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Abstract—In today’s Self-Organizing Networks (SONs) we dif-
ferentiate between closed-loop functions, which have a predefined
absolute goal, and such that form an action plan that achieves
a high expected utility. Both function types perform changes
to Configuration Management (CM) parameters, but only the
second type may re-adapt the action plan in order to maximize
the utility. A SON verification approach is one member of this
particular function class. It is seen as a special type of anomaly
detection that divides the network into sets of cells, triggers an
anomaly detection algorithm for those sets, and finally generates
CM undo actions for the abnormally performing cells.

Unfortunately, one of the challenges verification strategies
are facing are network topology changes. Typically, cells are
switched on or off when energy saving features are enabled.
However, enabling or disabling cells can negatively influence a
verification mechanism which may create a suboptimal action
plan or even blame certain CM changes that actually did not
harm performance. In order to overcome this issue, we present
an approach that is based on Steiner trees. In graph theory, a
Steiner tree is a Minimum Spanning Tree (MST) whose costs can
be reduced by adding additional vertexes to the graph. We use
this tree to filter out anomalies caused by topology adjustments
and such induced by other CM changes.

In this paper, we also evaluate the proposed solution in
several scenarios. First, in a simulation study we evaluate the
functions that are used to build the Steiner tree. Second, we
show how it positively affects the network performance when
having concurrent CM and topology changes.

I. INTRODUCTION

The Self-Organizing Network (SON) concept as we know
today has been developed to deal with the complex nature
of standards like Long Term Evolution (LTE) and LTE-
Advanced. It has the purpose to optimize the operation of the
network, supervise the configuration and auto-connectivity of
deployed Network Elements (NEs), and enable automatic fault
detection and resolution [1]. In order to perform those tasks,
though, such a network has to be managed by a set of au-
tonomous SON functions that are designed to perform specific
network management tasks. Usually, they are implemented as
closed control loops which monitor Performance Management
(PM) and Fault Management (FM) data, and depending on
their objectives, change Configuration Management (CM) pa-
rameters. For example, the Mobility Robustness Optimization
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(MRO) function tries to minimize the call drops, radio link
failures as well as unnecessary handovers by adjusting the
Cell Individual Offset (CIO) [2].

However, there is another class of SON functions, namely
such forming a course of actions that have high expected utility
rather than having a predefined absolute goal. Such functions
plan under uncertainty, either because they have incomplete
information about the world, or because their actions have
uncertain effects on the environment. In literature, this type
of planning is referred to as Decision-Theoretic Planning
(DTP) [3]. A common approach for overcoming uncertainties
is to make the actions of the plan depend in some way on the
information gathered during execution. This particular strategy
is referred to as feedback planning.

One representative of this class is SON verification [4]-
[6]. It is seen as a special type of anomaly detection which
monitors CM changes within the network and rolls back
those causing abnormal behavior. Based on those changes,
a verification approach partitions the network into sets of
cells, also called verification areas, assesses the performance
of each area by triggering an anomaly detection algorithm, and
generates a CM undo action for those that are abnormally per-
forming. Furthermore, there are uncertainties when it comes
to executing undo actions that impact a shared set of cells.
Hence, a verification mechanism may serialize the deployment
process and successively observe the impact of each action.

One problem that verification approaches still have, is how
they react to topology changes. Usually, such changes occur
when cell energy saving features are activated. However,
disabling or enabling cells creates uncertainties during the
process of verification which may lead to a suboptimal action
plan or, even worse, the deployment of suboptimal actions.
For instance, turning on a cell may cause an anomaly at
its neighbors since they did not expect a topology change
like that to happen. In a similar manner, we are facing this
problem when we do the opposite, namely turning off a cell.
The neighbors may expect that the cell is always switched
on during its operation. Furthermore, the fact that we need
to enable or disable cells typically means that the network
and service demands have drastically changed, e.g., because



numerous User Equipments (UEs) have either entered or left
the network. An event like that can also induce anomalies
at already enabled cells for which a verification mechanism
cannot provide an appropriate corrective undo action.

