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Abstract—Video streaming services have continuously gained
popularity over the last decades, accounting for about 70% of all
consumer Internet traffic in 2016. All of these video streaming
sessions have strict delivery deadlines in order to avoid playout
interruptions, detrimentally impacting the Quality of Experience
(QoE). However, the vast majority of this traffic uses TCP at the
transport layer, which is known to be far from minimizing the
number of deadline-missing streams. By introducing deadline-
awareness at the transport layer, video delivery can be optimized
by prioritizing specific flows. This paper proposes a deadline-
aware congestion control mechanism, based on a parametrization
of the traditional TCP New Reno congestion control strategy.
By taking into account the available deadline information, the
modulation of the congestion window is dynamically adapted to
steer the aggressiveness of a considered stream. The proposed
approach has been thoroughly evaluated in both a video-on-
demand (VoD)-only scenario and a scenario where VoD streams
co-exist with live streaming sessions and non-deadline-aware
traffic. It was shown that in a video streaming scenario the
minimal bottleneck bandwidth can be reduced by 16% on
average when using deadline-aware congestion control. In co-
existence with other TCP traffic, a bottleneck reduction of 11%
could be achieved.

I. INTRODUCTION

Over the past decades, multimedia services have gained
a lot of popularity. This growth is largely due to video
streaming services, accounting for about 70% of all consumer
Internet traffic in 2016 [1]. For delivery of video streaming
services, HTTP adaptive streaming (HAS) has become the
de facto standard. These HTTP-based techniques come with
some important advantages. Not only is the video content
delivered reliably over Transmission Control Protocol (TCP),
HAS also allows seamless interaction through firewalls. On
the downside however, as the delivery is based on best-
effort Internet, HTTP-based techniques are prone to network
congestion and large bandwidth fluctuations due to cross
traffic. These influences can be detrimental for the Quality
of Experience (QoE).

TCP streaming session use a congestion-control strategy to
avoid congestive collapse. For this purpose, the total number
of unacknowledged packets that may be in transit is limited
by means of a congestion window at the sender side. It was
shown that using this congestion-control strategy, multiple
flows with similar round-trip times (RTTs) eventually converge
to using equal amounts of a contended link [2]. However,
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different types of services can have different requirements.
Considering a video streaming service, hard deadlines are
associated with each packet in the video stream once the
playout is started. When these deadlines are violated, the
playout is temporarily interrupted, negatively impacting the
QoE. However, fair bandwidth sharing as introduced by TCP
is known to be far from minimizing the number of deadline-
missing streams [3].

In general, the client applications are aware of the dead-
lines associated with the requested content. By introducing
these deadlines in the network, multimedia delivery can be
optimized by prioritizing specific flows. While DiffServ [4]
techniques have been proposed for this purpose in the past,
this paper focuses on a best effort networking scenario by
proposing a deadline-aware congestion control strategy for
video streaming services, based on the traditional TCP New
Reno congestion control mechanism. The proposed strategy
only requires changes at the sender side and reduces to
TCP New Reno congestion control in absence of deadline
information. Furthermore, for deadline-missing streams, the
proposed approach falls back to TCP New Reno congestion
control mechanism to avoid congestive collapse. In the pro-
posed approach, deadline information is passed to the transport
layer in the request to send data, as is commonly assumed in
related work [5]-[7]. This information provides details about
(i) the deadline of the current packet, (ii) the final deadline
of the stream and (iii) the bit rate of the streamed content.
Based on the deadline information and the current throughput
measurement, the algorithm dynamically changes the behavior
of the congestion window adaptations. In this way, urgent
flows can occasionally achieve a higher throughput than their
fair share, while other, less urgent flows back off to allow other
sessions to increase their throughput.

The contributions of this paper are threefold. First, a
parametrization of the congestion avoidance phase of the
TCP New Reno congestion control mechanism is proposed.
Furthermore, the feasibility of prioritizing streams by changing
the configuration of these parameters is demonstrated. Second,
a deadline-aware congestion control strategy is introduced,
dynamically adapting the parameter configuration of the con-
gestion avoidance phase based on the deadlines of streaming
sessions. Third, the performance of the proposed approach



is thoroughly evaluated, both using conceptual examples and
large scale packet-based simulations in NS-3. For this pur-
pose, both general traffic configurations and video-on-demand
(VoD)-only scenarios are considered.

