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Abstract—Network Function Virtualization (NFV) enables the
complete decoupling of Network Functions (NFs) (e.g., firewall,
intrusion detection, routing, etc.) from physical middleboxes used
to implement service-specific and strictly ordered chains of these
NFs. Precisely, NFV allows for dispatching NFs as plain software
instances called Virtual Network Functions (VNFs) running on
virtual machines hosted by one or more industry standard
physical machines. This, however, introduces vulnerabilities (e.g.,
hard-/soft-ware failures, etc) causing the break down of the entire
VNF chain. The functionality of NFV-enabled networks impose
higher reliability requirements than traditional networks. This
paper encloses an in-depth investigation of a reliability-aware
joint VNF placement and flow routing optimization problem.
This problem is formulated as a complex Integer Linear Program
(ILP). A heuristic is proposed in order to overcome this ILP’s
complexity. Thorough numerical analysis are conducted to verify
and assert the correctness and effectiveness of the proposed
heuristic.

Index Terms—NFV, VNF, Reliability, Optimization, Routing.

I. INTRODUCTION

Network Function Virtualization (NFV), complemented by

Software-Defined Networking (SDN) technology, presents it-

self as a revolutionary archetype that leverages virtualization

and cloud infrastructure elasticity for the purpose of rendering

the network more dynamic, flexible and service-aware [1], [2].

NFV allows consigning Network Functions (NFs) to network

operators and service providers in the form of plain software

referred to as Virtual Network Functions (VNFs) which can be

executed by Virtual Machines (VMs) hosted by one or multiple

industry-standard Physical Machines (PMs) located anywhere

within and/or at the edge of the network or even at the end-

users’ premises. Typically, the Service Function Chain (SFC)

phenomenon arises from the fact that incoming user traffic

is often required to undergo a subset of NFs in a specific

order [3]–[5]. An efficient deployment of NFV consists of

determining: i) the optimal number of required VNF instances

and the PMs that will host them (i.e., the VNF placement

problem) and ii) the optimal end-to-end paths over which

traffic flows are routed in order to traverse the required set

of placed VNFs (i.e., the routing optimization problem [6]).

The majority of existing work (e.g., [1], [7], [8]) had the

objective of minimizing the network’s resource consumption

for the purpose of maximizing the number of co-existing net-

work services, and hence maximizing the network operator’s

revenues. The authors of [9] formalized the NF placement

and chaining problem and proposed a complex Integer Linear

Programming (ILP) model that accounted for additional con-

straints (e.g., end-to-end latencies, variable processing times

and cost-effective resource allocation). However, the above

work considered the completely reliable NFV infrastructure

(i.e., no network interruptions due to hardware or software

failures). This, however, is not realistic. Indeed, the authors of

[10] highlight the NFV-related reliability concerns and discuss

the types of failures that may arise from both hardware (e.g.,
restart/shutdown of PMs) and software (e.g., misconfiguration

of VMs); hence, causing network service interruptions.

In the context of NFV-enabled networking scenarios, reli-

able chaining of network services is a problem whose reso-

lution has not yet attained maturity despite the few existing

work in the literature (e.g. [11], [12]). For instance, the

authors of [11] highlighted that the reliability of a Virtual

Network (VN) can be derived from the reliability of its

components. The work of [12] proposes an online backup

selection mechanism. Precisely, first, VNF chains are mapped

onto the network’s substrate. Then, backup VNFs are selected

on the fly if the performed mappings violate the reliability

requirements. Furthermore the work of [13] and [14] ad-

dressed the problem of reliable Virtual Network Embedding.

In particular, the authors of [13] turned their attention to

link failure and investigated the reduction of bandwidth uti-

lization through multi-path link embedding. The authors of

[14], however, addressed the problem of a single node failure

failure-dependent protection in a virtual network embedding

framework. Their reported results indicate the absence of any

reliability guarantees mainly because only one node serves as a

backup node and is shared among multiple principle nodes. A

recent study in [15] hints that the dynamic VNF instantiation

promotes the protection of the entire network services chain

and its failure rate. Nonetheless, failures are still possible

and, in the case of a failure, a relatively complex dynamic

VNF protection/recovery mechanism must be invoked. This

mechanism inevitably introduces nonignorable delays during

which the network service remains interrupted; hence, altering

the users experience.

