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Abstract—As smartphone users increasingly rely on cellular
networks to access voice, video, and web applications, guaran-
teeing good performance and high availability is more important
than ever. Historically, managing cellular network configuration
has been a manual, error-prone process; recently, automated
solutions such as SON (Self-Organizing Networks) controllers
are being deployed for dynamic tuning of network configura-
tion to improve end-user service performance under dynamic
network and traffic conditions. SON automates many aspects of
cellular network configuration, but it is nonetheless susceptible
to software bugs and expected traffic changes that could result in
sub-optimal performance. In this paper, we propose a capability
(Veracity) to analyze and quantify the performance effects of
SON actions. Assessing the effects of SON control is difficult
because of the dynamic nature of SON and the dependency of
end-user performance on factors such as radio channel quality,
mobility and traffic load. Veracity addresses these using model-
driven impact detection and quantification. Our evaluation using
data collected from an operational cellular network demonstrates
that Veracity is accurate. Veracity is now being used by the
service providers’ field operation teams for the assessment of
SON effectiveness in arenas and stadiums.

I. INTRODUCTION

The recent proliferation of smartphones and mobile appli-

cations have induced a dramatic increase in traffic volumes

on cellular networks. Cellular service providers continuously

aim to maintain excellent quality of service for millions of

smart connected devices. Effectively managing and optimizing

an operational cellular network is challenging because of the

large number of network components, complicated network

topology, rapid evolution of technologies (e.g., GSM to UMTS

to LTE), overlaid circuit and packet switched architectures,

different layers (macro cell towers, outdoor and indoor small

cells), complex interactions between applications and network

protocols, and continuous changes to the network as a result

of software updates and hardware modifications.

Traditionally, network configuration management and per-

formance optimization of cellular networks has been manual

and error prone, thus significantly increasing operational ex-

penditure (OPEX). For example, a human operator would need

to go through a sequence of esoteric configuration parameter

settings in order to obtain an optimal service performance

using available radio network resources, often by trial and

error. Automating network configuration management and

performance optimization tasks can help reduce operational

cost, errors, and downtime.

SON (Self-Organizing Networks) [2], [3], [18] is a tech-

nology that promises to make management, configuration and

optimization of a large operational cellular networks simpler,

faster and automatic to improve end-user service performance

over continuously changing network and traffic conditions.

With the deployment of SON manual errors are eliminated

but like any software, it may have bugs and might degrade

service performance.

Why a classic pre/post or before/after impact assessment

will not work for SON? For impact assessment of SON

actions, one could apply classical change detection techniques

to compare the performance before and after the SON ac-

tion, and identify if the changes are statistically significant.

However, a simple pre/post or before/after change detector is

not sufficient because of the unique characteristics of SON

mentioned below:

1. Dynamic nature of SON. The iterative, rapid configu-

ration tuning by SON creates a highly dynamic network

environment that makes it difficult to assess the effects of

configuration changes that the SON controller introduces.

Multiple SON actions from possibly multiple SON appli-

cations that occur in succession and on the same set of

cell towers make it difficult to understand the effects of

any single action. It is important to evaluate the efficiency

of SON tuning (e.g., tracking how many unnecessary

intermediate sub-optimal changes are made). Classic time-

series driven impact analysis [4], [13]–[15], [19], [26] does

not apply in such a dynamic setup because it is difficult

to establish a baseline in such a situation.

2. Expected performance impact of SON. SON controllers

can induce improvement in one performance metric at

the cost of a minor degradation in another. It is impor-

tant to capture this behavior when analyzing the overall

performance impact of SON. For example, up-tilting an

antenna leads to an increase in the number of end-users

served by the cell tower but that could result in a minor

degradation in average data throughput experienced by all

the end-users. If one is not aware of this expected behavior,

performing just pre/post time-series analysis would lead

to wrong assessment on the overall service performance

impact.

3. Unpredictable external network events. Equipment fail-

ures, network congestion or changes in radio channel

quality (due to introduction of an interfering source)

are unpredictable and can significantly impact end-users978-3-901882-85-2 c© 2016 IFIP



service performance. Overlapping SON actions on a cell

tower and these network events at neighbors can make

impact quantification difficult. Hence, it is important to

capture such behaviors when analyzing the performance

impact of SON changes.

4. SON related factors. Incorrect SON parameters, SON

software bugs and erroneous implementation of SON

algorithms might degrade service performance. In other

words, SON is just a tool which might yield a sub-optimal

performance under certain network and traffic conditions.