In order to become more resistant against topology changes,
we present a verification approach based on Steiner trees. The
Steiner tree problem is a combinatorial optimization problem
that tries to reduce the length of a Minimum Spanning Tree
(MST) by adding extra vertexes and edges to the initial edge
weighted graph. Those additional vertexes are referred to as
Steiner points whereas the initial nodes are called terminals.
In general, Steiner points represent cells that can be turned on
or off during their operation whereas terminals describe cells
that remain always switched on. Based on whether a cell is
used as a Steiner point to form the tree, we decide if and how
to consider it while generating the undo action plan.

The remainder of this paper is structured as follows. In Sec-
tion II we describe the generic structure of feedback planning
functions and the components of a verification mechanism.
Section III gives an overview of the challenges experienced
by SON verification. In Section IV we present our concept.
Section V is devoted to the evaluation of the introduced
approach. The paper concludes with the related work in
Section VI and a summary in Section VIL

II. BACKGROUND

SON functions that utilize feedback planning operate in
three phases: an observation, an assessment, and an action
phase. In the following sections, those phases are described
and examples are given. It should be noted that the examples
focus on SON verification, as introduced at the very beginning
of this paper.

A. Observation phase

Let us start by denoting the set of all cells in the network
as Y. This gives us the opportunity to define the scope of
a feedback planning function which is a set of cells XM,
where ¥ C X. Those cells are actively monitored by the
function. Moreover, ¥ is further split into nonempty subsets
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In SON verification, those areas are referred to as verification
areas and are formed by taking the reconfigured cell, also
known as the target cell, and a set of cells surrounding it,
called the rarget extension set. In particular, the extension set
consists of neighboring cells that are possibly impacted by
the reconfiguration of the target, e.g., by taking all first degree
neighbors. Note that two cells are called neighbors only if
there is a neighbor relation that allows them to handover UEs
between each other.

In addition, the size of an observation area can be subject
to the location of the cells. For instance, in SON verification
a cell that is part of dense traffic or known trouble spots may

get forced to join a verification area, even if it was not initially
supposed to do so.

B. Assessment phase

During this phase, the performance of each observation area
{EM' . ZM'} s assessed. In SON verification, anomaly
detection algorithms are used for that purpose. By definition,
an anomaly is understood as “something that deviates from
what is standard, normal, or expected” [7]. Usually, the target
of verifying CM changes is to detect abnormal cell behavior.
As a result, the network has to be profiled, i.e., analyzing
the network performance indicators and specifying how the
network should usually behave [8]. Once the cell performance
considerably differs from all learned states of the normal
network operation, it is marked as anomalous and is later
considered during the plan generation and action execution
phase. In literature, several approaches have been introduced
for learning faultless states, e.g., by making use of clustering
algorithms like K-means [9] or Self-Organizing Maps [10].

C. Action phase

During the action phase, a feedback planning function
creates a deployment plan that specifies the action execution
order. Let us denote the set of all actions as U and the plan
as PU. The plan itself is a partition [11] of U, i.e., a grouping
of U into non-empty subsets {U7, ..., U/}, also called blocks
or steps. Thereby, the following conditions must hold:
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In SON verification, an element of U’ is a CM undo action for
the target cell of a verification area. The action itself includes
the IDs of the target and the cells of the extension set as well
as a previous stable configuration of the target.

In addition, while creating the plan a feedback planning
function has to consider two aspects. At first, it has to make
sure that PY = {U], ..., U!} is collision-free, i.e., for any two
actions uj, uy, € U] 6(uj,ux) = 0. Here, function 6 returns
the cells due to which two actions are marked as being in a
collision, i.e., 0: U x U — P(X).

In SON verification, the outcome of 6 are the anomalous
cells that are shared between the verification areas of the
target cells for which the undo actions are generated. This is
also known as a verification collision [12], i.e., an uncertainty
which undo action to execute. This procedure delays the verifi-
cation process since in the worst case scenario the deployment
plan PV = {U],...,U!} can be completely serialized, i.e.,
Vi: |U]| = 1.