Different from the above-surveyed publications, this paper

presents a solution that exploits multiple backup nodes for

the purpose of provisioning each of the supported network

services with adequate reliability guarantees. The problem

978-3-901882-85-2 c© 2016 IFIP



of REliability-Aware service CHaining (REACH) in NFV-

based networks is investigated herein. A mathematical study

is conducted with the objective of formulating and resolving

a complex ILP representing REACH’s fundamental objectives

and constraints. Owing to the formulated ILP’s complexity, an

algorithmic solution is proposed. Thorough numerical analysis

and simulations are conducted to test and validate both of the

proposed model and heuristic, and gauge their merit.

II. NETWORK MODEL

Let S and F denote respectively the set of network services

and the overall set of VNFs used by all the services in S. Each

service si (i ∈ [1, |S|]z) (| · | and [a, b]z denote respectively

the cardinality of a finite set and the set of integers from a
to b) has a reliability requirement Θi

req (0 < Θi
req < 1) and

requires its corresponding traffic to traverse an ordered chain

composed of a subset of VNFs, Fi (Fi ⊆ F ). In addition, si
has a network bandwidth requirement of bi (bi > 0). Let Σi

and Δi and fij (j ∈ [1, |Fi|]z) respectively denote the source,

destination (the terms source and destination are used herein to

designate the entry and exit points of an ordered VNF chain)

and the jth VNF along the chain of nodes traversed by si.
Assume the substrate network encompasses a set of PMs N ,

interconnected by a set of L links. Each PM hosts a set of

VNFs. Each VNF requires, for its operation, a VM running

on that PM. That is, each VM, is allocated a fraction of its host

PM’s overall processing capacity Ck (Ck > 0) for the purpose

of executing the associated VNF. A set of VNFs associated

to a PM is represented by an n-tuple {f1, f2, · · ·, fn} ⊆ F .

This means that only VNFs f1 through fn can be executed by

that PM. Note that any arbitrary VM hosted by an arbitrary

PM may execute one VNF and is allocated enough processing

capacity cf (f ∈ F ) to do so. In addition, each VNF is prone to

failures originating from either hardware or software. Hence, it

is associated with a certain reliability measure being its long-

term probability of availability. Finally, each pair of VMs, say

(nk1 , nk2 ), running on different PMs are interconnected by

a virtual link m with bandwidth Bm (Bm > 0) such that

k1 = m.head and k2 = m.tail.

III. RELIABILITY AWARENESS

As mentioned earlier, an ordered chain of VNFs is provi-

sioned for each network service for the purpose of enforcing

a given policy. A failure of any one of those VNFs along the

chain will disrupt the entire chain; hence, causing a violation

of the policy to be enforced on the traversing traffic. This prob-

lem may have a significant impact, particularly on network

services enforcing critical policies (e.g., intrusion detection in

an enterprise network). Provisioning policy chains with high

service availability requires the selection of highly reliable NFs

and constructing chains through these NFs while minimizing

the consumption of the network’s communication bandwidth.

Herein, it is assumed that each PM in the network has a failure

rate (e.g., due to software or hardware, power outages, etc.).

Thus, VNFs will inherit their respective host PMs’ reliability

levels. Failures of other network components (e.g., routers,

switches, bridges, etc.) are neglected for simplicity. Only PM

failures are considered. Consequently, the reliability Θi of a

service si can be computed as the product of the reliabilities

of the PMs hosting the VNFs along si’s chain. According

to [16], Θi = Pr [all PMs hosting si’s VNFs are available].

