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Abstract—Cellular network providers collect and use a wide
variety of data for assessing the service quality experienced
by their smartphone users. The data is essential for tasks
ranging from event detection, problem diagnosis, impact analysis,
coverage and capacity planning, load balancing, and performance
optimization. For example, service quality measurements and
data from drive-by tests provide useful and detailed information
about different aspects of quality of service such as dropped
calls due to handovers or radio interference. However, a major
challenge for effective service quality management in operational
setup is the presence of missing or unavailable data. Furthermore,
the cellular data is inherently multidimensional, i.e. is a function
of several variables such as location, device type, and time.
Motivated by recent advances in handling multidimensional data,
we propose to use tensor algebraic models and methods for
cellular data prediction. The main idea is to model the data
as a low rank tensor and use a rank constrained interpolation
for data prediction. We focus on two recently proposed algebraic
models employing two different notions of tensor rank. We test
and compare the performance of the two approaches on real-
world data sets collected from an operational cellular network
and indicate the regimes in which one method is superior to
the other. Based on these observations the proposed algorithm
chooses the best of the two approaches using cross-validation.

I. INTRODUCTION

There has recently been an enormous increase in the usage

of cellular voice and data services. Smartphone users rely

heavily on such services for a variety of day-to-day activities

and demand very high availability and reliability. To assess

the user’s service quality of experience, the cellular service

providers collect and analyze a wide variety of data. The

resulting data sets range from performance indicators and

configuration files to workflow logs and alarm tickets and are

invaluable for tasks such as incident or anomaly detection,

troubleshooting of problems, impact assessment of ongoing

network changes, planning of coverage and capacity, and

large-scale performance optimizations [1], [2], [18].
One of the key challenges with effective service quality

analysis is missing measurements. Missing measurements do

occur in operational networks due to multiple reasons such

as failure of measurement systems, overload scenarios, or

degrading service conditions. In some cases, fine-grained mea-

surements (e.g., drive tests based location-centric smartphone

service performance) cannot be collected continuously in time

across all the locations and for all the users. Thus, one needs

to develop robust measures for filling-in or inferring missing

measurements. The filled-in or completed data would be of

immense practical value, not only for improving the accuracy

of existing service performance analysis tools but also for

developing new and better analysis methods. Traditionally,

missing measurement inference in large networks relies on

matrix (2-D) completion techniques ([7], [9], [19], [25], [28]).

However, for our context of smartphone service quality infer-

ence, the information is available in more than two dimensions

- (i) time, (ii) space or network location, (iii) smartphone type,

and (iv) performance measurement. Therefore, in this paper,

we explore the application of tensor models and methods for

the challenging problem of “filling-in” or inferring the missing

service quality measurements.
Missing data has been widely studied in the areas such as

network traffic analysis [7], [9], [19], [22], [26], [25], [28],

[29], [30], [7], computer vision [4], localization in mobile net-

works [20], coverage estimation [23], and climate estimation

[24]. A common theme in these works is that data sets of

interest are intrinsically low-rank or can be well approximated

by a low rank matrix plus some noise. To complete the data

with missing entries, many matrix completion algorithms have

been proposed [21], [5], [13], [6]. For multidimensional data,

tensor completion has been studied using matrix unfoldings in

[10], using Riemannian methods in [16], [8] using Hierarchical

Tucker (HT) [12] tensor decomposition and using another

tensor-SVD [14] like decomposition in [31]. Unlike the convex

analytic approaches in [10], [31] for which, performance

guarantees can be given, the approaches based on other tensor

decompositions such as HT [16], [8] it is not feasible to

provide global performance guarantees. Therefore, in this

paper we focus on the methods considered in [10], [31].

On the other hand there is little work in terms of algorithm

development when one is allowed to sample (non-adaptively)

as well as take dense linear combinations, in particular collect

average or aggregate statistics. In this paper, we show that

this side-information significantly improves the accuracy and

present an efficient algorithm to incorporate these constraints.

We outline our main contributions below.

1. We consider two algebraic rank measures derived from

using two different algebraic models to model tensor data.