The remainder of this paper is organized as follows. First,
Section II gives an overview of related work on transport
protocol optimizations for multimedia delivery. Next, the feasi-
bility of the proposed approach is demonstrated in Section III.
The proposed algorithm is introduced in Section IV, while
its performance is evaluated in Section V. Finally, Section VI
presents some final conclusions.

II. RELATED WORK

Multiple transport protocols that offer novel delivery models
to improve the support for multimedia applications have been
presented in literature, including Stream Control Transmission
Protocol (SCTP) [8], Datagram Congestion Control Proto-
col (DCCP) [9] and Shared Content Addressing Protocol
(SCAP) [10]. However, ossification of the transport layer limits
the deployability of new transport protocols. Furthermore,
these approaches require changes both at the sending and
receiving side, as well as in the network.

TCP-RTM proposes extensions to TCP that improve per-
formance of multimedia applications by allowing minimal
amount of packet re-ordering and loss in the TCP stack [11].
This approach modifies the interaction between the application
and the receiver buffer, rather than proposing modifications to
TCP itself. Selective negative acknowledgments are used to
allow senders to be informed of segments that were skipped
by the application, preventing retransmission. Similarly, TCP
Hollywood is a protocol offering unordered, partially reliable
message-oriented transport service that is well suited for
multimedia applications [12]. While this approach is focused
on deployability, the inconsistent retransmission mechanism
is visible to middleboxes performing deep packet inspection,
which might disrupt these connections. Furthermore, TCP
Hollywood requires changes at both the sender and receiver
side. While the above approach focus on flow-based optimiza-
tion, media-TCP-friendly congestion control (MTCC) takes
into account the deadlines for each packet [13]. Furthermore,
additional complexity is added to this solution by introducing
a packet-based multimedia model, considering distortion im-
pacts as well as inter-dependencies between multiple packets,
using directed acyclic graphs.

In the area of data center services, multiple transport
protocols have been proposed with the main objective of
minimizing deadline misses. D3 introduced the idea of in-
troducing deadline awareness into data center networks by
proactively allocating bandwidth before data transmission [5].
PDQ further improves flow completion times compared to
D3 [14]. However, both protocols are incompatible with
TCP. Deadline-aware data center TCP (D2TCP) is a TCP-
friendly protocol implementing deadline-aware delivery [6].
Similar to our work, deadline-aware congestion avoidance is
implemented by changing the adaptation of the congestion
window. In D?TCP, the window size is modulated based on

the deadlines and the extent of congestion in the network.
However, as the approach heavily relies on Explicit Congestion
Notification (ECN) feedback and is specifically aimed at data
center topologies and services, the applicability for video
streaming over public Internet is limited. DSTCP builds on the
ideas introduced in D?>TCP, adjusting the congestion window
size of a flow based on its deadline, its size and the degree of
network congestion [7]. As was the case with D2TCP, DSTCP
heavily relies on ECN feedback. L2DCT has been presented as
a TCP-friendly protocol, reducing completion times of short
flows in data center networks [15]. As opposed to these works,
the focus in this paper is on multimedia delivery in public
Internet, rather than data center networks.

III. FEASIBILITY STUDY

As a starting point for the proposed approach, TCP New
Reno [16], an improved version of the traditional TCP Reno
congestion control mechanism, is used. For a detailed descrip-
tion of the TCP New Reno congestion control mechanism, the
reader is referred to literature. In this work, we specifically
focus on the congestion avoidance phase of TCP New Reno
while the slow start phase, the fast retransmit behavior and
the reaction to timeouts are unchanged. This section proposes
a parametrization of the congestion avoidance phase and
demonstrates the feasibility of steering the aggressiveness of
a TCP stream using this parametrized scheme.