Veracity Approach: In this paper, we present Veracity, a

new model-driven change impact analysis approach to accu-

rately quantify the service performance impact of automated

SON actions. We carefully capture the traffic Load, user

Mobility, and Radio environment (LMR) metrics that can

change behavior depending on the SON action and has the

potential to induce an impact on service performance. Veracity

first builds a statistical dependency model using piece-wise

linear regression between historical Service Quality Metrics

(SQMs) and a list of dependent metrics (LMR) - explained

in section III-A. The resulting model coefficients and the

instantaneous LMR metrics after SON actions are used to

compute the estimated SQMs values. By comparing the es-

timated SQMs with the instantaneous SQMs observed after

the SON actions, Veracity accurately quantifies the statistical

service performance impact.

For example, if the SON actions result in an increase

in instantaneous traffic, then the dependency model would

accurately compute the expected change in the SQMs. If the

instantaneous SQM observed after the SON actions match the

estimated values, then Veracity labels this case as no impact.

However, if the observed SQM is statistically higher than the

estimated SQM, Veracity labels this scenario as a performance

improvement; otherwise, Veracity labels the scenario as a

performance degradation. Thus, Veracity does not require an

explicit comparison of time-series before and after the SON

actions. Instead, Veracity leverages the dependency model

between the SQMs and the LMR metrics to accurately quantify

the performance impacts.

The novelty of the paper does not lie in regression but in

identifying LMR metrics that are indicative of SQMs so that

one is aware of the expected change in the SQMs after the

SON action is implemented. We apply regression as a tool

and the intuition behind using supervised learning, especially

regression approach, is based on the observations made using

data collected from operational networks. We experimented

with various regression algorithms before deciding upon piece-

wise linear regression. We couldn’t apply non-linear regression

algorithms like polynomial regression [24] because it is a hard

problem to determine which functional model to use and piece-

wise linear regression is flexible and reasonably generic. We

also present the comparison of the chosen piece-wise linear

regression over simple linear regression in section IV-A.

Our Contributions:

1. We present Veracity, a model-driven change impact anal-

ysis approach that tackles the dynamic nature of SON,

captures the expected impacts induced by it and adds

robustness to handle the unpredictable external network

events with zero false positives.

2. We thoroughly evaluate Veracity using real-world data col-

lected from operational cellular networks1 in section IV-A

and demonstrate its effectiveness over existing time-series

pre/post approaches like Litmus [14] used by service

providers’ operation teams in section IV-B. We also show

that the piece-wise linear regression is better suited to

capture the dependency model and has an improved error

as compared to linear ridge regression [8] in section IV.

3. Veracity is now being used by the service providers’

field operation teams for quantifying the effectiveness of

SON in arenas and stadiums. We share our operational

experiences using three case studies in Section V.

II. BACKGROUND

In this section, we provide a brief background on the cellular

network architecture in Section II-A, Self-Organizing Network

(SON) and one use case application in Section II-B.

A. Cellular Networks

The UMTS and LTE cellular networks comprise of a

radio access network (RAN) and a core network (CN). The

smartphones use the air interface for connecting to the cellular

RAN network base stations (referred to as NodeB in UMTS

and eNodeB in LTE). Each base station can transmit using

multiple overlaid standardized frequency blocks, each having a

center called a carrier frequency. The UMTS network supports

voice services over circuit switched core network and data

services over packet switched core network. LTE offers voice

as well as data over its packet switched network. The User

Equipment (UE) sets up an end to end connection/channel with

the help of the radio and core networks nodes in order to be

able to start voice/data services. The cellular service provider

periodically collects a wide variety of service and network

performance measurement metrics from the base stations.

B. Self-Organizing Network (SON)

Self-Organizing Networks (SON) [2], [3], [18] uses the LTE

and UMTS metrics to configure, manage and optimize the

operational cellular networks automatically. The configuration

changes executed by the SON controllers should result in an

overall improvement of end-user’s service performance. For

example, let us assume that 5 users receive service from a

cell tower (with an average data throughput of 10 Mbps)

and 5 users are out of coverage because of neighboring cell

tower failure or coverage hole. In such a scenario, SON would

execute configuration changes such as up-tilting the antenna to

cover the 5 users that were out of service. Because of increased

usage on the cell tower, the nearby users that previously

received 10 Mbps, now receive only 8 Mbps data throughput.

The far-away users individually receive a data throughput of 4

Mbps. Thus, we observe that after the antenna tilt change, the

number of users increase from 5 to 10; however, the average

1To protect proprietary data, we explicitly do not show any service
performance numbers.



