
The Curious Case
of Parallel Connections in HTTP/2

Jawad Manzoor
Université Catholique de Louvain

Belgium
Email: jawad.manzoor@uclouvain.be

Idilio Drago
Politecnico di Torino

Italy
Email: idilio.drago@polito.it

Ramin Sadre
Université Catholique de Louvain

Belgium
Email: ramin.sadre@uclouvain.be

Abstract—Web pages and web-based services are becoming
more and more complex. The average page size for the Alexa
top 1000 websites in 2016 has reached 2.1 MB and fetching a
page requires requests for 128 different objects. Although the
bandwidth has been increasing exponentially in the last few years,
the web experience is not improving at the same pace because
of latency issues in HTTP/1. The HTTP/2 protocol aims to solve
these issues by allowing clients and servers to multiplex HTTP
requests and responses on a single TCP connection. If HTTP/2
is widely adopted, it can have enormous benefits not only for the
user experience, but also for the servers and the network. Since
clients do not have to open multiple parallel connections to avoid
the problem of head-of-line blocking in HTTP/1.1, the number
of concurrent TCP sessions can be significantly reduced.

However, although multiplexing is one of the main features
of HTTP/2, nothing actually prevents a client from opening
multiple HTTP/2 connections to a server. In this paper we
investigate the behavior of HTTP/2 traffic in the wild. We perform
experiments to examine if web browsers use a single connection
per domain over HTTP/2 in practice. Contrary to popular belief,
our experiments on the traffic of a large university campus
network and a residential network show that a significant number
of HTTP/2 accesses are performed using parallel connections to
a single domain on a server. We present two possible hypotheses
for this behavior and discuss its implications for the future of
the web.

I. INTRODUCTION

The Hypertext Transfer Protocol (HTTP) is the most popular
protocol for delivering web content. In the last two decades the
web content has evolved from simple text and images to online
gaming, video conferencing, music streaming, social network-
ing etc and its complexity is constantly increasing. According
to [1] the average page size for the Alexa top 1000 websites in
2016 has reached 2.1 MB and fetching a page requires requests
to 128 different objects. Latency is another major issue faced
by modern web services. Even though the bandwidth has
been increasing exponentially in the last few years, the web
experience is not improving at the same pace because of
latency issues in HTTP. This triggered a major update to the
HTTP protocol. In 2009 Google developed the SPDY protocol,
which introduced several features to address the limitations of
HTTP/1.1. It gained a lot of popularity and was deployed on
some of the most popular websites like Google, Facebook and
Twitter. In 2015, the Internet Engineering Task Force (IETF)
specified the HTTP/2 [2] protocol which is heavily based
on SPDY and aims at increasing the performance of modern

web applications. As of May 2016, more than 120K domains
support HTTP/2 compared to just over 600 in May 2015 [3].
HTTP/2 is supported by all major PC and mobile browsers
including Chrome, Firefox and iOS Safari, and popular web
servers such as Apache, nginx, OpenGSE and LightSpeed [3],
[4]. It is evident that HTTP/2 is gaining popularity and drawing
great attention from the web industry.

A. Motivation

The much awaited update to HTTP is officially complete
and is drawing great interest from web industry and research
community. HTTP/2, like its predecessor SPDY, allows the
client and server to multiplex HTTP requests and responses
on one single TCP connection, while avoiding the problem of
head-of-line blocking of HTTP/1.1. In this way, one can expect
that a wide deployment of HTTP/2 will not only improve the
latency of web services, but also bring great benefits for web
servers due to reduction of concurrent TCP sessions. Similarly,
it would benefit network operators thanks to the reduced
resource usage in firewalls, NAT tables, or flow monitors.

However, although multiplexing requests over a single TCP
connection is one of the main features of HTTP/2, nothing
actually prevents a client from opening multiple HTTP/2
connections to a server. We have seen in the past that web
browsers do not always follow the original design of protocols.
Instead, they implement the most optimal solution with respect
to performance. This motivates us to study empirical HTTP/2
traffic and examine how connections are used in practice.

B. Contribution

We study the behavior of HTTP/2 and SPDY clients when
establishing and maintaining connections to web servers. To
this end, we collect traffic data in two different networks and
detect concurrent connections established by the clients.