A. Parametrized congestion avoidance

In the congestion avoidance phase, TCP (New) Reno
follows an additive increase/multiplicative decrease (AIMD)
scheme to adapt the congestion window size. With AIMD, a
linear growth of the congestion window is combined with an
multiplicative reduction when a congestion event takes place,
resulting in the well known TCP sawtooth behavior. More
concretely, with TCP (New) Reno, the congestion window
cwnd is increased as show in equation (1) for every incom-
ing non-duplicate acknowledgment, where M SS represents
the maximum segment size [17]. This adjustment provides
an acceptable approximation to the underlying principle of
increasing the congestion window with one full-sized segment
every RTT. When congestion is detected in the form of triple
duplicate acknowledgments, the congestion window is set to
cwnd = 0.5 x cwnd + 3 MSS.

M M
cwnd = cwnd + M (1)
cwnd

It was shown that multiple flows with similar RTTs using
the same AIMD congestion control, eventually converge to
use equal amounts of a contended link [2]. However, this
only holds when these flows use the same AIMD scheme.
In this work, we propose to parametrize the AIMD scheme,
resulting in an increase of the congestion window as expressed
in equation (2) for every incoming non-duplicate acknowledg-
ment. Using this equation approximates the increase of the
congestion window with one full-sized segment every oo € R
RTTs. Upon reception of the third duplicate acknowledgment,



the congestion window size is reduced as shown in equation
(3), for 8 €]0;1]. For « = 1.0 and 8 = 0.5, this AIMD
scheme corresponds to the scheme used in TCP (New) Reno.

cwnd = cwnd + MSS5 = M55 2
o *x cwnd
cund = (1 — 8) x cwnd +3* MSS 3)

B. Parameter influence

Intuitively, lower values for « or 3, causing a faster increase
or slower decrease of the congestion window respectively,
result in more aggressive behavior and corresponding higher
throughput. However, to study the influence of these param-
eters in detail, simulations have been performed to compare
the throughput of a client using TCP New Reno congestion
control to a client using different parameter values.

For this purpose, two scenarios have been considered where
respectively two and ten clients simultaneously try to send data
at a rate of 10Mbps over a bottleneck link with a capacity
equal to half of the sum of requested rates (i.e. 10Mbps and
50Mbps in the two and ten client scenario respectively). To
estimate the influence of «, for one of the clients the value
of « is varied between 0.05 and 5.0 with a fixed value of
£ = 0.5, while the other clients use TCP New Reno congestion
control (i.e. « = 1.0, = 0.5). Similarly, the influence of
[ is evaluated by varying its value between 0.01 and 0.99
while keeping a fixed value of a=1.0. Due to the probabilistic
nature of the applied random early detection (RED) queuing
discipline [18], all experiments have been performed for five
iterations, presenting the average results.

Figure 1 shows the influence of the value of « on the ratio
between of the throughput achieved by the client using varied
parameters and the average throughput achieved by the other
clients, using TCP New Reno congestion control. As expected,
both in the two and ten client scenario, for low values of «
(< 1.0) the achieved throughput is significantly higher than the
fair share throughput while the opposite is true for high values
of a (> 1.0). It can be seen that for very small values of o (<
0.10), the client becomes too aggressive, resulting in decreased
performance. By increasing the congestion window too fast,
the client perceives a lot of timeouts, resulting to stream to
execute in the slow start phase very often. Furthermore, the
throughput ratio converges and the influence is limited when
increasing « above 4.0.

Furthermore, Figure 2 shows the influence of the value of «
on the total throughput on the contended link when all clients
use this specific value, relative to the throughput achieved with
TCP New Reno congestion control. It can again be seen that
for very small values of a (< 0.1), the clients become too
aggressive, causing a fallback to the slow start phase too often.
As a result, the flows are not able to fill the link. For values
above o >= 0.5, the general performance is within 1% of the
TCP New Reno performance.

