depending on the quantity of

data generated either SQL or NoSQL or both

databases can be supported in this architecture. Also,

wide column databases with as Hadoop, big data can

also be supported. That would depended on the

storage and retrieval demands of the management

console.

V. USAGE FLOW

The management service developer would implement and

publish the REST APIs for consumption. The REST API

would internally access DMTF profile implementation. So the

REST API is facade for DMTF profiles.

A management console developer would utilize these

REST API services and provide a mechanism for the end user

to communicate with the managed device.

Typically, if an user wants to get the power status of a

managed device, that user would call the REST API defined

for power on that device. The REST API framework would

fetch the previously stored authentication details and query the

managed device for power status using DMTF profile

specification.

VI. BENEFITS OF REST APIS

SOAP & REST both provide a mechanism of non-binary

messaging framework and rely on well-established rules for

exchanging information. But there are certain inherent

differences.

SOAP is the older of the two and relies exclusively on

XML to provide messaging services. SOAP has been around

for some time and has been standardized. Hence it is extended

to work on wide variety of network topology and

configurations. SOAP is highly extensible and has built-in

error handling. Another aspect of SOAP is that it can be used

on any transport, not just limited to HTTP. The XML used to

make requests and receive responses in SOAP can become

complex. The libraries used for generating XMLs can be bulky

and may not be the choice for light weight applications.

REST provides a lighter weight alternative to SOAP.

Instead of using XML to make a request, REST relies on a

simple HTTP URL. REST can use any of four different HTTP

1.1 verbs (GET, POST, PUT, and DELETE) to perform tasks.

REST-based web services typically output the data in

JavaScript Object Notation (JSON) format. JSON is prevalent

but any other format can be used depending in the discretion of

the designer.

Either SOAP or REST, each has its own definite

advantages and disadvantages. To summarize, SOAP is

standardized, works well in distributed enterprise

environments, provides significant pre-build extensibility in the

form of the WS* standards and has built-in error handling.

REST is lightweight, fast, easier to use and has smaller

learning curve. Messaging scheme is efficient in case of REST.

Select between SOAP and REST is to be made based on the

programming language, development framework, the

environment in which the application will be deployed, and the

requirements of the application. Either can be a better choice

depending on the problem domain.

In the architecture we have proposed, both SOAP & REST

based managed devices can be managed, co-exist and work

independent of each other. Some of the microservices can use

SOAP, while others can use REST and communicate with the

managed device. This approach will provide a mechanism to

address existing SOAP deployments and also to communicate

with newer REST based implementations.

VII. BENEFITS OF THE PROPOSED ARCHITECTURE DESIGN

The flexibility and usefulness of the proposed architecture

design is outlined.

1. Easy to showcase, demo new profiles in existing

framework

2. Enhance and deploy any existing profile, without

affecting other profiles. This also reduces testing

effort.

3. Microservices framework provides scaling

functionality

4. Mix of services implemented in different languages

can co-exist.

5. Support both SOAP and REST based managed

devices.

6. Approach is market centric. Based on the requirements

dictated by the market, a given component can be

modified and deployed independent of this system.

VIII. POTENTIAL PITFALLS

The microservices framework, which is based on

distributed computing, if not designed properly suffers from

these issues.

 Network reliability: The end points are connected over

network and so the network must be reliable.

 Latency: The path between end-points may span

multiple networks with heterogeneous topology. The

solution must consider the latency aspect.

 Bandwidth: The communication from client, between

microservices and to managed device utilizes the same

network. So network traffic might be high. The

implementation must consider bandwidth availability

during normal & peak operation.

 Network security: The communication channel is based

on open protocols and hence adequate checkpoints &

guards must be implemented to keep away malicious

content in the network.

 Interface definition: The communication between

microservices and with external world must be strict

and well defined. As the system evolves this definition

might become complex.

 User authorization: By default the APIs of

microservices are open to all authenticated users. This

may be designed in hierarchical setup, which is

typically the case in enterprise management. User’s

permissions must be checked and their role analyzed

before providing access the microservices.