Second, a deployment plan PU has to be gain-aware, i.e.,
Guy) > --- > Gg(U!), where G: P(U) — R is a function
that returns the gain of deploying a set of actions. In SON
verification, the deployment order maximizes the probability
of returning the network performance to the expected state.
Consequently, CM changes that are most likely causing a
degradation must be undone at first.
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Figure 1. Example of a 3-slot observation and 2-slot action window

D. Time windows

A feedback planning function requires two time windows,
as shown in Figure 1. The first one is known as the observation
window, during which each observation area is monitored.
The length of a single slot depends on the PM granularity
periods [1], i.e., the PM data collection frequency, whereas
the total number of required slots depends on the algorithm
used during the assessment phase.

The second window is referred to as the action window
and is used for the deployment of the actions as well as
for assessing their impact on the network performance. The
length of an action window slot depends on the delay until
the impact of those actions becomes visible in the PM data.
Furthermore, the total number of available slots depends on
the function type. In SON verification, the number is subject
to the environment, e.g., in a highly populated area we may
have a short action window since the restoration of the network
performance has to be carried out as fast as possible.

III. PROBLEM ANALYSIS
A. Problems

In general, topology changes induce uncertainties while a
CM verification mechanism is running. They may lead to a
suboptimal deployment plan and even to the rollback of CM
changes that are not harming performance. Let us explain the
problem by giving an example. Figure 2 depicts an exemplary
network that consists of 9 cells and 10 cell adjacencies. Note
that a verification area consist of the first degree neighbors of
the target cell. Let us assume that cells 2, 4, and 7 have been
reconfigured, cell 6 has been disabled, and cells 3 and 8 have
degraded. Hence, for this network snapshot we have three undo
actions uso, u4,u7 and a verification collision because of the
undo actions for cell 2 and cell 4. The collision occurs due to
cell 3 which happens to be anomalous and shred between the
two verification areas. Thus, a permissible deployment plan
PYis {{ug, ur}, {ua}} or {{ua, ur}, {ua}}.

However, the situation becomes different as soon as topol-
ogy changes are allowed. For instance, switching a cell on
or off creates a potential for anomalies. One reason for that
are incomplete profiles. As stated in Section II, a profile
defines how cells should usually behave, i.e., it also specifies
how a cell should behave with respect to its neighbors, as
well as defines the expected performance from its neighbors.
Typically, the assessment of the neighbor performance is based
on handover Key Performance Indicators (KPIs) like the ping-
pong rate or the Handover Success Rate (HOSR). However,
if we add or remove a neighbor of a cell, and do not have
an updated profile that specifies how the cell should behave

O Cell
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Figure 2. Exemplary network of 9 cells and 10 cell adjacencies

afterwards, we may induce an anomaly and even mark for an
undo changes that did not do any harm and were actually
required. In the aforementioned example, the enabling or
disabling of cell 6 may be the actual anomaly cause, and not
the CM changes made at cells 2, 4, and 7.

Furthermore, besides CM changes there are events that may
cause anomalies and which cannot be corrected by executing
an undo action. Usually, they are triggered by UE movements,
or more precisely, by users unexpectedly entering or leaving
the network. If a rather large group of UEs joins or leaves,
it may induce an unusually high or low load and throughput.
For example, the anomalies at cell 3 and 8 in Figure 2 can
be caused by the recent movements of such UE groups. As
a result, a verification mechanism would need to dismiss the
deployment plan in order to prevent the rollback of regular
changes, and rely on an Energy Saving Management (ESM)
function [13] to turn on the appropriate cells.

B. Causes

One of the causes is the delay until we get statistically rel-
evant PM data. Significant changes in KPIs like the cell load,
throughput, or HOSR can be observed only when enough users
are actively using the network, e.g., during the peak hours of
a weekday. As a result, the verification of certain CM changes
is possible only when such data is available. Moreover, this
also induces delays while updating an incomplete profile.

Another cause is the presence of a high number of buffered
undo actions. In such a situation the probability of rolling
back regular changes increases if, in addition to that, topology
changes are made. Table I visualizes the deployment plan
generated for a real LTE network. As shown, we have a high
number of undo actions allocated already to the first action
window slot. In order to lower the probability of undoing
good changes we can distribute the undo actions to more plan

Table 1
UNDO ACTION PLAN FOR AN LTE NETWORK [12]

Action Undo actions | Undo actions
window slot 2013-11-28 2013-12-04
1 166 52
2 2 0
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Figure 3. Traffic analysis of an LTE cell

blocks and assess in this way their impact on the network
performance more frequently. However, this will also delay
the process of deploying necessary undo actions. In [12], we
have shown that the unnecessary increase of the plan blocks
has a negative impact on the network.