Similarly, the influence of the value of [ is presented
in Figure 3 and Figure 4. It can again be seen that, as
expected, a flow is able to achieve a significantly higher or
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Figure 1. Influence of the AIMD parameter « on the average achieved relative
throughput on the contended link. The areas represent the 95% confidence
interval.
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Figure 2. Influence of the AIMD parameter « on the total throughput achieved
on the contended link, relative to the throughput achieved with TCP New Reno
congestion control.

lower throughput than its fair share by respectively using a
value of 8 < 0.5 or § > 0.5. As was the case with a, a
general performance degradation can be perceived when all
streams become too aggressive (i.e. 5 < 0.1). Furthermore,
a performance drop of about 10% can be noticed when all
streams use high values of 5. As this situation only occurs
when all streams voluntarily back off, indicating that the
available bandwidth is higher than required for all flows, it
is unlikely to occur in practice.

Based on the above analysis, it can be summarized that the
aggressiveness of a stream can effectively be influenced by
varying the value of « between 0.1 and 4.0 or varying the
value of S between 0.1 and 0.95.

IV. ALGORITHM

As shown in Section III, the throughput can be increased or
decreased by using different values for a or 5. In this section,
an algorithm is proposed to dynamically adapt the parameter
values based on the deadlines of a streaming session. For
this purpose, the concept of deadline margin is introduced.
Consider a video stream s with a bit rate s and a total length
of Is seconds. When this stream has a begin deadline d, for
every byte b € [0; %[ the corresponding deadline d;, can be
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Figure 3. Influence of the AIMD parameter /3 on the average achieved relative
throughput on the contended link. The areas represent the 95% confidence
interval.
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Figure 4. Influence of the AIMD parameter 3 on the total throughput achieved
on the contended link, relative to the throughput achieved with TCP New Reno
congestion control.

calculated as shown in equation (4). The deadline of the last
byte of the stream is called the end deadline of the stream,
denoted as d. = dgy + .

bx8

S

dp = do + “)

When at time ¢ the next byte to be sent is b, the current
deadline margin is denoted as m = d;, — t. The general goal
of the proposed approach is to keep this deadline margin
between a lower and upper bound, denoted as m; and m,,
respectively. Both m; and m,, are parameters of the algorithm
which are configured a priori. In order to keep the deadline
margin within the predefined bounds, the value of o or 3 can
be changed within their respective ranges [ay; v, and [5; Bu],
with a granularity of o, and 3, respectively. As discussed in
Section III, it is suggested to vary a between 0.1 and 4.0 at
a granularity of 0.1, or to vary 8 between 0.1 and 0.95 at
a granularity of 0.05. To avoid too much fluctuation in the
parameter values and to reduce the computational overhead,
it is suggested to only perform parameter updates at fixed
time intervals, indicated by the reactivity time ¢,.. Based on
preliminary evaluations, a reactivity time of ¢,=1s will be used
in the remainder of this paper.

Algorithm 1 Outline of the proposed algorithm to dynamically
adapt the parameter value o based on the current deadline
margin. This update is performed every ¢, seconds.
Input:

t: current time

T': current throughput measurement

dp: deadline of next byte to send

d.: end deadline of the stream

r4: bit rate of the stream

I:m=dy—t

2. if (m < m;) then

3: o =

4: else if (m > m,) then
5: Q= Ql,

6: else

7. rt=d.,—t

8 rb=(de —dp) * 14
9: Tu = T'tIl;nu

10: T‘l - T'tibml

1. if (T > T,) then

12: My =My — M
13: apn = —«

14:  else if (T" < T;) then
15: ms = 1m — 1my

16: QAA = Qy —

17:  else

18: mgs = 00

19: apn =0
20:  end if
21: C= r::_*;fl

22 a5 = round( 245 ayy)