Thus: Θi =
∏

j∈[1,|Fi|]z
rj , ∀i ∈ [1, |S|]z , where each PM

node’s reliability can be computed as rj = MTBFj ×
(MTBFj +MTTRj)

−1
. MTBFj and MTTRj respec-

tively denote the mean time between failures and the mean

time to repair. Per-node failures are independent.
If si’s achieved reliability, Θi, does not meet si’s required

reliability, Θi
req (i.e., Θi < Θi

req), then augmenting si’s chain

with backup VNFs will increase that chain’s robustness to

possible outages. For instance, upon the occurrence of failures

affecting some PMs, backup VNFs hosted by other operational

PMs shall serve as substitutes for the stalled VNFs. These

backup VNFs are provisioned in a way to maintain the proper

order of functions along the chain. That is, a backup VNF

should be connected to its protectee’s respective predecessor

and successor. A sufficient number of redundant VNFs

should be provisioned along the chain with the objective of

satisfying a network service’s reliability requirements. Backup

communication bandwidths should also be provisioned along

the links connecting the backup VNFs to the service’s chain.

The impact of augmenting a network service’s chain with

backup VNFs is additive to the overall availability of that

chain. Let Fi be the set of functions along the chain of a

service si. Each primary function fj ∈ Fi may have one or

more redundant functions (of the same type j) provisioned to

restore the service (of the chain) when the primary function

fails. Let FT
j denote the set of all functions of type j

provisioned for service si (i.e., protection domain for VNF

j, [16]). FT
j contains at least one VNF of type j, namely,

the primary VNF. Now, the chain’s reliability becomes

Θi = Pr [at least one VNF of each type j is available].

Hence: Θi =
∏

j∈Fi

[
1−∏

x∈FT
j
(1− rx)

]
, where rx is the

reliability of a VNF fx.

IV. SYSTEM MODEL

Consider the problem of service chain routing with reliabil-

ity constraints in NFV-enabled networks. Assume each PM k
is hosting a subset of the NFs F . Define xk,t = 1 if a function

of type t is hosted on PM k. Otherwise xk,t = 0. Also, define

a binary variable ykij(i ∈ [1, |S|]z, j ∈ [1, |Fi|]z, k ∈ [1, |N |]z)
to represent the node assignment of VNFs such that ykij = 1 if

a function j of service i is hosted on PM k. Otherwise, ykij = 0.

To carry out the routing of the service chain, a binary variable

zmij (i ∈ [1, |S|]z, j ∈ [1, |Fi|]z,m ∈ [1, |L|]z) is defined as

zmij = 1 if link m is selected by function j of service i. Other-

wise zmij = 0. REACH has the objective of establishing service

chains while minimizing the communication bandwidth usage

across the network. Mathematically, this objective is given by:

min{ 1∑
m∈[1,|L|]z Bm

∑
i∈[1,|S|]z

∑
j∈[1,|Fi|]z

zmij bi} (1)



Now, as mentioned earlier, each service chain requires a

set of functions Fi, and each function ft ∈ Fi acts as

a primary and may (or may not) have redundant functions

of the same type to restore the service along the chain

when the function fails. Therefore, we define NUMij to

be the number of instances of the j th function of service i.
Define pkij (i ∈ [1, |S|]z), j ∈ [0, |Fi| + 1]z, k ∈ [1, |N |z])
such that pkij = 1 if the first instance of si’s VNF j is

hosted on PM k. Otherwise, pkij = 0. Similarly, define qkij
(i ∈ [1, |S|]z), j ∈ [0, |Fi| + 1]z, k ∈ [1, |N |z]) such that

qkij = 1 if the last instance of si’s VNF j is hosted on PM k.

Otherwise, qkij = 0. Let the indicators 0 and |Fi|+1 denote si’s

source, Σi, and destination, Δi. Therefore, pΣi
i,0 = 1, qΣi

i,0 = 1

and qΔi

i,|Fi|+1 = 1. The above definitions of p and q can be

used to enforce the fact that only one PM can host the first or

last instance of a VNF along a service’s chain as follows:

∑
k∈[1,|N |]z

pkij = 1 , (∀i ∈ [1, |S|]z, j ∈ [0, |Fi|+ 1]z) (2)

∑
k∈[1,|N |]z

qkij = 1 , (∀i ∈ [1, |S|]z, j ∈ [0, |Fi|+ 1]z) (3)