We show that clients indeed open multiple HTTP/2 and
SPDY connections to servers and that they actively use those
connections. We also show that the number of concurrently
opened connections vary with the type of web application.
Considering the fact that prior studies [5], [6], [7] have
evaluated the performance of HTTP/2 under the assumption
that there is always a single connection, we believe that this
new insight into the real usage of HTTP/2 will lead to more

978-3-901882-85-2 c© 2016 IFIP



accurate traffic models for planning and management tasks.

Our paper is structured as follows. In Section II, we compare
HTTP/1 and HTTP/2 and discuss related work. We describe
our methodology and data collection procedure in Section III.
The results of our analysis are presented and discussed in
Section IV. The paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

HTTP is an application-level protocol developed in the early
nineties for delivering documents and other web resources
over the Internet [8]. As the web content evolved during
the last two decades from simple text documents to complex
web pages consisting of hundreds of resources, web browsers
started creating multiple connections to the server to fetch
these resources in parallel to increase performance. Modern
browsers create up to 13 connections per domain name [9].
On the server side domain sharding is used which further
increase the overall number of connections between a client
and server. This results in an increase in server load and
network congestion. HTTP/2 solves the above mentioned
issues of HTTP/1.1 by introducing multiplexing and also offers
several other new features. The evolution of the HTTP protocol
is summarized in Figure 1.

A. HTTP/2

HTTP/2 enables a more efficient use of network resources
and reduces latency by introducing several new features. We
discuss the most important ones next.

• Multiplexing: One of the most important features of
HTTP/2 is multiplexing. It allows clients and servers
to send multiple HTTP requests and responses asyn-
chronously in multiple streams on a single TCP connec-
tion. Responses can be interleaved, avoiding in this way
head-of-line blocking of HTTP/1.1.

• Compression: The header data is compressed to reduce
the overheads of redundant header fields. HPACK [10] is
used for compression.

• Server Push: It allows the server to proactively push
resources to clients. When a client requests a resource, the
server predicts the other resources related to it, and pushes
them along with the response of the original request. This
helps improving the page load time.

• Content priority: Some resources are more important than
others when rendering a page. A client is allowed to
specify the importance of each resource, so that it can
be transferred by the server in the preferred order.

B. Related work

We study the behavior of HTTP/2 and SPDY in the wild.
HTTP/2 is relatively new but its predecessor SPDY [11] has
been used for several years now and there are a number
of studies on its performance and on its comparison with
HTTP/1. Many important features of HTTP/2, such as mul-
tiplexing, compression, server push and content priority were
already present in SPDY.

Fig. 1. Comparison of HTTP versions

In [6] the authors identify the impact of network char-
acteristics and website infrastructure on the performance of
SPDY. They conclude that SPDY’s default use of a single
connection might be unwise in high bandwidth networks
because it leads to lower performance compared to HTTP/1,
which can exploit higher throughput by opening parallel
connections. The authors of [5] perform extensive tests with
both synthetic and real pages. They find that when there is
little network loss, SPDY has higher performance, but in high
loss scenarios the single connection hurts performance. In [7]
the authors perform experiments on HTTP/2 traffic focusing
on cellular networks. They draw similar conclusions as in [5],
i.e., HTTP/2 performance is reduced in cellular networks
because packet losses negatively affect HTTP/2 performance
due to the usage of a single TCP connection. In contrast,
our experiments show that the usage of a single connection
in SPDY and HTTP/2 is not always true and the browsers
create several parallel connections using these protocols in a
significant number of cases.

In [12] the authors compare SPDY’s single long elephant
flow to highly concurrent short-lived HTTP mice flows. They
also point out that SPDY’s single-connection approach has a
disadvantage because of inequitable TCP backoff compared to
HTTP/1, which uses multiple TCP connections. The authors
discourage connection proliferation, but recommend using a
small number of concurrent SPDY connections as a short-term
mitigation strategy. In this paper we show that this strategy
is in fact implemented by the major browsers supporting
SPDY and HTTP/2. Thus, ignoring this fact can lead to wrong
interpretations of SPDY and HTTP/2 performance evaluations.