The reason why topology changes are required is given in
Figure 3. It shows the performance statistics of an LTE cell
located near a stadium in a large city. In particular, it represents
the KPI value as time series. The orange line is the mean, the
orange shadowing the standard deviation in the profile and the
blue line is the actual value. The considered KPI, used also
for computing the profile, is the number of Radio Resource
Control (RRC) connection setup attempts. February 13" 14"
as well as 20*" and 21" are weekends, which is clearly visible
in the profile. However, the observed traffic line also shows
that the actual traffic does not always follow the profile which
was mainly caused by events that were taking place in the
stadium. The solution would be to enable hot-spot cells that
would take over traffic from the macro cell.

IV. CONCEPT

The question that we aim at answering is how to minimize
the negative impact on SON verification while facing topology
changes. Generally speaking, this can be seen as a Steiner tree
problem [14] which is very similar to the MST problem [15].
For a given undirected edge weighted graph, we have to find
a tree that interconnects all vertexes and, at the same time, is
of the shortest length. The difference between the MST and
the Steiner tree problem is that to solve the latter one we
may include extra vertexes to the graph that reduce the length
of the spanning tree. Those new vertexes are called Steiner
points, whereas the initial nodes of the graph are referred to
as terminals.

However, the Steiner algorithm does not give us directly a
solution to the problem. First of all, we need a metric that
defines the state of a cell as well as a function that computes
the weights of the edges. Second, we need to define which
entities in the network are marked as terminals and which
as Steiner points. In the following sections, we are going to
describe each of those steps as well as give an example.

A. Cell state and weighting function

The Steiner algorithm takes an undirected edge weighted
G = (V, E,d) as input, where V is the set of vertexes, F the
set of edges V' x V, and d a function computing the edge

weights. In our case, the vertexes represent cells, whereas
the edges neighbor relations. To define d, though, we need
to consider several steps.

At first, for each cell in the network we take n utilization
KPIs k;, where i € [1,n] and all k; are element of R.
Thereby, every k; represents the value of the given utilization
KPI. Examples of such KPIs are the current cell load or
throughput. Those KPIs are put together in a KPI vector

k = (k1,...,kyn), ie., k € R™. Furthermore, for the set of
all cells ¥, K = {ky,...,k,,} is called the KPI utilization
vector space, where |X| = |K| = m.

Next, for each utilization KPI k; a KPI anomaly level value
a; € R is computed. It represents the deviation from the
expected KPI value. Thereby, for each cell an anomaly level
vector a = (ay, ..., a,) is formed, where a € R™. In addition,
A = {ay,...a,,} is called the anomaly level vector space,
where |A| = |K]|.

However, the computation of vector a = (a1,...,a,)
depends on the cell type. First, we have cells that are never
turned off, which in this paper are referred to as static cells.
The most important fact about such cells is that they have a
profile vector p = (p1,...,pn). Each element p; can be seen
as a value or even as an interval of values that specifies the
usual range of k; in vector k. The calculation of the anomaly
level vector is done by function ¢ (Equation 1) which takes a
profile vector p and the current KPI vector k and returns the
corresponding anomaly level vector a.

p:PxK— A (D

Function ¢, however, cannot be applied to cells that can be
switched on or off, also called on-demand cells. The reason
is the lack of a profile. Therefore, instead of using an own
profile, an on-demand cell takes the anomaly level vectors
a; € A and cell UE reports r; € R of its neighbors. Let
us denote the number of those neighbors as v, i.e., j € [1,v].
Hence, we get a modified function ¢’, as shown in Equation 2.

¢:{a;...a,} x{r;...t,} - A ()

It should be noted that a report r; is a vector that includes
information like the number of UEs served by a cell.