Constraint (4) below ensures that if the first instance of si’s
VNF j is placed on node k, then there must be an incoming

link m to node k, which forwards traffic towards this function.

pkij ≤
∑

m.tail=k

zmij

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)

(4)

Assume that the node which is selected for the last instance

of si’s VNF j must be hosting a VNF. Then:

qkij ≤ ykij , (∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|]z) (5)

Next, it is necessary to enforce the right order for traversing

the network functions along the chain. For this reason. the

chain provisioning procedure is decomposed into two sub-

problems. The first sub-problem consists of handling the rout-

ing constraints within the instances/copies of the same VNF

in a network service chain (namely VNF routing constraints).

Based on flow balance criteria, the incoming flow must equal

the outgoing flow at VM or PM nodes for each network

service. Then, the VNF routing is formulated as follows:

∑
m.head=k

zmij −
∑

m′.tail=k

zm
′

ij (1− qkij) = qkij−1

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)

(6)

∑
m.tail=k

zmij ≤ 1

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [0, |Fi|+ 1]z)

(7)

∑
m.head=k

zmij ≤ 1

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [0, |Fi|+ 1]z)

(8)

zmij z
m′
ij = 0

(∀m,m′ ∈ [1, |L|]z,m.head = m′.tail,
m.tail = m′.head, i ∈ [1, |S|]z, j ∈ [0, |Fi|+ 1]z)

(9)

where (6) makes sure that, for one node, the flow balance

must be satisfied if the current node is not implementing or

hosting the last instance/copy of VNFs j and j − 1 (e.g., qkij
= 0 and qkij−1 = 0). Equations (7), (8) and (9) make sure that

the assigned routes are loop free.
Next, the routing constraints between different VNFs of one

network service (namely, the service routing constraints) are

formulated as the second sub-problem. For this purpose, an

auxiliary binary variable wm
ij is defined such that wm

ij = 1 if

link m connectes si’s VNFs j and j− 1. Otherwise, wm
ij = 0.

Then, the service routing constraints can be written as:

wm
ij = qm.head

ij−1 pm.tail
ij

(∀m ∈ [1, |L|]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)
(10)

wm
ij ≤ zmij

(∀m ∈ [1, |L|]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)
(11)

where (10) ensures wm
ij = 1 if and only if both qm.head

ij−1 =
1 and pm.tail

ij . Equation (11) forces a link m to be selected

(zmij = 1) if the indicator wm
ij = 1.

To make sure the processes of VNF instances are indepen-

dent in a network service (i.e., to simplify the computation of

the reliability), VNF instances belonging to the same network

service are assumed to be implemented on different VMs or

PMs. This is formulated as:

qkij−1p
k
ij = 0

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)
(12)

Note that (6) through (12) are non-linear constraints, due to

the product of binary variables. An auxiliary binary variable

zqmij = zmij q
k
ij (∀m ∈ [1, |L|]z, k = m.tail, i ∈ [1, |S|]z, j ∈

[1, |Fi|+ 1]z) is used to convert (6) into a linear equation:

∑
m.head=k

zmij −
∑

m′.tail=k

zm
′

ij +
∑

m′.tail=k

zqm
′

ij = qkij−1

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)

(13)

Now, the relationship between zqmij and zmij , qkij becomes:

zmij ≥ zqmij (14)

qkij ≥ zqmij (15)

zqmij ≥ zmij + qkij − 1 (16)
The similar linearization of (9) through (12) is omitted.
Next, the reliability constraints are introduced as follows:

∑
k∈[1,|N |]z

ykij ≥ NUMij(∀i ∈ [1, |S|]z, j ∈ [1, |Fi|]z) (17)

ykij ≤
∑

m.head=k

zmij

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|+ 1]z)

(18)

ykij ≤ xk,t

(∀k ∈ [1, |N |]z, i ∈ [1, |S|]z, j ∈ [1, |Fi|]z)
with t being the type of VNF fij

(19)

∑
i∈[1,|S|]z

∑
j∈[1,|Fi|]z

ykijcfij ≤ Ck(∀k ∈ [1, |N |]z) (20)



∑
i∈[1,|S|]z

∑
j∈[1,|Fi|]z

zmij bi ≤ Bm(∀m ∈ [1, |L|]z) (21)

To achieve the reliability requirement of a network service,

(17) ensures the provisioning of enough instances (NUMij) of

a particular VNF for a particular service (An iterative method

is discussed hereafter to decide on the value of NUMij).

