
Identifying Resources for Cloud Garbage Collection

Zhiming Shen

Cornell University

Ithaca, NY, USA

zshen@cs.cornell.edu

Christopher C. Young, Sai Zeng, Karin Murthy, Kun Bai

IBM T.J. Watson Research Center

Yorktown Heights, NY, USA

{ccyoung, saizeng, kmurthy, kunbai}@us.ibm.com

Abstract—Infrastructure as a Service (IaaS) clouds provide
users with the ability to easily and quickly provision servers.
A recent study found that one in three data center servers
continues to consume resources without producing any useful
work. A number of techniques have been proposed to identify
such unproductive instances. However, those approaches adopt
the strategy to identify idle cloud instances based on resource
utilization. Resource utilization as indicator alone could be
misleading, which is especially true for enterprise cloud
environment. In this paper, we present Pleco, a tool that
detects unproductive instances in IaaS clouds. Pleco captures
dependency information between users and cloud instances by
constructing a weighted reference model based on application
knowledge. To handle cases of insufficient application knowledge,
Pleco also supplements its dependency results with a machine
learning model trained on resource utilization data. Pleco gives a
confidence level and justification for each identified unproductive
instances. Cloud administrators can then take different actions
according to the information provided by Pleco. Pleco is
lightweight and requires no modification to existing applications.

I. INTRODUCTION

Cloud deployments greatly simplifies the process of

acquiring cloud resources. Unfortunately, simplifying the

process of procuring cloud instances has also raised challenges

on the converse process of terminating them when no longer

in use for productive purposes. A recent study found that one

in three data center servers continues to consume resources

without producing any useful work [1]. It is estimated that

there are 3 million such servers in the US and 10 million

worldwide, which lead to 10 billion dollars in data center

capital investment and contribute to 40% of overall energy

waste. In the US alone, one Gigawatt of power is wasted,

which is roughly equal to the amount of power consumed

by all the households in the city of Chicago [2]. There

are many other less obvious but significant costs associated

with unproductive servers including: server and associated

infrastructure maintenance, software license cost, cooling

cost, etc. Cloud providers are stuck with valuable resources

being consumed but not satisfying a customer’s needs, which

becomes a very convoluted discussion to relate cost against

the actual productive workload. Cloud consumers are simply

overpaying.

A number of techniques have been proposed to address the

challenge of detecting virtual machines that appear to have

low resource utilization [3], [4], and consolidate them using

resource over-subscription [5], [6], [7]. However, workload

consolidation faces many practical challenges, and some

providers such as Amazon stated that they simply will not

employ over-subscription [8]. The key objection is that cloud-

native applications can have highly dynamic workloads and

resource over-subscription would place cloud providers at

great risk of violating Service Level Agreements (SLAs).

Fundamentally, the challenge lies in distinguishing

productive and unproductive cloud instances from each other,

from the perspective of a consumer. Previous approaches

employ a strategy of identifying productive instances based

on resource utilization (CPU, I/O, Network). However, as

demonstrated in Fig 1, this only addresses quadrant B and C.

The challenge with A and D is the fact that some productive

instances exhibit very low resource utilization, while some

unproductive instances exhibit very high resource utilization.

The issue with quadrant A is particularly acute within

enterprises due to the wide-scale deployment of per-instance

software agents that perform tasks such as backup, virus

scanning, security vulnerability scanning, patching, and

compliance and configuration management. These agents can

drive considerable resource utilization and activate on random

schedules, but certainly do not indicate that an instance is

productive.

In this paper, we present Pleco, a tool and approach to

determine if cloud instances are productive or unproductive.

Similar to a memory garbage collector which identifies

garbage objects by examining object references [9], [10],

Pleco constructs a cloud instance reference model according

to the dependency of application workloads, assigns a weight

to each reference, and calculates a confidence level for

instance productiveness. To this end, Pleco requires application

knowledge in order to understand the dependencies. To handle

potential errors caused by insufficient application knowledge,

Pleco combines the dependency results with a decision-tree

model trained on resource utilization. By combing these

two techniques, Pleco achieves high accuracy on detecting

unproductive cloud instances. It also provides explanations as

to why a cloud instance has been identified as productive or

unproductive. This reasoning enables users to take appropriate

actions. Pleco is light-weight and does not require any

modification to applications.