Service Quality Metrics Explanation

Accessibility Ratio between successful call establishment over
all call attempts.

Retainability Ratio between successful call termination over
successful call establishment.

Downlink Throughput Total number of bits received per second.

TABLE I
SERVICE QUALITY METRICS AND THEIR EXPLANATION.

data throughput (a user perceived service quality metric) goes

down from 10 Mbps to 6 Mbps. This is an expected impact in

throughput because of the increase in the number of users

being served. If one only focuses on throughput (classic

pre-post), then it would result in wrong assessment of the

SON action; however, the overall service impact of the SON

action is good because the increase in the number of users

served comes at an acceptable cost of minor degradation in

throughput.

III. DESIGN AND IMPLEMENTATION

We now describe SQMs and LMR metrics and our approach

of selecting LMR metrics which are indicative of SQMs.

We then describe how we relate LMR metrics to accurately

estimate SQMs.

A. SQM and LMR

Service Quality Metrics (SQMs) [1] capture the quality

of service performance experienced by end-users. Table I

provides a description of three main service quality metrics

used in the paper: (i) Accessibility shows the ratio between

successful call establishment over all call attempts in the

defined time window, (ii) Retainability shows the ratio between

successful call termination over successful call establishment

in the defined time window, and (iii) Downlink throughput is

a measure of bits per second delivered to the end-users.

We need every metric that could help us in identifying

the behavior of SQMs. We categorize network and traffic

measurement metrics collected from the base station that likely

impact the SQMs into Traffic Load, Mobility and Radio

Environment (LMR). Tables II provides a summary of LMR

categories: (i) Traffic includes number of sessions, session

volume and resource utilization at cell tower, (ii) Mobility is

captured via handovers on the same carrier frequency, inter-

carrier frequency and inter-RAT, and (iii) Radio environment

is captured using block error rates (BLER), channel quality

indicator (CQI) and received signal strength indicator (RSSI).

Each category consists of multiple metrics such as radio

environment category consists of three metrics such as RSSI,

BLER and CQI. We start our experimentation with all the mea-

surement metrics (features) extracted from the data collected

and eliminate redundant features using domain knowledge to

remove multi-collinearity. Finally, based on the inputs from the

radio network experts, we choose those LMR metrics from the

filtered list that can effectively capture traffic patterns, mobility

and radio environment of the network.

One could argue that a single metric is sufficient to effec-

tively estimate the SQMs and quantify performance impact.

Hence, we now demonstrate the need for multiple LMR

metrics as opposed to a single metric, for capturing the

Traffic Parameters

RRC (Successful Radio Re-
source Connection)

User is successfully allocated some radio re-
sources to send or receive data.

DL PDCP Volume (Down-
link Packet Data Conver-
gence protocol)

Traffic volume in the downlink direction.

UL PDCP Volume (Uplink
Packet Data Convergence
protocol)

Traffic volume in the uplink direction.

DL PRB utilization
(Downlink Physical
Resource Block)

Total number of physical resource blocks uti-
lized in the downlink direction.

UL PRB utilization (Uplink
Physical Resource Block)

Total number of physical resource blocks uti-
lized in the uplink direction.

Handovers Parameters

IRAT (Inter Radio Access
Technology) Redirect

Number of successful redirection attempts
from LTE to UMTS (cross technology).

Intra frequency Handovers
Attempts

Total number of handover attempts within the
same carrier frequencies.

Inter frequency Handover
Attempts

Total number of handover attempts between
carrier frequencies.

Radio Environment Parameters

RSSI (Relative Signal
Strength indicator)

Total signal strength received at the (e)NodeB.

BLER (Block error rate) Total percentage of user data blocks received
in error at the cell tower. This metric captures
bad coverage.

CQI (Channel quality indi-
cator)

Quality of the channel as reported by the
user equipment and captures downlink inter-
ference.

TABLE II
TRAFFIC LOAD, MOBILITY AND RADIO ENVIRONMENT METRICS AND

THEIR EXPLANATION.

relationship with SQMs. These multi-variate dependencies do

exhibit in operational settings and play an important role

for explaining the changes in the SQMs. We use a month-

long data collected from 643 cell towers in the LTE network

to demonstrate the result of our analysis. All metrics are

aggregated every hour (one measurement per cell tower per

hour). We divide our month-long data into two sets: with first

15 days of data into set A and rest in set B. Here, our aim

is to find anomalies in set B with respect to set A. In order

to handle the time of the day effect, we construct a unique

time series, X, by combining the same hour of every day for

each hour of the day, for set A (XsetA) and set B (XsetB).