Constraints (18) and (19) indicate the relationship between

the routing variables and the VNF placement. Finally, (20)

and (21) enforce the limit on the nodes’ processing resources

and link bandwidth capacity.

V. REACH: SOLUTION METHODOLOGY

A. ILP-based Solution with Redundant VNFs:

Given a network service’s reliability requirement (Θi
req),

REACH attempts to provision that service with a chain of

VNFs that meets this requirement with minimal consumption

of link bandwidth and processing resources. The steps for

generating this solution are summarized in Algorithm 1. First,

assume that only primary VNFs (i.e., NUMij = 1) are

provisioned along the chain. If the provisioned chain meets

the network service’s requested reliability, then stop. The

obtained solution consumes the least bandwidth and process-

ing resources. Otherwise, if no solution incorporating only

primary VNFs can be found to satisfy the requirements, then

redundant VNFs must be adequately added along the chain.

Precisely, select the least reliable VNF along the chain and

enhance its reliability through the instantiation of a backup

copy of it (i.e., NUMij = NUMij + 1 in line 13 of

Algorithm 1). Here NUMij is a parameter owing to the

incremental update of its value throughout each iteration. Let

rij (i ∈ [1, |S|]z, j ∈ [1, |Fi|]z) denote the reliability of VNF

j along the chain corresponding to network service i. The

relationship can be written as:

rij = 1−
∏

k∈[1,|N |]z
(1− ykijθk) (22)

The above process is repeated as long as the reliability

requirement of the provisioned chain remains unsatisfied.

Otherwise, it stops.

B. Greedy Shortest Path Solution with Redundant VNFs:

In this section, a light weight greedy shortest path approach

(i.e., Algorithm 2) is presented as a substitute for solving the

heavy weight ILP model used to chain functions in each of

Algorithm 1’s iterations (i.e., lines 6 through 8). In Algorithm

1, the model is used to generate a feasible routing with the

least resource cost for network services. That is to select

one feasible node (i.e., a node having enough computational

resources and, hence, is capable of executing the VNF) as a

host for each VNF instance and establish a route between these

VNFs with a reasonable low bandwidth consumption. At this

point, two variables curr and next are introduced to describe

the order of VNF processing. Precisely, the variable curr
indicates the VNF instance that is currently being handled

by the algorithm performing node assignment whereas the

Algorithm 1: ILP with redundant VNFs

1 Initialization:
2 Substrate Network (N ) and Network Services (S);

3 NUMij = 1(∀i ∈ [1, |S|]z, j ∈ [1, |Fi|]z);
4 isFinished = 1;

5 while true do
6 Solve the optimal problem:

7 Objective: (1)

8 Constraints: (2) - (21) (Linearization)

9 Calculate the VNFs reliability rij ;

10 for i = 1 : |S| do
11 if

∏
j∈(1,|Fi|z) rij < Θi

req then
12 Select the VNF j with the weakest reliability;

13 NUMij = NUMij + 1;

14 isFinished = 0;

15 end
16 end
17 if isFinished = 1 then
18 break;

19 end
20 isFinished = 1;

21 end

variable next indicates the VNF instance that is going to be

assigned next. This present algorithm starts from the source

of each network service ns (i.e., ns.source) and terminates at

that network service’s destination node (i.e., ns.dest). First,

the algorithm initializes curr = ns.source. Then, shortest

path routing (e.g., Dijkstra’s algorithm) is invoked for the

purpose of finding the node assignment for next = (f b
ij)n

(namely, the VNF instances/backups of fij). Following this

comes the calculation of the bandwidth costs from curr to the

rest of feasible PMs (i.e., machines with appropriate VNFs)

except the one which has been occupied by curr or is currently

not available due to the lack of VNF capacity or processing re-

sources. The node incurring the least bandwidth consumption

is selected as the assignment for next. Afterwards, the next

VNF is visited (i.e., curr = next). This process continues

until all VNF instances have been assigned to PMs.