Perhaps the most closely related work to ours is [13], in
which the authors do large-scale experiments to check the
adoption of HTTP/2 and test its performance. They observe
that HTTP/2 does not currently manage to serve a page using
a single TCP connection. They show that half of the websites
using HTTP/2 today use at least 20 TCP connections. The
reason is that most websites have implemented HTTP/1 opti-



mization techniques like domain sharding (splitting resources
across multiple domains), which causes browsers to create a
separate TCP connection for each domain. In our work we
show that even if domain sharding is removed, the browsers
still create multiple connections even to the same domain using
SPDY and HTTP/2.

III. DATASETS AND METHODOLOGY

A. Datasets

We rely on Tstat [14] to perform passive measurements and
collect data related to SPDY and HTTP/2 usage in different
networks. Tstat monitors each TCP connection, exposing flow
level information,1 including: (i) client and server IP addresses,
(ii) timestamps of the first and the last packets in each flow,
(iii) the amount of exchanged data, (iv) Server Name Identi-
fication (SNI) strings found in TLS handshakes, and (v) the
Fully Qualified Domain Name (FQDN) that the client resolved
via DNS queries prior to opening connections [15]. The latter
two fields are instrumental to classify traffic, since they expose
names of websites contacted by the users. We explore those
fields to characterize the usage of parallel connections by
SPDY and HTTP/2 considering different services.

In addition, Tstat classifies traffic per protocol by means of
a typical Deep Packet Inspection (DPI) approach. Specifically,
SPDY and HTTP/2 flows are identified by inspecting flags in
TLS handshakes. Tstat explores NPN/ALPN fields in initial
TLS messages. The Next Protocol Negotiation (NPN) and
Application-Layer Protocol Negotiation (ALPN) [16] are TLS
extensions that allows clients and servers to negotiate the
application protocol to be used in TLS connections. The
client and server advertise their supported protocols in its
Client Hello and Server Hello messages. A suitable protocol
that is common between the two is finally selected. Tstat
exports this list of protocols advertised in the TLS handshake,
thus allowing us to check the possible protocols used in the
connections.

We have collected traffic with Tstat in two different net-
works. Table I summarizes our datasets. The Campus dataset
has been collected at border routers of a campus network.
It includes traffic of around 15, 000 users in a European
university. The dataset covers wired workstations in research
and administrative offices as well as WiFi access points.
The Residential dataset has been collected at a Point of
Presence (PoP) of a European ISP, aggregating around 25, 000
households. ADSL and Fiber To The Home (FTTH) provide
access to the users. Ethernet and/or WiFi are used at home to
connect the end users’ devices, such as PCs and smartphones.

By the time of writing, the version of Tstat deployed in the
evaluated networks is only capable of identifying SPDY traffic
and HTTP/2 traffic up to its draft version 14. Thus, we miss
deployments relying on the final HTTP/2 version standardized
by the IETF in 2015.

1We adopt the classic definition for a flow, which is also implemented by
Tstat – i.e., client and server IP addresses, client and server port numbers and
transport layer protocol define a flow.

TABLE I
SUMMARY OF DATASETS (JAN-APR 2016)

Dataset Campus Residential

SP
D

Y

Flows 38 million 160 million
Bytes 7.3 TB 31 TB

FQDNs 66,952 268,827
2nd Level Domains 6,207 8,399

H
T

T
P/

2 Flows 4 million 21 million
Bytes 1.3 TB 6 TB

FQDNs 2,432 4,663
2nd Level Domains 208 298

In total, we have observed 198 million flows where SPDY
was negotiated, as well as 25 million HTTP/2 flows, during
4 months of data collection (Jan-Apr 2016). Table I lists the
number of server FQDNs contacted by means of each protocol.
We can see that users in the monitored networks reach more
than 5 k (250 k) FQDNs using HTTP/2 (SPDY), or 200
(8,000) names when considering only second-level domains.
Both protocols together account for more than 45 TB of traffic.
Thus, our datasets provide a large-scale view in terms of
number of users and services.

