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Abstract—HTTP Adaptive Streaming (HAS) has become the
de facto standard technology for the delivery of video streaming
services. Current adaptation heuristics for HAS focus on the
selection of the optimal quality representation to be delivered
from a single server. However, many content providers use
multiple content servers storing replicas of the segmented video
or are deployed over Content Delivery Networks (CDNs). Hence,
the problem is not limited to selecting the optimal quality but
also consists in requesting the segments from the best performing
video server. In this paper a dynamic server selection strategy
is proposed that enables the streaming client to select the
optimal video delivery server. The proposed mechanism allows
any quality adaptation algorithm to be plugged into it. The
selection algorithm uses probability-based search strategies to
explore the search space of available servers and to gain insights
in their characteristics. This prevents the selection strategy to
end up in a local optimum. To avoid buffer starvations, the
exploration behavior is dependent on the current buffer filling.
The proposed approach allows to achieve a Quality of Experience
(QoE) that is within 25% of the optimum for which the client
has a priori knowledge of the server characteristics.

I. INTRODUCTION

Over the past decades, the consumption of multimedia
services such as video streaming has increased considerably
and is projected to exceed 75 percent of the mobile data traffic
by 2020, causing video streaming to dominate the Internet [1].
Popular Over-The-Top (OTT)-services such as YouTube and
Netflix are offering large catalogues of user-generated and
professionally created video content. Today, the majority of
the video streaming traffic is delivered using HTTP and is
mainly induced by the advantages offered by HTTP streaming:
the reuse of caching infrastructures, the reliable transmission
over TCP and the compatibility with firewalls. Furthermore,
to increase the scalability of streaming services and to cope
with dynamic network conditions, research and academia
shifted towards client-side adaptation schemes. Therefore,
HTTP Adaptive Streaming (HAS) is now the de facto standard
for video streaming delivery.

In HAS, the video content is split temporally into segments
which are encoded at different quality rates. The client side
quality adaptation heuristic decides at which quality rate each
segment should be downloaded, based on measured network
statistics, buffer filling level and device characteristics. This
allows HAS to respond to throughput fluctuations by reduc-
ing the quality and continuing video playout, whereas non-
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adaptive HTTP-based streaming techniques would run into a
buffer starvation. The client is able to independently choose
its playback quality, preventing the need for server-side rate
adaptation, which is a major advantage in large-scale OTT
scenarios.

To increase the scalability of HAS solutions, the video
segments are distributed across multiple replica servers in the
network. This allows to cope with the instabilities that arise
when multiple HAS clients compete for the same bottleneck
bandwidth. However, the current adaptation heuristics were
designed with a single-server environment in mind and are
therefore not suited to be used in such a multi-server environ-
ment. They allow the streaming client so select the best quality
which optimizes the Quality of Experience (QoE) perceived
by the end-user. In a multi-server environment however, the
problem also consists in detecting and selecting the optimal
server for the segments to be delivered from.

Therefore, this paper proposes a server selection strategy
that is able to detect and select the optimal server based
on its network characteristics. To achieve this, the selection
algorithm uses probability-based search strategies to explore
the search space of available servers. By performing passive
measurements of the downloaded segments, knowledge on the
network characteristics is collected without requiring overhead
of active measurements or adaptations to the server. By
using ageing-based Exponentially Weighted Moving Average
(EWMA) techniques, the proposed strategy takes into account
changes to network conditions that may have occured since
the last measurement. The probability-based search strategies
prevent the selection strategy to end up in a local optimum,
while buffer starvations due to wrong server selection are
minimized since the probabilities are dependent from the
current buffer filling.

The remainder of this paper is structured as follows. In
Section II an overview of existing work on single and multi-
server HAS adaptation strategies is discussed. The proposed
dynamic server selection algorithm is presented in Section III.
Section IV discusses the experimental framework and scenar-
ios, as well as a set of experiments optimizing the different
configurable parameters of the selection algorithm and apply-
ing them in real world scenarios. The paper is concluded in
Section V and includes some directions for future research.



II. RELATED WORK

The increased popularity of video consumption over the
Internet has led to the development of a range of protocols
that allow adaptive video streaming over HTTP. At the client
side, each commercial HAS implementation comes with a pro-
prietary client heuristic. Some of the major industrial players
have introduced their proprietary protocols such as Microsoft’s
Silverlight Smooth Streaming', Apple’s HTTP Live Stream-
ing? and Adobe’s HTTP Dynamic Streaming®. Furthermore,
a standardized solution has been proposed by MPEG, called
Dynamic Adaptive Streaming over HTTP (DASH) [2].

Several heuristics have been proposed in literature as well,
each focussing on a specific deployment. Miller et al. propose
a receiver-driven adaptation heuristic for DASH that takes
into account a history of available throughput and the buffer
level [3]. The quality is adjusted to attain a buffer level
between certain target thresholds, which improves the stability
of the quality and avoids frequent switching as a consequence
of short-term throughput variations. Jiang et al. identified the
problems that arise when multiple clients share a link [4].
The authors propose a variety of techniques that can help
avoid such undesirable behavior, such as harmonic bandwidth
estimation, stateful and delayed bitrate update and randomized
scheduling of requests, which are grouped in the FESTIVE
adaptation algorithm. Tian et al. show that there is a trade-off
between responsiveness and smoothness for client-side DASH
adaptations [5]. The proposed rate-switching logic provides
a dynamic control of this trade-off according to the trend
of the buffer growth. The approach uses machine-learning
based TCP throughput prediction to support multiple servers
simultaneously.