VI. NUMERICAL RESULTS

This section is dedicated for the evaluation of REACH’s

performance. An NFV-enabled Reliability Aware Routing and

resource optimization scheme (RAR-NFV, Algorithm 1) is

considered together with a Greedy shortest path method

(Greedy-NFV, Algorithm 2). The CPLEX solver is used to

solve the ILP model pertaining RAR-NFV. All our simulations

are implemented and solved on a machine equipped with an

Intel 2.6 GHz processor and 8 GB RAM. Throughout this

performance evaluation framework, two network instances are

considered, namely: i) a smaller network composed of 16 PMs

hosting 4 network services and ii) a larger network composed

of 40 PMs hosting 10 to 40 network services. Without loss of

generality, each network service requires a certain number of



Algorithm 2: Greedy Shortest Path With Redundant VNFs

1 Given:
2 Substrate Network (N), Network Services (S) and

3 NUMij from Algorithm 1

4 for i = 1 : |S| do
5 Initialize curr = i.source;

6 for j = 1 : |Fi| do
7 for n = 1 : NUMij do
8 next = (f b

ij)n;

9 Node bandwidth costs = Dijkstra(curr);

10 Select the feasible node with least bandwidth

cost as the host for next;
11 Update substrate network N by deducting the

bandwidth and CPU resource consumption;

12 curr = next;
13 if j = |Fi| && n = NUMij then
14 Dijkstra (curr);

15 Select shortest path from curr to i.dest;
16 Update bandwidth and CPU

consumptions;
17 end
18 end
19 end
20 end

VNFs (fixed to 4 throughout our simulations). For the purpose

of promoting the problem’s tractability, each PM is assumed to

have a capacity enabling it to host 2 to 3 VNFs and each VNF

can at least be processed on one PM. The reliabilities of PM

nodes are randomly generated between 0.9 and 0.96. In the 16-

node network, the CPU consumption for each VNF is set to 2
(units). The nodal computational capacities and the link band-

widths are randomly drawn from the range of 10 to 20 (units).

The four network services are: NS1: f3 → f2 → f4 → f1
(Σ1: 15; Δ1: 2); NS2: f2 → f1 → f4 → f3 (Σ2: 5; Δ2:

16); NS3: f1 → f3 → f2 → f4 (Σ3: 5; Δ3: 14); NS4:
f4 → f2 → f3 → f1 (Σ4: 8; Δ4: 13).

For a fair comparison, the reliability and bandwidth require-

ments of the network services are respectively set to 0.99 and

2. The obtained results are tabulated in Table 1. It is clear

that both RAR-NFV and Greedy-NFV achieve the reliability

requirement of the network services (i.e., 0.99), with both

methods achieving similar overall bandwidth consumption.

Not surprisingly, Greedy-NFV shows much better scalability

than RAR-NFV. This is especially true since Greedy-NFV is

able to find solutions within only 0.32 seconds versus 14028
seconds (even for this small network instance) for RAR-NFV.

This is, indeed, due to the fact that RAR-NFV resorts to

solving the ILP model for routing the chains (with constant

NUMij) at each iteration of the algorithm. For this reason,

in the remaining of this section, Greedy-NFV is used for all

purposes of performance evaluation for larger networks.

Next, a 40-node networking scenario is considered. In this

context, the provisioning of network services with different

reliability requirements is studied. The reliability requirement

of network services is varied in the range of 0.98 to 0.992. The

network is assumed to host a total of 20 random services. Each

PM is equipped with a certain number of VNFs (i.e., 2 to 3
VNFs) and each VNF requires 2 to 4 units of CPU resources.

The link bandwidth and node computational capacity are

randomly drawn from a range of 20 to 40 units respectively.

Each network service requires 2 bandwidth units.

Figure 1(a) plots the network-wide bandwidth utilization

as a function the network services’ reliability requirements.