Finally, in the rest of the paper we will always evaluate
SPDY and HTTP/2 flows together, since both protocols have
the core feature of multiplexing and we want to know whether
they open a single connection with a server. We will however
look only at those flows transported over TCP/TLS, ignoring
for instance QUIC and non-encrypted HTTP/2, since the
former is by far more common in current traffic. UDP makes
around 15-20% of the total incoming IP traffic in one of the
probes where we collected data (ADSL). Up to 50-60% of the
UDP traffic is QUIC in this probe. In the other probe, where
we have ADSL and FTTH, P2P is more common and QUIC’s
share is only 5% of the overall incoming IP traffic.

B. Methodology

Our goal is to quantify how many flows are opened in
parallel by clients when communicating with a server. There-
fore, we derive a methodology to estimate the number of
parallel flows. We define parallel flows as those cases where
at least two flows (i) have the same client and server IP
addresses, (ii) share the domain name coming from SNI
strings, (iii) present different client port numbers, and (iv) start
close in time. The last requirement has been imposed to reduce
the possible influence of NATs, as we will discuss next.

We apply a simple method to mark flows as isolated or
parallel in our traces. We first filter the traces to select only
flows where HTTP/2 or SPDY was negotiated. After that, we
aggregate flows using the following algorithm.

Our algorithm reads a list of flows sorted by start time.
It maintains a set of active “sessions” between clients and
servers, where a session is identified by client IP address,
server IP address, domain name and start time. The latter is
the start time of the first flow of the session. When a flow f is
read, the algorithm checks whether its fields client IP address,



server IP address and domain name match an active session.
If such a session exists and the start time of f is no later
than the start time of the session plus a fixed window size
MAX_GAP, the flow f is added to that session. Otherwise, the
old session (if any) is closed and a new session is started with
f as its first flow.

The result of our algorithm is a list of all identified sessions,
i.e., sets of flows with identical client IP address, server IP
address, and domain name where no flow starts later than
MAX_GAP time units after the earliest flow in that set. We call
a flow isolated if it is the only flow in its session, otherwise
it is a parallel flow.

C. Aggregation gap and impact of NAT

Our analysis could be affected by NATs. That is, when a
large number of users are connected from a single IP address,
the probability that different users will simultaneously contact
the same server increases. Connections of the different users
would therefore be marked as parallel by our algorithm.

As a first step, we manually remove IP addresses of large
NATs in the Campus dataset, based on our knowledge of the
campus network topology. For instance, some IP addresses
that we know to host WiFi access points relying on NATs
are manually removed from the analysis. This step considers
around 12.5 million flows (i.e., ≈30% of the raw dataset).

In order to estimate the probability that two users behind a
NAT contact the same server at the time (or, at least, close
enough that our algorithm would assign their flows to the
same session), we examine the User Agents found in our
datasets. User Agents are strings containing information about
the client browser, which are sent out by clients when contact-
ing URLs using the HTTP protocol. We leverage the HTTP
monitoring plug-in of Tstat [14] to export information present
in unencrypted HTTP/1 headers for every HTTP request seen
in the networks. This collection of User Agents is performed
simultaneously to our flow-level captures.

We count how often different User Agents are observed per
IP address by dividing our data traces in time bins of 1 min.
We have found that 90% of those time bins have only 4 or
less different User Agents. Collisions are even rarer: In less
1% of the time bins two User Agents access the same server
(via unencrypted HTTP/1).

Note that the User Agent is not a unique identification
for a user. It however contains many details, such as the
browser and operating system versions. Since our datasets
contain only small NATs, e.g., aggregating few users’ devices
in households, we believe that the odds that different users
rely on exactly the same browser configuration and contact a
single server simultaneously are negligible.

We therefore adopt a gap of 5 seconds for our algorithm
in the experiments that follow, since it is a reasonable value
for browsers to open parallel connections when loading a web
page. Compared to the 1-minute bin size studied above, this
value is a rather conservative choice and it is likely that we
under-estimate the real number of parallel connections.