The first model is based on capturing the multilinear

rank of a tensor obtained through the Singular Value

Decomposition (SVD) of matrices constructed from the

tensor using mode unfoldings or flattenings - a process

where one extracts 1-D tensor fibers along the axes and

stacks them as columns of a matrix. On the other hand the978-3-901882-85-2 c© 2016 IFIP



second model is based on an approach that treats tensors as

linear operators over commutative rings which in turn are

constructed out of tensor fibers and employs a tensor-SVD

(t-SVD) to derive tensor rank. The proposed algorithm

uses the best of these two rank measures based on cross-

validation for data completion.

2. We conduct an extensive evaluation of the proposed meth-

ods and use three real-world operational cellular network

data sets (i.e., two, three and four dimensions) and show

performance under different regimes of sampling rates. We

show clear benefits over the naive slice by slice completion

approach indicating that using tensor based approaches are

superior for cellular data prediction, (see Section IV).

3. While both algorithms exploit the low tensor rank nature of

the data, the algorithm based on the tensor-SVD exploits

the periodicity in the data (see section II) by operating

in the Fourier domain. We find that with more available

data, exploiting the periodic structure (harmonics) in the

data helps and thus the algorithm based on the tensor-SVD

is better while when the available data is small, fitting

a periodic structure to the data leads to over-fitting and

thus the algorithm based on tensor-SVD do not perform

as well. To the best of our knowledge this is the first time

that it is reported that there is not one tensor method

that dominates under all scenarios. Different operating

regimes and data types can lead to different tradeoffs

in prediction performance under various tensor algebraic

models to model multidimensional data.

4. To the best of our knowledge, this is the first work

that applies the concepts of tensor completion to network

data. Furthermore, a novel element of this work is that it

explores and compares completion with different algebraic

rank measures when, in addition to element-wise samples,

linear combinations of the elements are also known, e.g.

we use the additional information of the average call

quality along the temporal dimension.

II. CAPTURING DEPENDENCIES IN DATA

The smartphone users communicate via the cellular towers

(known as NodeB in 3G and eNodeB in LTE). They can

operate either in the Packet Switched (PS) mode for data

services, Circuit Switched (CS) mode for voice services, or si-

multaneous PS and CS modes. The Radio Network Controller

(RNC) manages the radio resources and connects the radio

access network (RAN) to the core. We focus on UMTS in this

paper, though our approach applies generically to LTE and be-

yond. As indicated before, we model the smartphone data as a

multidimensional array of service performance measurements.

In particular, we model the data using four dimensions: (i)

space or network locations where data is measured or aggre-

gated (e.g., cellular towers), (ii) time dimension captures the

aggregate summaries of performance (e.g., every 15 minutes,

hour, or day), (iii) KPIs - Key Performance Indicators capture

the service performance experienced by the end-users, and

(iv) smartphone attributes such as type, make, model and OS

(operating system) version.

We now describe some of the KPI that we use in the

paper. Accessibility captures successful calls established by the
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Fig. 1. Service performance dependency across operating system (OS)
versions for a smartphone make.

smartphones on the cellular network. Retainability captures the

retention of the call by the network. If the call was terminated

abnormally by the network, then it would lead to a reduced

retainability value. Data throughput captures the number of

bits, bytes or packets delivered to the users over the cellular

network. The end-to-end throughput is broken down into: (i)

over the air interface or radio access network throughput and

(ii) core throughput. Voice Erlangs captures the voice load

carried by the cellular towers. For data sessions, total traffic

volumes are measured in bytes and packets.

We use the following data sets for evaluation: two-

dimensional (2D) call detail records (CDR) - space and

time; three-dimensional (3D) service performance indicators

- space, time and type of KPI; and four-dimensional (4D)

smartphone specific measurements - space, time, KPI and

smartphone attributes.

The challenge with analyzing multi-dimensional data is that

the dependency structure is typically hidden in high dimen-

sions. We can get glimpses of this structure when looking

at two dimensions, but reconstructing the overall dependency

structure from 2-dimensional slices is in general not feasible.

Figure 1 captures the dependency across operating system

(OS) versions on a smartphone model using three months

worth of data collected from an operational cellular network.