23: a=uoa+ as
24: end if

Algorithm 1 presents the pseudo-code of the proposed
algorithm to dynamically adapt the parameter value «. In an
identical way, the algorithm can be applied to dynamically
change the value of 3. This algorithm is executed every t,
seconds, as long as no deadlines were missed for the consid-
ered stream. To avoid congestive collapse and to maintain a
degree of fairness with other TCP flows, a streaming session
falls back to TCP New Reno congestion control (i.e. a=1.0,
[3=0.5) when a deadline was missed. Based on the current time
t and the deadline d; for the next byte to send b, the current
margin m is calculated (line 1). When the current margin is out
of the predefined bounds, the value of « is directly updated to
the highest (o) or lowest (a;) value to drastically decrease or
increase the aggressiveness of the stream respectively (lines 2-
5). When the current margin is between the bounds, the upper
and lower threshold of the required throughput, 7}, and 7j,
are calculated (lines 7-10). T,, and T; respectively denote the
highest and lowest required throughput that allows to finish the
remainder of the stream without leaving the deadline margin
bounds. Their calculation is based on the remaining time rt
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Figure 5. Graphical illustration of the rationale behind the proposed approach.

until the final deadline and the remaining number rb of bytes
to send. When the current throughput measurement 7" is above
T, or below Tj, the deadline margin is expected to grow above
m,, or shrink to less than m; before the end of the stream is
reached. To avoid this, the difference mg between the current
deadline margin and the approaching bound is calculated, as
well as the remaining part aa of the range of « values that
allows us to change the aggressiveness in the required direction
(lines 11-20). Based on these values, the critical time period
C by which leaving the margin bounds is expected, can be
calculated (line 21). In combination with the remaining range
aa and the time between consecutive parameter changes .,
this critical time period is used calculate the degree to which
the value of o should be changed, rounded to the change
granularity o, (lines 22-23).

To clarify the rationale behind the algorithm, an illustra-
tive example is presented in Figure 5. In this example, we
consider a video streaming session s with begin deadline
dy=30s, a total duration /,=100s and a bit rate bs;=1Mbps.
The presented sending curve and deadline curve respectively
show the time when each byte is sent and when it is required.
The streaming session started at 20s, the margin bounds are
configured to m,=20s and m;=5s and the reactivity interval
t, is set to 1s. At time ¢=35s, 20Mbit has been sent already
and the deadline margin amounts to about m=15s. At this
point in time, rb=80Mbit remains to be sent in the next
rt=95s. To be able to finish the stream without exceeding the
margin bounds, the required throughput should be between
T, = 8Mbt — (.89Mbps and T, = %0t = 1.07Mbps.
Given the current throughput measurement 7=1.23Mbps and
the current distance from the upper bound ms=5s, the deadline
margin is expected to exceed the margin upper bound in
C = %ﬁ,ﬁgps = 21.74s. Given the reactivity interval t,.=ls,
the current estimate results in 21 remaining chances to adapt
a to reduce the aggressiveness. When currently o« = 1.0, o
will be increased by a5 = round(%;o.l) = 0.1,
resulting in « to be set to 1.1. When the difference between
the current throughput and the required throughput would be
higher, the change in @ value would be more significant as the
time to react would be shorter.

V. EVALUATION

To evaluate the performance of the proposed approach, we
first demonstrate the effectiveness of dynamically changing
the AIMD parameters in a scenario with two sessions in
Section V-A. Next, Section V-B will evaluate the proposed
approach in larger scenarios using real-world characteristics.
All simulations have been performed in NS-3 using a setup
where all considered streams share a common bottleneck link
on which RED queue management is applied.

A. Conceptual demonstration

To show the benefits of using deadline-aware congestion
control, a small-scale scenario is considered where two VoD
streaming sessions share a bottleneck link with a capacity of
10Mbps and a delay of 30ms. The first stream has a bit rate
of 3Mbps, has a begin deadline of 15s after the initial request
and a total duration of 600s. After 100s, the second stream
with a bit rate of SMbps is initiated with a begin deadline of
115s relative to the experiment start and a total duration of
500s.

Figure 6a shows the sending curves and the corresponding
deadline curves of both video streams in a scenario where
TCP New Reno congestion control is applied (a=1.0, 5=0.5).
It can be seen that during the first 100s, the first stream can
use the full capacity of the link and can deliver all bytes long
before their deadline. After 100s, the second stream starts and
both streams get an equal share of the link capacity. However,
this bandwidth share is not sufficient for the second stream
to deliver its data before the deadline, resulting in deadline
misses for over 70% of the data. In the worst case, the data is
delivered only 50s after its deadline. However, the throughput
for the first stream exceeds the required bit rate, causing the
entire stream to be delivered about 200s earlier than the final
deadline.