	0.84

	0.86

	0.88

	0.9

	0.92

	0.94

	0.96

	0.98

	1

	2 	4 	6 	8 	10 	12

C
D
F	
(s
es
si
on
s)

Number	of	flows	per	session

Campus	Network
Residential	Network

Fig. 2. CDF of number of flows per session

TABLE II
SUMMARY OF PARALLEL HTTP2 AND SPDY FLOWS

Data set Campus Network Residential Network
Ratio of isolated flows 67.1% 65.3%
Ratio of parallel flows 32.9% 34.7%

IV. RESULTS

A. Observed parallel flows

We have applied our algorithm to the datasets of the two
monitored networks. Table II gives a summary of the results.

For both campus and residential networks, we observe that
around two thirds of the studied HTTP/2 and SPDY flows are
isolated, i.e., the algorithm could not identify parallel flows
for them according to the rules described in Section III-B.
In contrast, one third of the flows are parallel flows which
comprise around 15% of sessions. Sessions with parallel flows
contain around 3 flows on average. Figure 2 shows the CDF
of the number of flows per session.

There are several reasons for the large number of sessions
with only one (isolated) flow. One reason could be the fact
that parallel connections to a server are mostly created in the
beginning of loading a web page to fetch resources like html,
images, css, javascript etc. Once all the required resources
are in browser’s cache, the subsequent interactions of the
client with the website are usually served by creating a single
connection from time to time.

As already stated, one of the main advantages of HTTP/2
and SPDY is its capability to multiplex multiple requests
and responses over one single TCP connection. By opening
multiple connections to a server, a client is approaching a
communication pattern similar to HTTP/1.1. Therefore, the
results in Table II raise a question about the possible reasons
for this behavior. We have discussed our finding with experts
from the industry associated with Google Chrome, Mozilla
and the IETF HTTP working group. Their responses allow
two possible explanations.

B. Potential reasons for parallel flows

a) Hypothesis 1: When a browser is oblivious to the pro-
tocols supported by the server, it prepares a number (typically
6) of connections that it could use for HTTP/1 just in case if
the server does not support HTTP/2 or SPDY. Later on when



the browser discovers that the server speaks HTTP/2 or SPDY,
it closes the superfluous connections. Exactly how the browser
does this may differ between various implementations but this
should be done rather quickly so that the extra connections
don’t consume resources for long.

b) Hypothesis 2: Although HTTP/2 and SPDY allows to
multiplex all requests to a server on one single connection, a
web browser still creates multiple connections for performance
reasons. Unlike in hypothesis 1, these connections are actively
used and not closed quickly. By doing this, the browser
avoids the performance problems that might occur with single
connections in scenarios with high packet losses (see Sec-
tion II-B). Furthermore, in some situations the TCP congestion
window (CWND) negatively affects the performance because
it places limits on the amount of unacknowledged data which
can be in transit between two endpoints at a given time on a
single connection. Therefore, the browser chooses to use more
connections to avoid performance bottlenecks.

We verify these hypotheses in the following sections.

C. Degree of time-overlap of parallel flows

Let {f1, . . . , fn} be a session consisting of n > 1 parallel
flows between a client and a server, as identified by our
algorithm. If hypothesis 1 is correct, we expect that a session
mainly consists of one long flow and several shorter flows
(corresponding to the superfluous connections that are closed
once the server has been identified as HTTP/2 or SPDY-
capable). To verify this behavior, we select the longest flow
fl of the session and the flow fo in the session that overlaps
for the longest duration with fl. We calculate the percentage
p of overlap by

p =
duration of overlap

duration of fl
× 100

For hypothesis 1, we expect that the sessions in our datasets
have a small overlap, while a high overlap would support
hypothesis 2.

Figure 3 shows the CDF of the degree of overlap for all
sessions with parallel flows in our datasets. We can see that
in 50% of those sessions, the percentage of overlap is at
least 75% in the campus network and 63% in the residential
network. Furthermore, in more than 20% of the cases in the
campus network and 30% in the residential network, there
is nearly complete overlap. In absolute numbers, the average
overlap duration in the campus network and the residential
network is 58.5 seconds and 29 seconds, respectively. This
suggests that many sessions have at least two parallel connec-
tions that are not quickly closed by the browser.