We use a simple median-based anomaly detector to learn a

robust median and a median absolute deviation of XsetA for

each SQM and LMR metric. In order to capture anomalies, we

apply the equation 1 to calculate an anomaly score for each

hour in set B and for each cell tower. We compare the anomaly

score to the standard statistical threshold for deviation from

norm i.e. 3 × 1.4826 for 99% confidence intervals.

AnomalyScore =
XsetB

− median(XsetA))

MAD(XsetA))
(1)

Where XsetB is the set B time-series, XsetA is the set A

time-series, median is the 50th percentile of the time-series

and MAD is the median absolute deviation. We choose median

and MAD because of their robustness to one-off outliers.

To understand degradations in a SQM, we only consider

changes in the LMR metrics when it leads to a degradation.

For a given SQM in set B, we label it to be a degradation if

the anomaly score is below the lower limit of the confidence

interval. Then, we apply an operational threshold on each

of the SQMs (degradation of more than 1% for accessibility



Fig. 1. SON controllers, configuration changes and impact assessment.

and retainability, and degradation of more than 2 Mbps for

downlink throughput) to capture significant degradations and

eliminate subtle operationally less meaningful impacts. We

observe 66 anomalous degradation points for accessibility, 32

for retainability, and 119 for downlink throughput. We then

look for anomalies in all the LMR metrics. For each anomaly

in the SQM, we search for a corresponding anomaly in LMR

metrics. For each LMR category, we then take the union

across each of its individual metrics. We observe that there

are many cases where an anomaly is present in more than one

of the LMR metrics for the corresponding anomaly in SQM.

For example, out of 119 downlink throughput anomalies, we

find 74 co-occurring anomalies in all the LMR categories,

19 in just traffic load and mobility, 6 in just traffic load

and radio environment parameters, 2 in just mobility and

radio environment parameters, and 13 belongs to just one

of the LMR categories. For the remaining 5 cases, where

none of our LMR metrics have a corresponding/co-occurring

anomaly with the SQM anomaly, we manually confirm some

additional configuration changes and upgrades that resulted in

the service performance impacts. We observe similar results

for the anomalies in retainability and accessibility. As observed

from the example presented, we need each of the LMR metrics

in our model learner to build a relationship between LMR

metrics and every SQM.

Thus, if one is to analyze SQM individually (i.e., comparing

after a SON change with before) and not taking into account

the underlying LMR metrics, then the assessment could result

in false positives because of lack of modeling the relation-

ship between SQM and LMR. Our model-driven approach in

Veracity carefully models the relationship and eliminates such

false positives.

B. Methodology

Figure 1 shows where Veracity fits in the overall automated

SON optimization, configuration tuning, and performance im-

pact assessment system. Automated SON controllers are trig-

gered based on the tuning criteria such as congestion, outage,

interference etc. These controllers have built-in optimization

and tuning algorithms that apply configuration changes to the

network. Veracity is triggered by these configuration changes,

and uses LMR metrics and service quality metrics for perfor-

mance impact assessment. The output from Veracity is used

for auditing purposes as well as a possible feedback loop to the

Fig. 2. Veracity design. The trigger captures the location and time information
about the SON change.

SON controller to roll back the configuration changes when

degradations are detected.

Figure 2 provides a high-level description of Veracity de-

sign. Veracity consists of two phases - (i) model training

phase (Section III-B1) and (ii) SQM assessment phase (Sec-

tion III-B2). In the training phase, Veracity builds a depen-

dency model between LMR metrics and SQMs. It learns the

underlying trends using the historical data. In the assessment

phase, Veracity applies the learned model coefficients to a

situation where SON controllers tuned network configurations,

to provide the estimated SQMs, followed by a statistical

change detection to identify and quantify the impact of SON

changes.

1) Model Training Phase: Veracity applies a piece-wise

linear regression model to capture the dependency between

historical LMR metrics and SQMs. Our choice for a piece-

wise linear regression model is driven by the non-linear rela-

tionships that we observed between SQMs and LMR metrics.

The training interval is before the SON action was taken and

could either be a single day or multiple days and continuous

or discontinuous depending upon the operator’s requirements.

Veracity constructs a separate model for each SQM (e.g.,

accessibility, retainability and throughput).