The average number of needed VNF instances is plotted as

a function of the different reliability requirements in Figure

1(b). As it was shown earlier, a higher reliability requirement

can be satisfied by instantiating redundant VNFs along the

service chains. This will require additional links to connect the

redundant functions to the chain and, hence, bandwidth must

be provisioned along those links. Therefore, as illustrated in

Figure 1(a), as the services’ reliability requirements increases,

more bandwidth throughout the network needs to be provi-

sioned in order to allow each redundant VNF to communicate

with its immediate upstream and downstream VNFs along

the established chain. Figure 1(a) shows the CPU runtime of

Greedy-NFV. Clearly, this algorithm exhibits fast runtimes,

which promotes its practical utility in provisioning reliable

chains in NFV-based networks.

Now, using the same above network setting (the reliability

requirement is fixed as 0.996), in a 40-node network with

20 network services, the impact of varying the nodal CPU

capacity (i.e., 10 to 40 units) is investigated where nodes with

10 units and 40 units CPU capacities can be respectively inter-

preted as implementing NFVs over inexpensive and expensive

PMs. Intuitively, the implementation of VNF instances costs

nodal CPU resources. If there is not enough CPU resources,

the network services will be dropped. Figure 1(c) shows the

network services’ loss ratio. Figure 1(d) shows the nodal CPU

and link bandwidth utilizations. Observe that the loss ratio

goes as high as 65% over inexpensive PMs. With the increase

of nodal CPU capacity, more and more network services can

be admitted and the loss ratio drops down to zero. In other

words, in order to admit 20 network services without any loss,

PM nodes must have at least 25 units of CPU capacity. The

results of CPU utilization follow the same trend. When nodal

CPU capacity less than 25 units, the CPU utilization goes

up to 83%. This indicates that the lack of CPU resources in

the network causes the loss of network services. However,

a PM node with very large CPU capacity (e.g., 40 units) is

not necessary and will incur relatively high additional costs.

Also notice that the bandwidth consumption corresponding to

a nodal capacity of 30 is less than the one corresponding to a

nodal capacity of 25 irrespective of the fact that, in both cases,

the loss ratio is zero. This is because the nodal capacity has

an effect on the routing decision. Hence, in order to achieve

a reliable NFV implementation, it is important to select a

platform with reasonable computational resources.

Next, the impact of varying the network load (i.e., the

volume of network services to be provisioned) is investigated



TABLE I
ROUTING RESULTS FOR A 16-NODE NETWORK

Algorithm NS Routing and VNFs assignment (VM (VNFs)) Reliability Bandwidth Utilization CPU time (s)

RAR-NFV

1 15 → 14(f3) → 13(f3) → 9(f2) → 5(f2) → 1(f2) → 2(f4) 0.9936

15.47% 14028

→ 6(f4) → 10 → 11(f1) → 7(f1) → 3(f1) → 2
2 5 → 6 → 7(f2) → 8(f2) → 4(f2) → 3(f1) → 2(f1) → 6(f4) 0.9907→ 10(f4) → 9(f3) → 13(f3) → 14(f3) → 15 → 16
3 5 → 1 → 2(f1) → 6(f1) → 10(f3) → 14(f3) → 13(f3) 0.9924→ 9(f2) → 5(f2) → 6 → 7(f4) → 11(f4) → 15(f4) → 14
4 8 → 7(f4) → 6(f4) → 10(f4) → 9(f2) → 5(f2) → 1(f2) → 2 → 3(f3) 0.9949→ 4(f3) → 8(f3) → 12(f1) → 11(f1) → 15 → 14(f1) → 13

Greedy-NFV

1 15 → 14(f3) → 13(f3) → 9(f2) → 5(f2) → 1(f2) → 2 → 6(f4) 0.9932

15.47% 0.32

→ 7(f4) → 11(f1) → 12(f1) → 8 → 4 → 3(f1) → 2
2 5 → 9(f2) → 5(f2) → 1(f2) → 2(f1) → 6(f1) → 7(f4) 0.9937→ 11(f4) → 15(f4) → 14(f3) → 13(f3) → 14 → 15 → 16
3 5 → 6(f1) → 2(f1) → 3(f3) → 4(f3) → 8(f3) → 7(f2) 0.9939→ 11 → 15(f2) → 11(f4) → 10(f4) → 9 → 13(f4) → 14
4 8 → 7(f4) → 11(f4) → 15(f2) → 11 → 12(f2) → 8(f3) → 4(f3) 0.9903→ 3(f3) → 2(f1) → 6(f1) → 5 → 9 → 13