D. Degree of time-overlap vs flow duration

The previous experiment shows a large degree of overlap
of parallel flows but it does not explain why. One could argue
that most flows are extremely short and hence overlap or, quite
the opposite, most overlapping flows are just very long flows
that the browser keeps alive and never close.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

C
D
F

Percentage	of	time	overlap

Residential	Network
Campus	Network

Fig. 3. CDF of degree of time overlap

To get a better understanding of the data, we have divided
the sessions according to the length of the longest flow fl in
four categories.

In Figure 4 and 5, we show again the CDF of the percentage
of overlap, this time with the sessions classified according to
the duration of their longest flow.

In both networks, we can see that sessions with duration
> 60 s tend to overlap for significantly less time compared
to shorter sessions. This speaks against the theory that long
parallel flows with high overlap are “forgotten” flows. A large
fraction of sessions with duration < 10 s have a high overlap
but we also see a comparably high overlap for sessions having
duration in the range of 10 s to 600 s.

E. Degree of data-overlap of parallel flows

Although we have shown in the previous experiments that
clients open parallel connections with overlapping life times,
it does not necessarily mean that the client and the server
are actively using these connections for data transmission. To
measure how the data is distributed over parallel connections
inside sessions with at least two flows, we calculate for each
session the ratio

r =
total session size− size of fs

size of fs
× 100

where fs is the largest flow of the session (in number of bytes)
and the total session size is the sum of the sizes of all flows in
the session. A ratio of 100% would mean that the largest flow
transports the same amount of bytes as all other parallel flows
combined. Larger ratios would mean that the largest flow does
not carry the majority of bytes.

We show in Figures 6 and 7 the CDF of r for the sessions
in the two networks. We again create different intervals to
highlight the behavior of small and large sessions. We split the
data into five groups, based on the size of the largest flow in
the session. For the residential (campus) network, 11% (18%)
of the sessions fall in the category < 5 kB, 21% (30%) in
the category 5–10 kB, 32% (25%) in the category 10–50 kB,
27% (22%) in the category 50–500 kB, and 8% (6%) in the
category > 500 kB.

We see a significant number of sessions where bytes are
spread over multiple connections. Notice, for instance, that



	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

C
D

F

Percentage	of	overlap	for	flows	of	different	lengths

<10s	
10s	to	60s

60s	to	600s
>600s

Percentage of overlap of time

Fig. 4. CDF of degree of time-overlap for flows of different lengths in campus
traffic

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

C
D

F

Percentage	of	overlap	for	flows	of	different	lengths

<10s	
10s	to	60s

60s	to	600s
>600s

Percentage of overlap of time

Fig. 5. CDF of degree of time-overlap for flows of different lengths in
residential traffic

for around 20% of the sessions where the largest flow carries
between 10–50 kB we have a ratio r ≥ 100%. That means
that the remaining connections carry at least the same amount
of bytes as the largest connection.

For very small sessions, i.e., largest flow carrying less than
5 kB, we see that the ratio r is very concentrated around 100%.
This is not surprising since those sessions mostly contain TLS
handshakes and barely any payload. On the other extreme, very
large sessions seem to concentrate more bytes in the largest
connection. However, even for those cases, we still see a non-
negligible number of sessions where bytes are spread over
multiple connections.

This suggests that the parallel flows are actively used by the
browser, thus hinting that our second hypothesis is true.

V. CONCLUSION

This paper studied the behavior of clients when opening
SPDY and HTTP/2 connections in the wild. The HTTP/2
and SPDY specification advises browsers to open a single
connection and multiplex requests, but our experiments show
that around 1/3rd of all connections of these protocols are
parallel connections with the arithmetic mean value of 3 and
median of 2 connections per domain. Our data does not allow
us to precisely pinpoint the reasons behind this behavior. Yet,
results indicate that this design choice is motivated by perfor-
mance, with browsers actively using the parallel connections
to exchange data, e.g., to avoid the performance penalties that
a single TCP connection would bring in case of packet loss.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0.001 	0.01 	0.1 	1 	10 	100 	1000

C
D
F

Percentage	of	overlap	of	bytes

<5KB	
5KB	to	10KB
10KB	to	50KB
50KB	to	500KB

>500KB

Fig. 6. CDF of data-overlap ratio in campus traffic

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0.001 	0.01 	0.1 	1 	10 	100 	1000

C
D
F

Percentage	of	overlap	of	bytes

<5KB	
5KB	to	10KB
10KB	to	50KB
50KB	to	500KB

>500KB

Fig. 7. CDF of data-overlap ratio in residential traffic

Our findings are very important for future studies on
HTTP/2 performance. Previous works have argued that
HTTP/2 faces performance degradation in some environments
due to the use of a single connection, when compared to
the many connections used by HTTP/1. We showed that
browser implementers have taken measures to avoid these
limitations. Researchers evaluating HTTP/2 should, therefore,
be careful in assuming that implementations follow RFCs’
recommendations, even if the protocol standardization is rather
recent.