Let us define an impact scope as the set of network elements

(or cell towers) that can be impacted because of the actions

taken by SON. For example, a tilt change by SON has the

potential to impact the cell tower with the tilt change as

well as its immediate neighbors. We use the impact scope to

construct the time-series of LMR metrics and SQMs. Veracity

then builds a model of the form given by equation 2:

yj =

k∑

i=1

ciBi(x) (2)

Here, ci are the model coefficients, Bi are the basis func-

tions, x are the LMR metrics and yj is each of the SQMs.

Each basis function can take any of the following forms:

1) A constant term.

2) A hinge function, which consists of breakpoints and has

the form max(0, x - breakpoint) or max(0, breakpoint -

x).

3) An interaction term between two or more metrics. We

don’t use interaction terms as it is hard to find which



functional model to use. Hence, we use additive model-

ing (i.e. no interaction terms).

We apply the ARESlab [10] implementation of multivariate

adaptive regression splines (MARS) for constructing the piece-

wise linear regression model. ARESlab builds the model in

two-passes: (i) forward pass: adds basis functions in pairs

to the model and builds an overfit model and (ii) backward

pass: prunes the model to build a more generalized model and

deals with the curse of multi-dimensionality. ARESlab model

automatically selects LMR metrics and values of those metrics

for breakpoints in the hinge functions [10].

As described in section I, our choice of MARS is based

on real-world operational data, which well-suits our purpose.

Adaptive splines can automatically take into account some of

the non-linear relationships between certain LMR metrics and

SQMs by using breakpoints. Breakpoint refers to a point where

the relationship between a SQM and LMR metrics change.

In other words, the relationship between LMR metrics and a

SQM in the normal operating range can be quite different from

the relationship under high congestion.

2) SQM Assessment Phase: Once the model is constructed

using the historical LMR and SQM metrics (training phase),

we use the model to compute the estimated SQMs for the

given instantaneous LMR metrics (assessment phase) after

the SON actions are implemented in the network. Finally,

we quantify by computing the time-series of the differences

between the observed and the estimated SQMs for the train-

ing and assessment intervals. We use rank-order tests [6],

[11], [22] to compare the time-series of differences. In the

absence of any SON actions, Veracity’s estimated SQMs

should closely resemble the observed SQMs, as described

in section IV. However, in the presence of SON actions,

the difference between the estimated SQMs and the observed

SQMs quantifies the service performance impact. In the event

of a statistical change, we check if the observed SQM is

significantly higher than the estimated SQM and in this case,

we conclude that SON action resulted in improvement of

the service performance. On the other hand, if the estimated

SQM is higher than the observed SQM, we conclude that

there is a degradation of service performance. If there is no

statistical change, we conclude that there is no impact on

the performance. We use robust rank-order tests for detecting

level changes as they are resistant to outliers. The output of

the change impact analysis can be used to roll-back the SON

configuration change if performance degradation is detected.

IV. EVALUATION

In this section, we present the evaluation of Veracity using

real-word data collected from an operational cellular network.

The challenge with the evaluation using real-world data is

the availability of ground truth information and the potential

contamination of the data caused by external factors such as

unrelated network events. We thus use a two-fold approach

to conduct the evaluation. First, we carefully select a time-

interval and cell towers during which there are no service

performance degradations due to either network upgrades, or

SON actions. This provides us with a clean data set and allows

us to assess the accuracy of the model training in Veracity. In

the absence of network upgrades or SON actions, the estimated

SQMs must closely resemble the observed SQMs and Veracity

should indicate no performance impact on SQMs. Given this

scenario, we examine the effectiveness of regression in captur-

ing the relationship between SQMs and LMR metrics. Second,

we leverage the manual impact assessment of SON conducted

by the field operations teams to compare the results with

Veracity. This provides the ground truth information albeit on a

small scale. We use two SON feature trials in the operational

network. We also compare the accuracy of Veracity versus

state-of-art and well established change detection approaches

such as Litmus [14] and Mercury [15]. They primarily focus

on the SQM metrics to analyze the impact of SON changes

without taking into account the variations in LMR metrics.

Litmus compares SQM metrics between a study group (where

SON changes were implemented) and a control group (no SON

change) and identifies the relative change in SQM on the study

group. Mercury compares SQM metrics on the study group

only to capture the impact of SON changes.