The X-axis is the days and the Y-axis captures the dropped

call percentage and the number of answered voice calls. Each

point on the time-series is a daily aggregate across all the

smartphones corresponding to the OS version. As can be

seen from the figure, OS-4 is the most recent version of

the operating system, OS-1 is the least popular based on the

number of answered calls, OS-2 is decreasing in popularity,

and OS-3 and OS-4 are growing in popularity. There is a

dependency across operating system (OS) versions within a

type of smartphone model. This information present in higher

dimensions proves to be very valuable when interested in

accurately completing any missing entries.

III. METHOD FOR DATA COMPLETION USING THE

ALGEBRAIC MODELS

Although there are many types of tensor factorizations

[12], we will focus on two types of approaches for char-

acterizing the algebraic rank measure for tensors. One way



to capture algebraic dependency in tensors is to use mode

unfoldings of the tensor [17]. The algebraic rank measure

is the weighted sum of nuclear norms over each model

unfolding, C(X ) =
∑

m
wm‖(X (m))‖∗ [27], where wm

are the weights on each mode X
(m). Algorithms for tensor

completion that minimize this algebraic rank measure can be

found in [11]. Second approach [15] preserves the tensor’s

relative orientation. Using an orientation dependent tensor-

SVD decomposition, we consider the following algebraic rank

measure, C(X ) =
∑(k

2
)

o=1 wo‖X
(o)‖tnn, where wo is the

weight of orientation, k is the tensor order, and tensor nuclear

norm is used as the convex relaxation of the tubal rank [31].

Assuming that the data has a low tensor rank, a natural

approach to predict the missing entries from the given obser-

vations is to use the following complexity penalized tensor

completion method.

min
X

C(X ) s.t. L(X ) = y, (1)

where L(X ) = y represents the known linear constraints.

Here L incorporates both the fine-grained (element-wise sam-

ples) and the coarse-grained i.e. aggregated smartphone ser-

vice quality measurements. Since the method incorporates

the two algebraic rank measures considered in this paper

through C(X ), the proposed algorithm chooses one of the

two algebraic rank measures based on cross-validation. Using

the cross-validation approach, we choose a certain percent

of the available data as training data, and rest as test data.

Tensor completion using the minimization of the two algebraic

measures is independently performed to find the completion

error on the test data. The algorithm then chooses the approach

which gives better error performance. We use Alternating

Direction Method of Multipliers (ADMM) [3] to solve the

convex optimization problem expressed in Equation (1).

IV. EVALUATION

We now evaluate the performance of the different comple-

tion methods, namely slice by slice matrix completion, SVD

of mode unfoldings, and using the t-SVD with oriented tensor

factorization. We measure the accuracy using the Normalized

Mean Square Error and Approximation Error as follows:

NMSE = ||Actual Test Data - Predicted Test Data||
||Actual Test Data - Mean Actual Training Data|| (2)

Approximation Error = 100 × NMSE% (3)

A. Call Detail Records (2D)

We begin by considering 2-D data completion. We will show

that using additional linear constraints, i.e. coarse grained

information can lead to significant performance gains and

therefore can be very useful in an operational setting. We

form a matrix of size 1144 × 936 which is the data for all

39 × 24 = 936 hours and where the 1144 columns represent

sectors on three RNCs (Radio Network Controllers) for which

the data is measured. Each entry in the matrix is the number of

successful calls. We artificially inject missing entries and then

compare the results against the ground truth (i.e., the original

data). To this end, we sample the matrix elements randomly
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Fig. 2. Matrix completion for 2D call detail records.

(i.e., independently and equally likely) with probability p, and

use these sampled points as our training data (or the input

data that we use for the algorithm). Further, we consider the

data when aggregated over H hours to be completely known.

Lastly, to demonstrate that knowing linear combinations is

more effective than knowing the percentage of matched total

entries in the matrix, we perform our evaluation for different

combinations of p and H .

Since the data is available on an hourly basis, having

linear combinations aggregated over H hours is equivalent

to working with 100/H% of the data. For example, H = 1
means that the complete data is available; on the other hand,

setting H = 24 (i.e., daily aggregates) is equivalent to working

with 100/24 = 4.167% of the data. When combined with

sampling, consider for example the case p = .25 and H = 24.