Finally, we define d as a function that takes the anomaly
vectors of two cells, as presented in Equation 3.

d: AxA—R 3)

B. Steiner tree-based verification algorithm

1) Steiner point selection: To begin with, let us split the
set of all cells ¥ into the set of all static cells ¥°¢ and all
on-demand cells €, where ¥°¢ UX9C¢ = ¥, All elements
of ¥5¢ are considered as terminals whereas all disabled on-
demand cells are marked as Steiner points. However, enabled
on-demand cells are evaluated by a Steiner point assessment
function ¢, as follows:

1 YC x K 5 VvEuUd 4)

The decision to exclude an on-demand cell from the set of
Steiner points V° depends on the most recent KPI vector k.



For instance, if it is continuously reporting a low load, it will
be set as a Steiner point. On the contrary, an on-demand
cell that is continuously experiencing a high load will be
considered as a terminal. The reason is that the cell may be
still required in the future.

2) Algorithm description: The Steiner tree problem is an
NP-complete problem which is why in practice heuristics are
most commonly used. A well known algorithm is the one
introduced by Kou, Markowsky and Berman [16]. Algorithm 1
lists a slightly modified version of that approach.

The algorithm itself starts by selecting the set of Steiner
points V¥ C V (line 1). The remaining vertexes, denoted as
VT (line 2), are set as terminals. In line 3, an undirected
distance graph D¢ (VT) is formed. The set of vertexes of
D (V1) is denoted as V. The edge wights correspond to the
costs given by the shortest paths between the terminals in G.
To compute those distances we use Dijkstra’s algorithm [15].

As a next step, Dg(V7T) is transformed to an MST, which
is denoted as Tp (line 4). In particular, we take Kruskal’s
algorithm [15]. Should the outcome yield multiple trees, an
arbitrary MST is chosen (lines 5-7). The selected tree is then
transformed to a graph G’ by replacing each edge by the
corresponding shortest path from G (line 8). The newly formed
graph G’ is transformed to an MST T’ (line 9) by using
Kruskal’s algorithm.

Finally, the Steiner tree 75 = (V7" ET") is formed by
continuously removing non-terminal leaves from 7" (line 10).
The set of unnecessary Steiner points V7 is the complement
of the set of Steiner points V*° and the vertex set VTS, as
shown in line 11.

3) Corrective action: After executing the algorithm, the on-
demand cells represented by the Steiner points or terminals
that form the Steiner tree 7°° are allowed to be turned on.
The cells represented by the set of unnecessary Steiner points
VI are disabled.

Algorithm 1: Steiner tree algorithm
Input: Undirected, edge weighted graph G = (V, E, d)
Result: Steiner tree 7° of G and a set of unnecessary
Steiner points VE C V
Select Steiner points V' C V;
VT «— V\ V5,
Construct a complete undirected distance graph Dg(V7T);
Compute a minimum spanning tree T, of Dg(V7);
if Multiple Tp,, present then
Select an arbitrary minimum spanning tree;
end
Form G’ by replacing each edge in T, by the
corresponding shortest path from G;
9 Form a minimum spanning tree 7" from G’;
10 Compute T = (VT° ET®) by continuously removing
leaves from 7" that are ¢ V7
n VE v\ vT°,

® N A N B W N =

C. Example

Let us assume that we have a network that consists of four
static and three on-demand cells. Let the static cells have an
ID between 1 and 4 whereas the on-demand cells an ID within
the range of 5 to 7. Figure 4(a) shows the existing neighbor
relations as well as the state of the on-demand cells. As shown,
cell 5 is the only enabled on-demand cell.

The input graph G fed into the Steiner algorithm is shown
Figure 4(b). The edge weights are based on the cell load,
i.e., the higher the worse. Furthermore, we have the following
initial sets of Steiner points and terminals: V' = {vg, v§, v7}
and VT = {vf oI oI vT}. The complete undirected dis-
tance graph Dg(V7T) is visualized in Figure 4(c). The sub-
sequent MST transformation yields Tp,, as outlined in Fig-
ure 4(d). Finally, the Steiner tree T3 is given in Figure 4(e).
Due to their assignment in TS, cells 6 and 7 are switched on
whereas cell 5 is turned off.