Figure 6b shows the performance of the proposed deadline-
aware congestion control where the a parameter is dynami-
cally changed for the same scenario, with the deadline margin
bounds set to m;=5s and m,=20s. The resulting behavior of
« is shown in Figure 6¢. It can again be seen that during
the initial 100s, the first stream can use the full capacity of
the link and can deliver all bytes long before their respective
deadlines. As the achieved throughput of that stream is sig-
nificantly higher than the bit rate of the video, the o value
quickly increases to its maximum value of 4.0 to become less
aggressive and free up bandwidth for other streams if required.
When the second stream starts, its fair share bandwidth part
does not suffice to deliver the stream in time. Therefore, the
second stream becomes more aggressive by lowering its «
value. To keep the throughput within the predefined margin
without using more bandwidth than required, « starts fluctu-
ating between 0.1 and 1.5. When the first stream finishes, the
second stream can use the entire capacity, resulting in a higher
throughput than required. Therefore, the second stream backs
off by increasing its « value. In this scenario, using deadline
aware congestion control allows both streams to deliver all
bytes in time.
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Figure 6. Conceptual demonstration of the proposed deadline-aware congestion control mechanism in a scenario with two VoD streaming sessions.

B. Larger scale evaluations

To evaluate the impact of the proposed approach in a sce-

nario with multiple (deadline-aware) streams, several scenarios
have been generated using realistic network traffic compo-
sitions. In each of these scenarios, the minimum bottleneck
bandwidth, required to finish all streams without deadline
misses, is established for both TCP New Reno congestion
control and the deadline-aware congestion control. For this
purpose, a binary search strategy has been applied to find the
bottleneck bandwidth with a granularity of 100kbps. Given
the probabilistic nature of the RED queue management, all
simulations have been performed for 3 iterations. First, Sec-
tion V-B1 considers a setup with only deadline-aware VoD
streams, while more general setups, including deadline-aware
live and VoD streaming sessions as well as non-deadline-aware
traffic, are considered in Section V-B2.

1) VoD-only scenarios: To evaluate the performance of the
proposed approach, VoD request traces have been constructed
based on statistics provided by Conviva. In October 2015,
Conviva opened access to viewer experience data, based on
the analysis of 4 billion video streams per month spread across
180 countries'. According to this dataset, in the first quarter
of 2016, the average bit rate of a VoD stream amounts to
2.4Mbps. Taking into account general adaptive streaming char-
acteristics, each streaming session in the constructed request
traces was assigned a uniformly distributed bit rate between
0.9Mbps and 3.9Mbps. The duration (in minutes) of each
session can be modeled using a log-normal distribution with
p=2.2 and o=1.5 [19], [20]. While the number of sessions is
varied between 25 and 100, in each scenario the start times of
the video streams are uniformly distributed over a period of
60minutes. In this way, different levels of load are considered.
For each session, the sending of data can be started at most m
seconds before the begin deadline dy (i.e. at time ¢t = dy—my).
All flows share a bottleneck link with a delay of 30ms.

Multiple parameters have been evaluated, as presented in Ta-
ble I. For each configuration, the approach has been evaluated
in 10 scenarios, randomly generated according to the above
characteristics. To assess the performance of the proposed

Conviva dataset - http://www.conviva.com/industry-data-portal/

Table 1
EVALUATED PARAMETER CONFIGURATIONS.
Parameter Values
Number of sessions 25, 50, 75, 100
my 0,5, 10
Moy 10, 20
mo 0.5, 5, 10, 20

approach, in each of the scenarios the minimal bottleneck
bandwidth By, that is required to deliver all streaming ses-
sions without deadline misses using deadline-aware congestion
control is defined by simulation and compared to the same
bottleneck bandwidth B,,, required when using TCP New
Reno congestion control. Furthermore, the theoretical lower
bound for the bottleneck bandwidth B.4 when using the
Earliest Deadline First (EDF) policy, scheduling the data with
the earliest deadline amongst all flows at any point in time,
is calculated. It is important to note that this optimal solution
cannot be achieved in practice and does not take into account
TCP overhead. Therefore, the actual lower bound will be
significantly higher than B.4¢, which serves as a benchmark.
Based on these values, the metric p is defined as shown in
equation (5), representing the ratio between the achieved gain
and the optimal achievable gain.