A. Method of capturing relationships

For this evaluation, we select cell towers that have no

anomalies i.e. neither degradations nor improvements in the

SQMs. By selecting such cell towers, we evaluate the false

positives of Veracity. If Veracity indicates any impact on

service quality, it will be a false positive. We also measure

normalized absolute mean error for each SQM. Veracity should

have minimum error irrespective of linear or non-linear rela-

tionship of SQMs with LMR metrics. In other words, if our

chosen regression tool estimates are not good then we would

observe a high rate of false positives and error. For analyzing

the effectiveness of our piece-wise linear model, we examine

how closely Veracity can estimate the SQMs for the given

instantaneous LMR metrics. We also show that piece-wise

linear regression is comparable to linear ridge regression [8]

when SQMs have a linear relationship with LMR metrics but

outperforms it when they have a non-linear relationship.

We select 15 days’ worth of data for conducting the analysis.

We started with around 583 LTE cell towers and applied our

median-based anomaly detection test (from section III-A)

to filter out anomalous cell towers. This is done because

operational networks have a large number of network events

such as planned upgrades that can significantly impact the

SQMs. Thus, after applying our filter, we identify 69 non-

anomalous cell towers for Accessibility, 51 cell towers for

Retainability and 34 cell towers for Downlink Throughput.

Now, we present error percentages for both ridge and

piece-wise linear regression (note that we apply ARESlab for

piece-wise linear regression). In ARESlab implementation, the

number of breakpoints depends on the number of observation

points, LMR metrics and a control parameter c. c captures the

Generalized Cross-Validation (GCV) penalty per breakpoint.

Larger values of c will lead to fewer breakpoints. For both

ridge and ARESlab, we start by building a global model on the

entire dataset, instead of building a model for each cell tower

separately. In case of ARESlab, after the training phase, we use



Regression Retainability Accessibility DL Throughput

Ridge 0.75% 0.13% 12.84%

Piece-wise Linear 0.79% 0.13% 7.84%

TABLE III
NORMALIZED ABSOLUTE MEAN ERROR.

SON Feature
Trials

Veracity matches Ops conclusion
(Litmus results used by Ops)

Number of
quality metrics

A 8 8

B 5 8

TABLE IV
SUMMARY OF SON FEATURE TRIAL RESULTS.

Veracity to estimate SQMs for different values of c (ranging

from 1 to 14) per cell tower. Increasing c beyond 14 resulted

in the number of breakpoints going down to one or zero (i.e.,

model has only constant term). We then compute normalized

absolute mean error per cell tower for different values of the

control parameter c. Different cell towers have minimum error

for different values of the control parameter. We took the

minimum error for each cell tower. In case of ridge, we use

the model to estimate SQMs and then compute normalized

absolute mean error per cell tower. We tabulated results for

both ridge and piece-wise linear (ARESlab) in Table III. It is

evident from the table III that when a SQM shares a linear

relationship with LMR metrics, piece-wise linear regression

is comparable to ridge regression [8]. However, piece-wise

linear outperforms ridge when the relationship becomes non-

linear like in the case of DL throughput. Thus, piece-wise

linear regression effectively captures the relationship between

SQMs and LMRs.

Finally, we apply statistical change detection across all

the SQMs and successfully confirm that the estimated SQMs

closely resembles the observed SQMs. This yields no false

positive and proves that our piece-wise linear regression is a

good model for operational cellular network data.

B. SON Feature Trials

We now evaluate Veracity during two SON feature trials

in both LTE and UMTS operational cellular networks. Each

of the feature trials spanned multiple days on a large number

of cell towers (129 LTE eNodeBs and 349 UMTS NodeBs).

During the trials, multiple SON functionalities were automat-

ically executed resulting in an order of hundreds of thousands

of configuration changes (or SON actions). We use Veracity for

post-hoc analysis of the service performance impact of SON

actions. The assessments for these two SON feature trials were

already conducted in the past by the Engineering teams using

Litmus [14]. In this section, by comparing Veracity to Lit-

mus, we demonstrate the usefulness of Veracity and highlight

case scenarios where Litmus would have been inaccurate in

analyzing the impact.

We summarize our results in Table IV. We call a perfor-

mance assessment to be a match to the operations conclusion

if Veracity concludes the same impact as Litmus. For both fea-

ture trials, we have a total of 8 quality metrics to analyze (LTE

accessibility, LTE retainability, LTE downlink throughput,

UMTS voice accessibility, UMTS voice retainability, UMTS

data accessibility, UMTS data retainability, UMTS downlink

throughput). As observed from Table IV, for trial A, we
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Fig. 3. (a) shows relative improvement in LTE downlink throughput during
feature trial B, correctly captured by Veracity. (b) shows degradation in
channel quality indicator during the assessment interval as compared to
training interval.

have a good match with operation’s conclusion using Veracity.