0.98 0.982 0.984 0.986 0.988 0.99 0.992
15

16

17

18

B
an

dw
id

th
 U

til
iz

at
io

n 
(%

)

Reliability Requirement
0.98 0.982 0.984 0.986 0.988 0.99 0.992

1
1.5
2
2.5

C
PU

 T
im

e 
(s

)

Bandwidth Utilization
CPU Time

(a) Bandwidth utilization.

0.98 0.982 0.984 0.986 0.988 0.99 0.992
2

2.2

2.4

2.6

2.8

3

Reliability Requirement

A
ve

ra
ge

 N
um

be
r o

f V
N

F 
In

st
an

ce
s

(b) Mean number of VNF instances.

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f B
lo

ck
ed

 N
et

w
or

k 
Se

rv
ic

es
 (%

)

Nodal CPU Capacity
10 15 20 25 30 35 40

6
8
10
12
14
16
18
20

N
um

be
r o

f A
dm

itt
ed

 N
et

w
or

k 
Se

rv
ic

esPercentage of Blocked Network Services
Number of Admitted Network Services

(c) Loss ratio.

10 15 20 25 30 35 40

5

10

15

20

25

B
an

dw
id

th
 U

til
iz

at
io

n 
(%

)

Nodal CPU Capacity
10 15 20 25 30 35 40

50

60

70

80

90

C
PU

 R
es

ou
rc

e 
U

til
iz

at
io

n 
(%

)

Bandwidth Utilization
CPU Resource Utilization

(d) Bandwidth and CPU utilization.

Fig. 1. Results pertaining to a 40-node network with 20 network service.

in the context of a networking scenario with finite resources

(i.e., CPU capacity and link bandwidth). The reliability re-

quirement of the services is fixed to 0.99 and the capacity per

link is fixed to 20 (units). The number of services is varied

from 10 (i.e., light load) to 40 (i.e., high load), and these

flows are randomly generated. For all purposes of comparison

fairness, ten algorithmic runs are executed and their results

are averaged out. Given the limit on the network resources, it

is expected that the number of blocked flows (i.e., flows that

are not admitted to the network) increases as a function of

the load. This is especially true since, beyond a certain load

threshold, the network will start blocking service requests, as

it is not able to satisfy their requirements due to the lack of

resources. This is clearly illustrated in Figure 2(a). Finally, the

network-wide bandwidth and CPU utilizations are evaluated

and plotted in Figure 2(b) as a function of the network load.

The figure shows that the CPU utilization increases to 83.36%
(i.e., almost exhausting the available processing resources per

PM) while maintaining a loss ratio as low as 1.67% (i.e., the

number of network services ranges from 10 to 30). However,

observe here that the number of admitted network services is

very close to its maximum (i.e., 40). Hence, Greedy-NFV is

exploiting almost the full CPU capacity as it admits almost

the maximum number of network services.

VII. CONCLUSION

This paper presents a novel REliability-Aware service

CHaining (REACH) framework for NFV-enabled enterprise
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(b) Bandwidth and CPU utilization.

Fig. 2. Results pertaining to a 40-node network with service reliability
requirement of 0.99).

networks. A Reliability-Aware Routing and resource allocation

(RAR-NFV) scheme implementing the ILP’s solution obtained

using the CPLEX solver is developed. To overcome RAR-

NFV’s complexity, a Greedy shortest-path-based (Greedy-

NFV) heuristic is proposed. Simulations are conducted us-

ing the Greedy-NFV heuristic to gauge REACH’s merit and

evaluate its performance in terms of CPU and network-wide

bandwidth capacity utilization.
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