Bnr -

o Bda
"= B,

—_— 5
~Buy (&)

The influence of the number of streaming sessions on
the performance of the proposed deadline-aware congestion
control mechanism, dynamically adapting the value of a,
is presented in Figure 7 for different configurations of m;
and m,. It can be seen that for each configuration of the
deadline margin bounds, the performance of the proposed
approach increases with the number of streaming sessions.
As the contention is limited with fewer streams, the benefits
of using deadline-aware congestion control are narrow. How-
ever, when the number of streaming sessions increases, the
performance of the proposed approach significantly increases
as well, saturating around p=0.60. While the performance
difference between the configurations is limited, m;=5s and
m,,=20s yields the best performance on average. When margin
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bounds are set closer to the deadline, the reaction time for the
algorithm increases, resulting in a slightly lower performance.

Similarly, Figure 8 shows the performance of the proposed
deadline-aware congestion control mechanism dynamically
adapting the value of 3. It can be seen that for each configura-
tion, the performance is lower compared to when dynamically
adapting «. The explanation behind this finding is in the
role of both parameters in the congestion control mechanism.
While the value of a has an impact for every received
acknowledgment, the value of S only impacts the behavior
upon receiving triple duplicate acknowledgments in the event
of congestion. Therefore, the impact of dynamically adapting
£ on the congestion window is perceived less frequently.
Furthermore, the effect of changing the value of 3 cannot be
perceived immediately, but only at the next congestion event.
Based on this analysis, in the remainder of this paper the focus
will be on the adaptation of the o parameter.

The results presented in Figure 7 show that for higher
network loads, the proposed approach can yield around 60%
of the theoretical upper bound for the achievable gain (i.e.
1=0.60) by dynamically adapting the value of a. To compare
the performance of the deadline-aware congestion control with
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Figure 9. Relative performance of the deadline-aware congestion control by
dynamically adapting o for m;=5s, m,=20s and multiple initial deadline
margins mo in a VoD-only scenario.

the TCP New Reno congestion control, Figure 9 presents the
ratio between the minimal bottleneck bandwidth required to
streams all sessions without deadline misses, i.e. gij, and
the corresponding standard deviation. Based on the above
evaluation, the deadline margin bounds were set to m;=5s
and m,=20s, considering multiple initial deadline margins
mg. It can be seen that for a low number of sessions, the
minimal bottleneck bandwidth required to stream all sessions
without deadline misses is 8% lower compared to using TCP
New Reno congestion control on average, while for short
initial deadline margins (m(=0.5s) no gain can be achieved.
For a higher number of sessions, the bottleneck bandwidth
reduction amounts to between 15% and 23%. Furthermore, it
can be seen that the influence of the initial deadline margin
mg on the average performance is insignificant for a higher
number of sessions. However, higher initial margins result
in a more consistent performance increase, as presented by
the decreasing standard deviations. In general, an average
bottleneck bandwidth reduction of 16% is achieved.

2) General scenarios: In a general scenario, besides VoD
streaming sessions, other types of traffic are present in the
network as well. According to Cisco, in 2016 70% of all con-
sumer Internet traffic consists of video streaming [1]. Out of
the Conviva dataset it can be deduced that 36% of all streamed
video data consists of live video, while the remaining 64%
can be considered as VoD. Combining this information results
in a traffic pattern where 44% of the network traffic consists
of VoD, 26% consists of live streaming and the remaining
30% is considered as non deadline sensitive traffic. Given the
size difference between the different types of streams, it is
important to note that this division accounts to the amount of
data streamed for each type, rather than the number of sessions
for each type.