Regarding more general implications for the Internet,
HTTP/2 comes with a promise of reducing the number of
connections between clients and servers. This would have
a positive impact on servers and on network infrastructure.
For instance, it could reduce the workload on devices such
as routers, firewalls and intrusion detection systems, which
usually keep state per TCP connection in the network. How-
ever, our results showed that this promise is rather far from
being realized. Although prior studies have shown that there
is a reduction in number of connections in HTTP/2 when
compared to HTTP/1, we are still far from the point where
only one connection will be required to load a web page.

ACKNOWLEDGMENT

This work was partially supported by the Erasmus Mundus
Joint Doctorate in Distributed Computing (EMJD-DC) funded
by the European Commission (EACEA) under the FPA 2012-
0030. We thank Mike Belshe, Mark Nottingham and Daniel
Stenberg for their valuable input.



REFERENCES

[1] The http archive. [Online]. Available: http://httparchive.org/trends.php
[2] M. Belsche, R. Peon, and M. Thomson. (2015) Request for comments

7540 - hypertext transfer protocol version 2 (http/2). [Online]. Available:
https://tools.ietf.org/html/rfc7540

[3] Http/2 adoption. [Online]. Available: http://isthewebhttp2yet.com/
measurements/adoption.html

[4] Browser support tables. [Online]. Available: http://caniuse.com/
[5] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,

“How speedy is spdy?” in Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation, ser. NSDI’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 387–399.

[6] Y. Elkhatib, G. Tyson, and M. Welzl, “Can spdy really make the web
faster?” in Networking Conference, 2014 IFIP, June 2014, pp. 1–9.

[7] H. de Saxcé, I. Oprescu, and Y. Chen, “Is http/2 really faster than
http/1.1?” in 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), April 2015, pp. 293–299.

[8] T. Berners-Lee, R. Fielding, and H. Frystyk. (1996) Requests for
comments 1945 - hypertext transfer protocol – http/1.0. [Online].
Available: https://www.ietf.org/rfc/rfc1945

[9] Web browsers profiling. [Online]. Available: http://www.browserscope.
org

[10] R. Peon and H. Ruellan. (2015) Request for comments 7541 -
hpack: Header compression for http/2. [Online]. Available: https:
//tools.ietf.org/rfc/rfc7541.txt

[11] Spdy. [Online]. Available: https://www.chromium.org/spdy
[12] B. Thomas, R. Jurdak, and I. Atkinson, “Spdying up the web,” Commun.

ACM, vol. 55, no. 12, pp. 64–73, Dec. 2012.
[13] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and

K. Papagiannaki, Is the Web HTTP/2 Yet?, 2016, ch. Passive and Active
Measurement: 17th International Conference, PAM 2016, Heraklion,
Greece, March 31 - April 1, 2016. Proceedings, pp. 218–232.

[14] A. Finamore, M. Mellia, M. Meo, M. M. Munafò, and D. Rossi,
“Experiences of Internet Traffic Monitoring with Tstat,” IEEE Network,
vol. 25, no. 3, pp. 8–14, 2011.

[15] I. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura, and A. Nucci,
“DNS to the Rescue: Discerning Content and Services in a Tangled
Web,” in Proc. of the ACM Internet Measurement Conference, 2012,
pp. 413–426.

[16] S. Friedl, A. Popov, A. Langley, and E. Stephan. (2014) Transport layer
security (tls) application-layer protocol negotiation extension. RFC
7301 (Proposed Standard). Internet Engineering Task Force. [Online].
Available: http://www.ietf.org/rfc/rfc7301.txt