This paper makes the following contributions:

• We identify the challenge of detecting cloud instances

that are unproductive.

• We propose a cloud instance reference model for defining

and detecting unproductive cloud instances.

• We propose a solution to leverage machine learning to

handle potential errors of the cloud instance reference
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Fig. 1. Resource Utilization vs Productivity Mismatch.

model caused by insufficient application knowledge.

II. RELATED WORK

There are several related approaches for identifying

unproductive cloud instances. Janitor Monkey [11] is a service

developed by Netflix that considers factors specific to the

Amazon Web Services (AWS). This approach is beneficial

for Netflix, but it does not take into consideration the

activity within the instance. Another common approach is

to treat the resource activity of the server as a proxy for

it being productive or unproductive [3], [4]. This can help

with identifying unproductive cloud instances only when the

resource utilization is directly correlated with the productivity,

which is usually not the case with production servers (much

activity is due to ”non-productive” backup agents, security

scans, virus checkers etc..). A third approach is specific to

desktop applications as it relies on a user interacting with the

user interface (UI) in order to determine if it is in use [12],

[13]. This approach has shown effectiveness when an UI

is present. However, the vast majority of cloud servers do

not make use of UIs. Overall these approaches have proven

valuable to help identify unproductive servers, VMs, and cloud

instances in very specific use cases and domains, but do not

generally apply to all cloud providers and all cloud instances.

III. DESIGN

A. Cloud Instance Reference Model

Pleco’s reference model is inspired by the memory

management reference model found in traditional memory

garbage collection algorithms [9], [10]. The memory reference

model tracks the in-use state of a particular piece of memory

based on the number of external references. The cloud instance

reference model is an analogy of the memory reference model

(see Fig 2). In this case, the objects or memory segments are

cloud instances and any dependencies between any two cloud

instances represents an edge in the graph. In order to construct

the reference graph we need to decide what to use as the root

node. For our approach we introduce an artificial root note that

combines all human interaction and any external application

outside the analysis scope. Based on this graph, if a particular

cloud instance cannot be reached from the root node, we mark

the cloud instance as unproductive. The reasoning behind this

definition is: if a cloud instance is currently in productive use,

then it must be directly used by a user (human or system) or be
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Fig. 2. Memory Reference Model vs. Cloud Instance Reference Model

referenced by another productive cloud instance. Conversely,

if a cloud instance is unproductive, it will have no external

user (human or system) dependency.

Identifying dependencies requires detailed knowledge about

the applications and activities occurring within the cloud

instance. Pleco relies on a set of Knowledge Modules (KMs)

to discover and analyze different applications and data sources.

Examples of sources that are considered include:

• User behavior: a user login or a terminal activity indicates

a dependency between the user and the cloud instance.

• Application behavior: network communication traces

or application log files contain information about

dependencies of applications running in different cloud

instances.

• Application configuration: pointers in application

configuration files, such as a hostname or IP address of

the database instance, indicate application dependencies.

• Cloud meta-data: meta-data from cloud services such

as load balancers and auto-scaling groups indicate

dependencies from the user to the cloud instance.

B. Identifying Unproductive Cloud Instances

Identifying all of the dependencies between cloud instances

is a complicated task due to the sheer number of applications

and the time-variance in their activity. An active dependency

in the past does not necessarily indicate a current dependency.

For example, a cloud instance accessing a webserver in another

cloud instance a week ago only indicates that there was a

dependency in the past. Conversely, there might be always a

dependency between an application instance and its database

instance despite there not being an active connection at a

particular moment.

In building the underlying reference graph we care mostly

about currently active dependencies. However, given an

identified dependency and limited information from the user,

it is not always clear whether the dependency is active or not.

In many cases we must resort to providing heuristic-based

confidence levels along with the dependency. For example, if

we see an SSH connection from a user to the cloud instance

yesterday, we assign a high confidence that the dependency

is active. In contrast, if the SSH connect exists but has been

idle for over one week we assign a lower confidence. The

confidence levels need to be tuned based on typical usage

as what is normal in one organization might be abnormal in

another. It may take multiple feedback iterations before the
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rules are finalized. Note however that this is a one time effort

at setup time and should only need occasional tuning. As

mentioned in Section IV, we have implemented a feedback

collection system to facilitate this tuning process.