V. EVALUATION

A. Simulation environment

The simulation environment is called the SON Simulation
System (S3) [12]. It consists of a set of closed-loop SON
functions, a verification mechanism, as well as an LTE radio
network simulator. The latter one is also part of the SON sim-
ulator/emulator suite [17], whose parameters are summarized
in Table II. Note that the simulated scenario covers parts of
Helsinki, Finland.

The LTE simulator performs continuous simulation by
tracking the changes in the network over time. The time itself
is divided into time slices, also called simulation rounds, which
represent PM granularity periods. At the beginning of a round,
the simulator configures the network as defined by the CM
setup. During a round, a group of 1500 uniformly distributed
users follow a random walk mobility model and actively use
the mobile network. In addition, up to four additional UE
groups may randomly join or leave the network. At the end
of a round, PM data is exported for each cell and is used
as input by every SON function. Those functions may then
perform CM changes whose impact can be assessed during
the next simulation round.

Furthermore, the following cell KPIs are considered by the
verification mechanism:

¢ Channel Quality Indicator (CQI): computed as the
weighted harmonic mean of the channel efficiency. The
efficiency values are listed in [18].

o HOSR: counts the number of successful handovers di-
vided by the total number of handovers.

« Handover ping-pong rate: the number of handover ping-
pongs [1] divided by the total number of handovers.

o Cell load: calculation based on the number of utilized
Physical Resource Blocks (PRBs) by 50% of the users.

Note that the first three are used for degradation detection, as
defined in [12], whereas the last one by the Steiner approach.
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Figure 4. Concept example with 4 terminals (in gray) and 3 Steiner points (in white)

Table 11 B. Parameter selection

SON SIMULATION SYSTEM SETUP . .
1) Function ¢: An element p;, where i € [1,n], of a profile

Parameter Value vector p = (p1,...,Pn) is a sequence of ¢ observations which
Network Frequency 2000 MHz were collected while the network was operating as expected.
Bandwidth 20 MHz During this phase, all on-demand cells were disabled. The
Number of PRBs 100 outcome of ¢ is calculated by taking the sequence of obser-
Shannon gap -1.0 dBm vations of p;, as well as the current k;, and computing the
Thermal noise -114.447 dBm z-score [20] of all ¢ + 1 values. Each z-score represents the
Pathloss coefficient La 128.1 distance between the current value and the sample mean in
Pathloss coefficient Lb 37.6 units of the standard deviation. Here, the z-score of k; is the
Path loss model UMTS 30.03 [19] KPI anomaly level a;.

Downlink scheduler mode CBR mode To give an example, suppose that pr.qq contains {70.1%,
Shadowing correlation distance 50.0 m 70.2%} and the current k7,44 is 80.9%. Hence, after applying
Shadowing standard deviation 8.0 dB  we get a load anomaly level ar,qq Of 1.15, i.e., the current
RLF threshold 6.0 dB. krLoaq 18 1.15 standard deviations above the sample mean.
RLF disconnection timer 0.3 sec 2) Function ¢': Tt computes the weighted sum of the load
RLF reconnection timer 1.0 sec anomaly levels of the direct static neighbors of an on-demand
Handover hysteresis threshold 20 dB cell. The weight itself equals the served UE ratio, i.e., the
Handover ping-pong detection duration 4.0 sec number of UEs served by a direct neighbor divided by the
Handover states detection offset 1.0 sec total number of UEs served within the area.

Handover timeout period 3.0 sec 3) Function d: In order to prevent edge weights € (—oo, 0],
Total macro cells 32 macro cells all load anomaly level values are put within the interval of
Total small cells 9 small cells [1;2]. The weight of an edge in G is computed by summing
Antenna height (macro cells) 17-20 m up the load anomaly level of the two cells. Furthermore, if one
Antenna height (small cells) 5.10 m of the cells is an on-demand cell, only a portion of the edge
Simulated time during a round 5400 sec weight is taken by multiplying it with a Steiner edge factor. In
Size of the simulated area 50 km? addition, if an on-demand cell gets enabled and shortly after
Number of users 1500 uniform that disabled, the Steiner edge factors of all edges, leading to
User speed 6 km/h the vertex repressing it, are increased.