Here,we have 25% of the original data available as a result of

sampling. In addition, we also have an equivalent of 4.167%

of the original data available due to linear combinations. Thus,

with this combination of parameters, we are in fact working

with an equivalent to 29.167% of the original data. In Figure

2, we assume H = 24 (daily aggregates) and compare the

accuracy of plain matrix completion (i.e., effectively working

with p+1/H fraction of the data) and matrix completion with

linear constraints. We observe that having daily aggregates

reduces the error as compared to having more more data (i.e.,

fewer missing values). For example, having 25% of the data

available and using daily aggregates is more beneficial (i.e.,

higher accuracy) than having 50% of the original data and

no daily aggregates. This result illustrates that knowing linear

aggregates can often be much more beneficial than working

with an equivalent amount of the original data.

B. Service performance indicators (3D)

In this case, we consider a three-dimensional tensor con-

sisting of service performance data. This data set is of size

314 × 360 × 73 for 314 RNCs (Radio Network Controllers)

and for 360 hours and contains a total of 73 KPIs. The data

contains several KPIs including voice and data accessibil-

ity, retainability, RRC, SRB and RAB success rates, paging

success rates, uplink and downlink traffic, voice Erlangs or

minutes of usage. We sample the tensor elements randomly

(independent and equally likely) with probability p to obtain

the incomplete tensor, and complete this tensor using our

approach. Note that from Figure 3 we should expect that the
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Fig. 5. Completing the 4D tensor with varying sampled data on the 68%

available data.

method based on t-SVD to perform better compared to the

method based on tensor unfolding.

Figure 4 depicts the completion based on the two rank-

measures at very low to high sampling. The method based

on tensor unfolding performs better at low to intermediate

sampling rates since t-SVD based method might be over-fitting

the data. At very low sampling rates, tensor unfolding based

method performs very bad since the data may not be enough

to complete the data just relying on low rank, while t-SVD

performs better by exploiting both low rank and the periodic

structure of the data. In the intermediate sampling, unfolding

based method performs better since in this regime t-SVD may

be over-fitting the noise. At high sampling, both the low rank

and the periodic structure can be effectively exploited and

hence results in improvement in completion.

C. Smartphone specific data (4D)

In this case, we consider a four-dimensional tensor extracted

from smartphone specific measurements. The size of the tensor

is 29×253×97×5. The first dimension is the number of days

(29); 253 is the number of smartphone types; 97 is the number

of network locations where the measurements are aggregated;

and 5 is the number of KPIs from voice call detail records.

This 4D tensor has inherently missing data because of the

sparse population of users across certain types of smartphones.

Thus, the missing data in this case is not random, and has a

structure which is given by the available measurements.

Our tensor-based completion approach can be used to pre-

dict the places where there is no data. In this tensor, we have

only 68% entries available. We use cross-validation to study

the performance of our algorithm. We sample the available

data with probability p (choosing each element among the

available data randomly with probability p), and check the

error on the remaining unsampled available data (1−p fraction

of 68% data). Figure 5 gives the error on the unsampled data

as p increases. Based on the accuracy for different unfolds,

we find that for this data, unfolding onto the first dimension

yields the best results while using the t-SVD approach we

see that fixing the tensor orientation as a 253 × 97 × 5 × 29
tensor (obtained by simply permuting the indices) yields the

best results. Figure 5 shows the results for the two cases.

While both methods have good accuracy, the method based

on tensor unfolding seems to perform better at low sampling

rates while the method based on t-SVD seems to perform

better at higher sampling rates. At extremely low sampling

rates however, the unfold bases method does not perform as

well, similar to our 3D results. We further note that at 90%

sampling, both the tensor based methods have normalized

MSE around 3% (better with tensor SVD based method),

the approach based on completing two-dimensional slices

independently gives an error of 27%. Thus, exploiting the

multi-dimensional nature of the network data gives significant

improvement in data completion.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we exploit multidimensional algebraic models

and methods to infer the missing service quality measurements

utilizing the multi-dimensional dependency structure in the

data. The proposed approach uses the best of two different

tensor factorizations (based on t-SVD and matricization) based

on cross-validation. Using real-world data collected from oper-

ational cellular network, we demonstrated that our algorithm

outperforms existing methods across different types of data

sets. In the future, we will explore the suitability of our

approach for real-time anomaly detection, statistical prediction

of fine-grained service quality and root-cause classification.
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