However, for trial B, we have only 5 out of 8 cases that

aligned with operation’s conclusion. On further investigation

and interactions with operations and engineering teams, we

find that Veracity output is more accurate than Litmus. Due

to space limitation, we will only present explanation for one

of three mismatch cases.

SON configuration changes induced a statistical improve-

ment in LTE downlink throughout for trial B which is cor-

rectly captured by Veracity whereas Litmus found no statis-

tical change. Figure 3(a) shows the observed LTE downlink

throughput as measured in field and the estimated throughput

using the piece-wise linear model in Veracity. We observe that

the observed SQM values are higher than the estimated. The

peaks in graph are during weekends (non-working hours) and

the valleys are during the weekdays (working hours). After

careful screening of the corresponding LMR metrics, we notice

that the LTE radio environment indicator (CQI) degraded after

the SON functionality was turned ON (see Figure 3(b)). For

a degraded CQI, we expect downlink throughput to degrade,

which is correctly reflected in our estimated throughput. We

confirm this with the radio experts. Despite the fact that down-

link throughput does not change in the absolute numbers, we

can infer a relative improvement because of the SON actions.

Veracity indeed captured this behavior that was previously

missed by Litmus.



V. OPERATIONAL EXPERIENCES

In this section, we demonstrate two case studies where

the Network Engineering and Operations team at a US-based

cellular service provider were testing Mobility Load Balancing

SON function and used Veracity to assess the performance of

selected professional football events. We show that Veracity

can effectively quantify the impact of SON on SQMs.

Mobility Load Balancing (MLB) is often particularly im-

portant for large facilities that manifest large concentration

of users with unusually large and irregular surges of traffic

– such as in stadiums, convention centers, airports, concert

halls, theme parks and festival attractions. Network and radio

resources need to be well managed to achieve the most

efficient traffic load distribution. Yet, predetermined cell se-

lection priorities among different carrier frequencies and the

inherent coverage discord due to power and mobility settings

can easily lead to load imbalance. For instance, LTE carriers

are assigned with higher cell selection priorities than UMTS

frequencies, forcing all LTE enabled UEs (such as mobile

phones) to camp on LTE instead of UMTS. In addition,

lower carrier frequencies have stronger penetration than higher

carrier frequencies, capturing more users onto say the 700

MHz band than onto the 1900 MHz band.

The tremendous traffic irregularity at such locations typ-

ically aggravates the problem. In the instance of sporting

events, the traffic patterns are highly volatile – traffic load

depends on the progress of the game, the total attendance,

as well as factors including attendees enthusiasm, weather

conditions (e.g., cold weather may discourage user from using

their devices). The usage profile at such locations is also

unusual with possibly more upload traffic than download

because the users are more likely to share pictures and videos

via social networks.

In such scenarios, the expectation is to balance the traffic

load across all the available carrier frequencies within a

technology (Intra Radio Access Technology (RAT)) as well

as across technologies (Inter RAT), so as to achieve increased

system capacity along with better end user service perfor-

mance quality experience. The SON MLB function facilitates

this desired outcome by manipulating the RAN mobility

parameters and selectively instructing some UEs to switch

from high loaded carrier to low loaded carrier. The condition

to trigger offloading of traffic and the trigger thresholds is left

to vendor implementation.

After the function activation if the estimated values are sig-

nificantly greater than the observed values, then we conclude

that the activation resulted in degradation. On the other hand, if

the observed values are significantly greater than the estimated

values, then we conclude improvement. Due to page limit, we

will present a subset of graphs on the SQMs of interest. The

two vertical lines on the graphs indicate the event assessment

period. No significant difference indicates no impact.

A. SON assessment at stadium X

In our first case study, we demonstrate that our approach

can accurately assess the performance impact of SON function

activation. Using our approach, we compare the SQMs at the

cell towers affected by the SON activation with the SQMs

computed. Figure 4 shows the time-series for the LTE retain-

ability observed at the fields (observed retainability) and LTE

retainability provided by Veracity (estimated retainability).

Using Veracity, we observe an improvement in LTE Retain-

ability and LTE Accessibility, whereas LTE DL throughput

and UMTS quality metrics show no significant difference –

the SQMs being in alignment with estimation.