User movement Random walk 4) Function v: Function ¢ is based on exponential smooth-
Constant bit rate requirement 175 Kbps ing of the utilization KPIs, in particular, the cell load. In case

the smoothed cell load value falls below a threshold of 15%,
an on-demand cell is considered as a Steiner point, otherwise
as a terminal.
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Figure 5. Evaluation of the edge weighting function d

C. Results

1) Edge weighting function: We start with an evaluation of
how function d impacts the Steiner tree 7°°. In particular, we
are interested in how the factor used to multiply the weight
between an on-demand and another cell affects the outcome.
To do so, we deploy an additional user group that consists of
150 UE to one particular part in the network that is covered
by 3 of the 9 on-demand cells. This should induce an anomaly
in the surrounding macro cells.

The experiment starts with a Steiner edge factor of 1.0
which is decreased by 0.1 after every fifth simulation round.
Note that all cell states are reset after changing the Steiner
edge factor. Figure 5(a) shows the results, in particular, the
percentage of on-demand cells that get enabled for the given
Steiner edge factor. For a factor between 1.0 and 0.8, none of
the on-demand cells are switched on, i.e., no Steiner points
are added to the graph. After decreasing its value to 0.7, the
first on-demand cells are allowed to be switched on. When
selecting a factor of 0.6, approximately 33% of all on-demand
are enabled. A factor of 0.5 allows roughly 60% of those cells
to be added to the Steiner tree, whereas a factor of 0.4 and
lower permits all on-demand cells to become active.

Figure 5(b) shows the average load anomaly level of all
on-demand cells as well as all of their static neighbors. As
presented, for a Steiner edge factor of 0.6 or less, the z-score
ranges within approximately the same interval. Note that all
figures represent 95% confidence intervals that are computed
around the sample mean of a certain number of consecutive

test runs. Here, the total number of test runs is 10.

2) Steiner point assessment function: Next, we are going
to test function ¢, which basically converts a Steiner point to
a terminal and vice versa. Since it is based on exponential
smoothing, we will evaluate the parameter used to update the
smoothed value. We start with an update factor of 1.0 and
decrease it gradually by using a step size of 0.1. In contrast to
the previous setup, the evaluation window is set to 10 rounds.
We start with the same setup as before, however, after the
fifth round the UE group is removed. Afterwards, we count
the simulation rounds during which the enabled but no longer
necessary on-demand cells stay switched on.

Figure 6 gives us the results of this observation after 10
test runs. For a factor of 1.0, the on-demand cells are almost
immediately disabled after removing the group. It is indicated
by the low percentage of simulation rounds during which cells
remain turned on. However, as we start decreasing the update
factor, more on-demand cells stay switched on. For a factor of
0.2 none of the cells are disabled, even though the UE group
has disappeared.

3) Compared strategies: On the one hand, we have the
Steiner tree-based verification, as introduced in Section I'V. For
this setup, the cells that are verified by the Steiner algorithm
are not processed by the CM verification process. On the other
hand, we have only CM verification, as presented in [12]. This
setup represents the verification strategy that is being used
today. It monitors the activity of all SON functions, including
those optimizing the energy consumption, and rolls back the
changes harming performance.

4) Steiner tree-based verification: To begin with, we allow
a Coverage and Capacity Optimization (CCO) function [1]
to optimize the antenna tilt of 16 of the 32 macro (static)
cells. Those cells have at least one small (on-demand) cell as
a neighbor. Second, in order to trigger the wake up or sleep
mechanism of the small cells, we insert four UE groups that
have the following size: 150, 75, 85, and 120 users. Hence,
we should see simultaneous CM and topology changes.

In total, we have 7 test runs each lasting 20 rounds.
Moreover, after every fifth round we randomly change the
UE group. The selection is made by adding all UE groups
to a list, permuting the list, where all permutations occur with
equal likelihood, and selecting the first item. Every time we
change the UE groups, we measure the average anomaly level
of each of the 16 macro cells. Hence, we have 28 samples
for each of those cells. It should be noted that the Steiner
edge update factor is set to 0.6 whereas the smoothing update
factor to 0.5. The selection is motivated by the results from
the experiments that are described in Sections V-C1 and V-C2.