For the VoD sessions, the same characteristics as in the
previous section have been used. To generate the live streaming
sessions, a uniformly distributed bit rate between 1.1Mbps
and 4.1Mbps has been used, based on the average bit rate
of 2.6Mbps as reported by Conviva. Based on literature, the
duration (in seconds) of these sessions is modeled using a log-
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Figure 10. Relative performance of the deadline-aware congestion control
by dynamically adapting o for m;=5s, m.,=20s and multiple initial deadline
margins mo in a general traffic scenario.

normal distribution with ©=5.19 and o=1.44 [20], [21]. As the
playout of the live stream is considered to be 10s behind of
the live signal, data can only be send at most 10s before its
deadline. Therefore, the deadline margin m can never exceed
10s for live streaming sessions. For the non deadline sensitive
traffic, regular file transfers with a uniformly distributed size
between 0.5 and 600Mbyte have been generated.

Given the absence of deadline information for file transfers,
the theoretical optimal gain when using EDF can not be
defined. All non-deadline aware traffic has an infinite deadline,
causing them to only be scheduled by EDF when no other
deadline-aware traffic is present. As this does not allow a fair
comparison, for the general scenarios the performance of the
deadline-aware congestion control will be compared only to
the TCP New Reno congestion control mechanism.

Figure 10 shows the relative performance of the deadline-
aware congestion control compared to the TCP New Reno
congestion control. Based on the results presented in Sec-
tion V-Bl, the value of a was dynamically adapted, using
deadline margin bounds set to m;=5s and m,=20s. It can
be seen that on average, a bandwidth reduction of between
5% and 18% can be achieved. As the file transfers cannot
benefit from the deadline-awareness, the relative performance
gain is lower compared to a VoD-only scenario. Furthermore,
as the live streaming sessions can at most be 10s ahead of their
deadlines, the potential benefits of deadline-aware congestion
control are limited as well. However, even though only 44%
of the traffic can fully take advantage of the deadline-aware
congestion control, the minimal bottleneck bandwidth can be
reduced by 11% on average compared to using TCP New Reno
congestion control.

To analyze the impact of the deadline-aware congestion
control strategy on the performance of regular TCP traffic,
the notation Fj, is introduced representing the sum of the
throughput achieved by each of the regular file transfers in
a scenario where deadline-aware congestion control is used.
Similarly, the sum of the throughput of all regular file transfers
when using TCP New Reno congestion control in the same
scenario is denoted as Fj,,.. Based on these values, the ratio
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Figure 11. Impact of the deadline-aware congestion control mechanism by
dynamically adapting o for m;=5s, m,=20s on the performance of non-
deadline-aware traffic in a general traffic scenario.

% shows the relative increase (> 1) or decrease (< 1)

inwthroughput for non-deadline-aware traffic. In Figure 11,
this value is compared to g—:‘:. In this graph, a ratio of 1
indicates that the change in throughput for the non-deadline-
aware traffic is of the same relative magnitude as the change
in bottleneck bandwidth. As a result, the relative bandwidth
share of the non-deadline-aware traffic is unchanged. It can
be seen that only in the scenarios with 50 sessions, the
relative bandwidth share of the non-deadline-aware traffic is
significantly reduced. In general however, with an average ratio
of 1.00, the fairness with regular TCP traffic is maintained.

VI. CONCLUSIONS

In this paper, a deadline-aware congestion control strategy
was presented based on the congestion avoidance phase of the
TCP New Reno congestion control mechanism. By introducing
deadline information at the transport layer, the modulation
of the congestion window can be dynamically adapted to
minimize the number of deadline-missing flows. The proposed
approach only requires changes at the sender side and is fully
transparent in the network. The deadline-aware congestion
control mechanism has been thoroughly evaluated in both a
VoD-only scenario and in co-existence with live streaming
sessions and regular non-deadline-sensitive TCP traffic. It
was shown that in a VoD scenario, the minimum bottleneck
bandwidth required to finish all streaming sessions without
deadline misses could be reduced by 16% on average. When
considering more general scenarios, an average bottleneck
reduction of 11% was achieved while maintaining a fair
bandwidth share for regular TCP traffic.
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