With respect to the LMR metrics in our data model, we find

that the traffic volume metric has comparable values in training

and assessment intervals (shown in Figure 4(b)), whereas the

downlink block error rate (DL BLER) is distinctly higher

in assessment interval than in training interval, indicating an

increased interference (shown in Figure 4(c)). If SON activa-

tion didn’t perform as required then we would have observed

degradation in SQMs because of increased interference in the

assessment interval. Hence, we conclude that the enabling

of the SON function has benefited the Retainability metric

as the service quality improved under a more adverse radio

interference environment.

B. SON assessment at stadium Z

In our final case study, we compare the outcome of Veracity

with existing single time-series detector system (Mercury [15])

used by the Networks and Operations team for quantifying

the effectiveness of system feature change – the enabling of

SON controller functions in this case. Figure 5 shows the

comparison of Veracity and the single time-series detector

Mercury for LTE Accessibility. If we use the existing single

time-series detector only analysis, we would conclude that the

performance degraded because of SON activation. However,

close examination finds that because Mercury quantifies each

SQM behavior based on just that metric’s past baseline without

considering the underlying LMR metrics, it concludes LTE

Accessibility has degraded. However, the degradation in LTE

Accessibility is expected due to an increase in the traffic load

during the assessment interval and is correctly quantified by

Veracity as having no impact. The drop in accessibility due to

an increase in the traffic during assessment interval was falsely

attributed to the system change by single time-series detector

system like Mercury. Thus, Mercury had falsely attributed the

degradation to the system feature change, whereas Veracity

accurately captured the expected degradations and labeled as

no impact.

VI. RELATED WORK

Impact assessment of network changes: Our work relates

to the area of change impact analysis of cellular networks. The

key idea is to compare performance before and after a change

and label the impact as either improvement, degradation or

no change. Mercury [15] uses rank-based cumulative sums to

identify statistical changes in performance after a major net-

work upgrade. Prism [13] offers a near real-time assessment of

performance and uses robust singular value decomposition to

identify anomalies in performance. Spectroscope [19] and X-

ray [4] compare two executions of program before and after the

change to diagnose performance changes. FUNNEL [26] uses
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Fig. 4. (a) shows that the LTE data retainability improved during game at
stadium X due to SON function. (b) shows that the LTE traffic is comparable
in both assessment and training intervals. (c) shows that the block error rate
is higher in assessment interval.
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Fig. 5. At stadium Z, LTE accessibility has no impact and successfully
captured by Veracity but flagged as degradation by traditional approaches.

Difference in Difference approach to detect the performance

impact of software changes deployed in large Internet-based

services. Litmus [14] uses performance comparisons between

study group (network elements with change) and control group

(network elements without the change) to extract out the effect

of external factors and quantify the performance impact on

the study group. All of these techniques construct the baseline

using a before-interval time-series and lack a holistic view

across multiple metrics. This is not suited well for quantifying

the performance impact of SON.

Modeling cellular network measurements: In recent years,

there has been a lot of research on analyzing and modeling

performance of cellular networks [5], [7], [9], [16], [17], [20],

[21], [23], [25], [27]. Xu et al. [25]reveals the fundamental

differences between cellular data networks and the wireline

networks. Shafiq et al. [20] illustrates how user population

and behavior during crowded events and venue locations

result in significant voice and data performance degradation.

Shafiq et al. [21] presents the study of Internet traffic dynamics

of cellular networks. [5] models the relationship between web

quality of experience and factors such as signal strengths,

load and handovers. [27] uses machine learning techniques

such as Adaboost to learn the root-causes of call drops.

[12] proposes to use the correlation among SON performance

metrics to better diagnose problems in the radio access net-

work. All the above papers analyze the traffic dynamics,

measurements needed for performance analysis and users’

quality-of-experience.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Veracity, a new model-driven

approach to quantify the impact of SON (Self-Organizing

Networks) actions on service performance in cellular net-

works. It effectively accounts for the dynamic nature of SON

and accurately captures the impacts across multiple SQMs.

We used Multivariate Adaptive Regression Splines (AERSlab)

to capture the relationship of the underlying LMR metrics

with SQMs. Our results demonstrate that the model-driven

approach in Veracity does not yield false positives. Hence, it

is more effective than previous time-series based approaches.

Veracity is now being used successfully by the field operation

teams of the cellular service provider for analyzing the ef-

fectiveness of SON deployed in event locations such as game

stadiums and arenas. In the future, we plan to apply Veracity to

determine whether SON is unnecessarily flip-flopping changes

multiple times to reach the optimal solution or if SON is failing

on executing required configuration changes. As operational

networks start transitioning into software-defined networks, it

would be interesting to incorporate Veracity in the feedback

loop of the SON controllers.
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