Pleco assigns a confidence to each dependency discovered.

The confidence levels are: 0 (inactive), 1 (low confidence

active), 2 (medium confidence active), and 3 (high confidence

active). More confidence levels can be assigned as long as the

assignment is consistent. Example reference graph is shown

in Fig 3.

Once the reference graph has been constructed and each

edge has a confidence level assigned, we are now able to

identify cloud instances that are unproductive. We first remove

all edges with a confidence level of 0. Instances that are

now no longer reachable in this graph are identified as high-

confidence unproductive. Next, we remove all edges with

a confidence level of 1. Instances that are now no longer

reachable from the root are identified as medium-confidence

unproductive. Similarly, by removing edges with a confidence

level of 2 we can identify low-confidence unproductive

instances, and the remaining instances are classified as

productive or active instances (see Fig 3).

C. Decision Tree Verification

As presented above, the accuracy of the cloud instance

reference model depends on the number and quality of

Knowledge Modules (KMs). Common applications with well-

defined configuration files are natural candidates to encode

into KMs. However, it is unrealistic to expect that all possible

applications can be covered. This leads to some important

dependencies being missed and results in false positives for

unproductive cloud instances.

To compensate for this practical challenge and reduce false

positives while not requiring complete application coverage

with KMs, we verify the results discovered from the reference

graph with a Decision Tree (DT) classifier [14] trained by

examining the resource utilization. Pleco incorporates the

results from the DT classifier with the following policy: for

productive cloud instances, Pleco ignores the hint from the

DT classifier since the productive classification is determined

based on application knowledge; for unproductive cloud

instances, the output from the DT classifier is considered as

follows:

• Affirmative case: If the DT model confirms that

a cloud instance is unproductive with greater than

80% probability, we increase the confidence level. For

example, a low confidence unproductive cloud instance
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Fig. 4. Architecture of Pleco

is upgraded to a medium confidence unproductive cloud

instance.

• Conflicting case: If the DT model classifies an

unproductive cloud instance as Active with greater than

80% probability, we lower the confidence level. For

example, a high confidence unproductive cloud instance

is downgraded to a medium confidence unproductive

cloud instance, and a low confidence unproductive cloud

instance is downgraded to a productive cloud instance.

IV. IMPLEMENTATION

Fig 4 shows the overall architecture of Pleco. A

data collector is running inside each cloud instance and

gathers application and user information. This information is

periodically sent back to the central parser. Additional data

can be collected from other sources such as cloud management

meta-data or an enterprise configuration management database.

The data collector can be distributed in two ways: (1) It is

injected into the target machine by the owner (the only access

we could get during our experiments) or (2) for a more wide-

spread deployment existing endpoint automation tools (such as

chef, puppet, IBM BigFix) can be used to install and execute

the data collector on each machine.

The Pleco parser uses a Reference Miner to scan

the gathered data and generate the graph with edges

representing cloud instance dependencies. To handle the

myriad of applications types, the Reference Miner loads a

set of Knowledge Modules (KMs) modified from an IBM

service called Analytics for Logical Dependency Mapping

(ALDM) [15]. Each KM uses its own application specific

rules to determine if a particular application is present within

the cloud instance, and if it is, it performs deep analysis for

dependency information (i.e., scan configuration and log files).

The Reference Graph Generator takes the cloud instance

references and generates a reference graph. It maintains a

mapping between the host and all its possible aliases, and

then makes use of the reconciled list to ensure a single

cloud instance is not incorrectly modeled as multiple nodes.

It filters out noisy dependencies by leveraging a list of known

offenders.

We implemented a Decision Tree (DT) classifier with the

traditional CART algorithm [16], and uses a set of metrics

including maximum and average CPU utilization, network

throughput and disk throughput. The resulting reference

graph is processed using the algorithm previously discussed



augmented with the results of the resource-based DT classifier.