 Setting up microservices: Initial setup of microservices

components might require more effort than similar

monolith setup. But adding additional features to

existing microservices setup will be simpler.

IX. IMPLEMENTATION

A typical microservices implementation design

consists of a web server and a REST API library. The

web server handles the HTTP requests and an option

handle TLS connection. The API specification can be

defined with the REST API library component. There are

many open source and closed source both free and paid

options available for web server. For REST API library,

most modern languages and frameworks have one or

more options.

For implementing DMTF profiles, the profile SDK is

required. There are both free and paid options available.

For instance, for implementing DMTF’s DASH

specification, AMD’s DASH SDK can be used.

The REST API specification and DMTF profile

specification implementation SDK are tied, held and

employed together by the management console. There is

no generic management console software available. All

management consoles are built to purpose. Depending on

the problem domain, the management console is built to

address that problem domain.

The scope of this paper doesn’t cover the practical

implementation or the proof of concept. The individual

technologies employed in the proposed architecture are

well established and this paper tries to bring out the plan

to expose DMTF profiles to the end users in a scalable

method.

X. CONCLUSION

 In this paper, we have proposed an alternate approach

for supporting DMTF profiles in commercial management

consoles. We have looked at traditional architectural design

methodology of management consoles. We have proposed

microservices architecture for designing the middle tier, or

the business layer which implement the domain logic in

management consoles.

FIGURES

[1] Figure 1: Depiction of monolith design

[2] Figure 2: Demonstration of the concept of microservices

[3] Figure 3: Proposed architecture for implementing DMTF

profiles.

REFERENCES

[1] DMTF Management Profiles, Available:

http://www.dmtf.org/standards/profiles, [Accessed: May 2015].

[2] Roy Fielding, “Architectural Styles and the Design of Network-

based Software Architectures”, [Doctoral Dissertation]

Available:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm,

[Accessed: May 2015].

[3] L. Lamport, "The Implementation of Reliable Distributed

Multiprocess Systems", http://research.microsoft.com/en-

us/um/people/lamport/pubs/implementation.pdf [Accessed:

September 2015].

[4] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals

Problem", 1982 (available)

http://www.cs.cornell.edu/courses/cs614/2004sp/papers/lsp82.p

df [Accessed: September 2015].

[5] Martin Fowler, “Microservices”, [Blog entry] Available:

http://martinfowler.com/articles/microservices.html, [Accessed:

May 2015].

[6] E. A. Brewer, "Towards Robust Distributed Systems", 2000

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-

keynote.pdf [Accessed: September 2015].

[7] E. Brewer, "CAP Twelve Years Later: How the 'Rules' Have

Changed", 2012, http://www.infoq.com/articles/cap-twelve-

years-later-how-the-rules-have-changed [Accessed: September

2015].

[8] John Mueller, “Understanding SOAP and REST Basics” [Blog

entry] Available: http://blog.smartbear.com/apis/understanding-

soap-and-rest-basics/, [Accessed: May 2015].

[9] Stubbs, J., Moreira, W., Dooley, R., “Distributed Systems of

Microservices Using Docker and Serfnode”, Science Gateways

(IWSG), 2015 7th International Workshop, [Accessed:

September 2015].

[10] Vianden, M., Lichter, H., Steffens, A., “Experience on a

Microservice-Based Reference Architecture for Measurement

Systems”, Software Engineering Conference (APSEC), 2014

21st Asia-Pacific, [Accessed: September 2015].

[11] Fred George, "Micro Services Architecture", YOW! 2012

https://yow.eventer.com/yow-2012-1012/micro-services-

architecture-by-fred-george-1286 [Accessed: September 2015].

[12] Review of DMTF DASH applications and their architecture,

Available: www.amd.com/DASH, [Accessed: April 2015].

[13] Microservices Patterns, Available:

http://microservices.io/patterns/ [Accessed: May 2015].