Figure 7 visualizes the results. As outlined, the Steiner tree-
based verification approach manages to improve the anomaly
level of all 16 cells, i.e., putting it near zero which is the
expected state. Especially the anomaly level of cells 6, 9, 10,
18, and 24 is significantly changed. On the contrary, using
only CM verification leads to a worse anomaly level, which
is caused also by the undo of CCO changes. Those changes
were blamed although they did not do any harm.
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VI. RELATED WORK

The concept of SON coordination [21], [22] can be seen
as a partial solution to the problems outlined in this paper.
It is referred to as a pessimistic approach that specifies rules
required for the detection and resolution of known conflicts
between active SON functions. Hence, it prevents conflicting
functions from getting active, rather than assessing the network
performance after deploying the CM changes. For example,
conflicts occur when SON functions operate on shared CM
parameters within the same physical area, or when the activity
of one function affects the input measurements of another one.
Therefore, a coordination approach can be used for preventing
rollback decisions while changing the topology of the network
and vice versa. However, this will completely serialize the two
operations which means that we may either prevent important
undo actions from being deployed because cells have been
turned on or off, or hinder cells from getting enabled since
the verification process is still processing its deployment plan.

Within the SOCRATES project [23] the idea of having a
function that detects undesired behavior in SONs is discussed.
The authors distinguish two types of undesired behavior:
oscillations and unexpected absolute performance. Into the
first category fall CM parameter oscillations, whereas the
second one includes unexpected KPI combinations, like a
high Random Access Channel (RACH) rate while having low
traffic. Despite the given ideas, neither a concept is given, nor
solutions to SON verification-related problems are presented.

In particular, the issue of having concurrent topology changes
is neglected.

In [24], a framework is proposed for detecting anomalous
network behavior, performing root cause analysis and provid-
ing a corrective action. It forces each NE to observe its own
operation by measuring several types of performance indica-
tors which are then uploaded to the operator’s database. The
anomaly detector determines whether the data is significantly
deviating from the expectations. In the case of an anomaly,
the diagnosis component may suggest a corrective action to
the operator. Topology changes are not considered by the
framework, i.e., it has the shortcomings of a CM verification
approach, as described in Section III-A.

In [25], an anomaly detection technique for cellular net-
works has been introduced. It is based on the incremental clus-
tering algorithm Growing Neural Gas (GNG) which partitions
the input data into smaller groups. Those groups represent sets
of input data that have similar characteristics. The presented
method is referred to as Fixed Resolution GNG (FRGNG)
and targets the problem of representing the input data and
determining when to stop sampling PM data. The solution does
not take into account the issues caused by topology changes,
i.e., the CM verification problems apply for it as well.

VII. CONCLUSION

In today’s Self-Organizing Networks (SONs), we can distin-
guish between two generic types of functions. First of all, we
have closed-loop SON functions which monitor Performance
Management (PM) and Fault Management (FM) data from
the network and change Configuration Management (CM)
parameters based on a predefined absolute goal. Second, there
is a class of functions that instead of following an absolute
goal, form a sequence of actions, also called a deployment
plan, which has a high expected utility. This plan can be re-
adapted during execution in order to maximize the utility. One
representative of this category are SON verification strategies.
A verification approach is seen as a three step process during
which we partition the network into sets of cells, trigger an
anomaly detection algorithm, and generate undo actions for
CM changes causing performance degradation.

However, changing the network topology while having
the goal of saving energy may negatively impact the undo
planning process. By switching on or off a cell, a verification
mechanism may wrongly blame other CM changes, roll them
back and even inappropriately re-adapt its deployment plan.
To overcome this issue, we present a Steiner tree-based
verification solution. A Steiner tree is a Minimum Spanning
Tree (MST) whose total costs can be reduced by adding new
vertexes to the graph. Those extra nodes are the cells that can
be enabled or disabled. Based on the outcome, we are able
to state whether a certain anomaly has been caused by such
on-demand cells or by other CM changes.

The evaluation of our approach has been carried out in a
simulation environment. The results show that the proposed
method is able to handle topology changes and prevent regular
CM changes from being undone.
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