The output is fed into an Action Engine which is able to

take action based on the classifications. For research purposes

we have implemented an action that displays Pleco’s results

visually to owners and allows them to provide feedback on the

results. The user can view the entire reference graph including

the confidence level assigned to each edge. This has proved

to be an excellent mechanism to (1) inform users about the

actual activity occurring in their cloud instances, (2) find areas

of weakness in the algorithm, and (3) identify gaps in KMs.

V. EVALUATIONS

Our evaluation was conducted in an IBM private cloud that

is dedicated to the Research division. The evaluation included

51 cloud instances from eight owners. The owners assisted

to manually label each instance as productive or unproductive

based on their expert knowledge. Of the 51 cloud instances,

18 were identified as unproductive which represents about

35%. Pleco correctly identified 26 of the cloud instances as

productive. Of the remaining, it identified 7 high-confidence

unproductive cloud instances (6 correct) and 18 medium-

confidence unproductive cloud instances (12 correct).

An interesting finding is the number of users who initially

incorrectly labeled their cloud instances and the frequency

of erring on the side of productiveness. Among the 51

cloud instances scanned, 1 productive instance was labeled

as unproductive, and 8 unproductive instances were labeled

as productive. Pleco’s ability to display the discovered

applications and their dependencies proved very helpful to

remind users exactly what was running on their instances. The

survey process was conducted in several rounds of feedback-

verification process before the labels were finalized.

We compared the results we observed with Pleco to two

alternative solutions:

• Decision-Tree classified unproductive instances solely

based on their resource utilization using the algorithm

discussed in Section IV. The DT model was trained using

resource utilization traces from one day observations

of 25 randomly selected instances. For classification,

a six-day trace was used. The model labeled a cloud

instance unproductive when the classification probability

was greater than 80%.

• Reference Model was the approach that identified

unproductive cloud instances based on the reference

model discussed in Section III-A, without applying any

verification. Only high-confidence unproductive cloud

instances were labeled unproductive.

Pleco was implemented as a combination of the two

approaches. False Positive (FP) in our experiment indicates

the number of instances that were classified as unproductive,

but were actually productive; False Negative (FN) indicates

the number of instances that were classified as productive,

but were actually unproductive. True Positive (TP) and True

Negative (TN) are the number of instances that were correctly

classified as unproductive and productive respectively. The
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precision and recall is calculated the standard way as:

Precision = TP / (TP+FP) and Recall = TP / (TP + FN).

From Fig 5 we can see that the decision-tree algorithm

achieved a high precision, but also a low recall. It shows

that by looking at resource utilization, it was common to

miss unproductive instances and classify them as productive

due to background software agents. Also note that these 51

cloud instances from the research cloud had higher correlation

between resource activity and productiveness due to fewer

background agents compared to enterprise production clouds

and simpler topologies (i.e., no disaster recovery servers, few

high-availability deployments). Both of these factors increased

the precision achieved by the DT model. Applying the cloud

instance reference model improved the recall to 1.0. This was

due to the detailed application knowledge eliminating false

negatives. However, the precision was lower due to the lack of

complete application knowledge. Pleco, through combining the

two approaches, achieved the highest results in both precision

and recall when the confidence level is high. For medium

confidence it continued to achieve reasonable accuracy.

VI. DISCUSSION AND CONCLUSION

Pleco is a light-weight tool that detects unproductive cloud

instances in IaaS clouds based on a cloud instance reference

model. To compensate for errors caused by insufficient

application knowledge, Pleco leverages a decision tree model

to classify unproductive cloud instances based on resource

utilization, and uses the classification to substantiate the results

of the cloud instance reference model.

Pleco employs a gray-box approach, i.e., a data collector

must be present in each cloud instance and a Knowledge

Module must be available for each application type.

ALDM [15] adopts similar approach and has been used by

hundreds of customers, a majority of which are fortune 500

companies who own hybrid IT including both cloud and non-

cloud infrastructures. This wide-spread footprint shows that

Pleco’s approach is practical and scalable. Existing research

has also demonstrated the feasibility of identifying application

dependency by observing low level network communication

and resource utilization [17], [18], [19], [20]. This approach

could help further improve the scalability of Pleco and

simplify the deployment to a large set of instances, and we

plan to incorporate it in future work.
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