Liu et al. discuss a video client heuristic that compares the
expected segment fetch time with the experienced segment
fetch time to ensure a response to bandwidth fluctuations in
the network [6], while Adzic et al. present a client heuristic
which is tailored for mobile environments [7]. All of the
aforementioned adaptation heuristics focus on the optimization
of the QoE by selecting the optimal quality representation
to be delivered from a single server. In a multi-server envi-
ronment however, the problem also consists in selecting the
most appropriate server to deliver the segments from. Our
proposed approach allows to select this server at any moment
in time, while allowing each of the aforementioned adaptation
heuristics to be plugged into it.

Li et al. propose a collaboration scheme between Content
Delivery Networks (CDNs) and Internet Service Providers
(ISPs) and peer-assisted CDNs to reduce the load on both
peering links and internal ISP links [8]. Distributed CDN
servers alter the manifests to associate chunks with regional
storage servers or by changing or increasing the available
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video quality levels by transcoding the video. Famaey et
al. assess the impact of increased latency on QOoE caused
by the redirection of HAS requests in CDNs and propose
updated request routing schemes in order to reduce the number
of redirects [9]. Georgopoulos et al. propose an OpenFlow-
assisted QoE-framework which aims to fairly maximize the
QoE among multiple competing clients [10]. The control
plane orchestrates the network-wide QoE-fairness. Petrangeli
et al. propose an OpenFlow controller that is in charge of
introducing prioritized delivery of HAS segments, based on
the network conditions and the HAS clients’ status [11].

Liu et al. propose a probabilistic chunk scheduling approach
considering the time-varying bandwidth [12]. The proposed
approach is formulated as a constrained optimization problem
with the objective to minimize the total download time. Zhang
et al. present Presto, which is a protocol designed to improve
the user experience by providing better fairness, efficiency and
stability in the context of multi-server HAS [13]. Pu et al.
propose adaptation strategies for Scalable Video Coding (SVC)
video delivered over CDNs [14]. A collaborative scheduling
algorithm is proposed that balances the load among servers,
adapts bandwidth dynamics of each server and optimizes the
aggregated streaming quality. The aforementioned approaches
tightly couple the quality adaptation with the server selection
strategy. In our proposed approach, any adaptation heuristic
that is desired could be plugged in, independent of the
server selection strategy. Furthermore, there are no adaptations
required to the server-side implementations. Lederer et al.
made available a distributed dataset which is compliant to the
MPEG-DASH standard and is mirrored at multiple sites across
Europe [15]. During the evaluations, part of this video dataset
is used, but the content is hosted on our own infrastructure to
allow us to control the throughput and delay characteristics of
the interconnecting links.

III. DYNAMIC SERVER SELECTION ALGORITHM

Current HAS quality adaptation heuristics only consider a
single server offering the video segments. In a multi-server
environment however, the client has the ability to switch to
another content server if the streaming quality degrades. Fig-
ure 1 illustrates the structure of the dynamic server selection
algorithm proposed in this paper. The server to download the
next video segment from is selected based on the current buffer
filling level and the estimated throughput to each of the servers
included in the manifest file. Once the server is selected, its
characteristics such as estimated throughput are forwarded to
the rate adaptation algorithm, which decides on the quality
representation that needs to be requested. This clear separation
between server and quality selection allows to plug in any
existing rate adaptation logic.

A. Throughput estimation in a multi-server environment

In contrast to existing selection heuristics, there are multiple
servers that can be used to download the segments from.
Therefore, an instance of the throughput estimation per server
is now required. In literature, multiple adaptation heuristics use
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Fig. 1. Illustration of the dynamic server selection algorithm and its synergy
with the rate adaptation algorithm.

EWMA, which uses a weighting factor « (€ [0, 1]) to define
a trade-off between the current measurement (7' P,,.4s) or the
previous estimation (7'P,_1), as illustrated in Equation (1).

TP, = axTPpeqs + (1 —a)* TP, (1)

In a multi-server environment, the periods between two
consecutive throughput measurements from the same server
can be longer if this server is not selected to perform a
segment download. This results in less frequent throughput
measurements, increasing the probability that the throughput
has changed considerably since the last measurement. To re-
duce the chance that this negatively impacts the decisions, the
current measurement value should be favored over the previous
estimation. Therefore, the calculation of « is based on the
time that has passed between two consecutive measurements
(t, —t,—1) and an ageing factor ¢:

t, —t,_
(b t1) = 1 — exp (—5)

The exponential time constant § determines how fast the
smoothing factor o approaches 1 when ¢,, — t,,_; increases.

2

B. Server selection strategy

As already introduced at the start of this section, the
dynamic server selection strategy takes as input the current
buffer filling B and the set of estimated throughputs for each
server in the manifest. Figure 2 shows the different states and
state transitions of the dynamic server selection algorithm. The
state transitions depend on the configurable buffer filling levels
Berits Brign and By, 4, Which respectively indicate the critical
buffer level, the high buffer level (indicating the target filling
level) and the maximum buffer size. Four states are defined,
based on the current buffer filling: the init state, the depleting
state (B € [0, Berit]), the target state (B € [Berit, Brign|) and
the full state (B € [Bhigh, Bmaz)). The behavior of the server
selection algorithm differs in each of these states, resulting in
more conservative behavior when the buffer is depleting and
more explorative behavior when the buffer is sufficiently filled.

In the inir state, the server selection algorithm polls ev-
ery server that is listed in the manifest file. This is done
by downloading a segment from each of these servers and

B € [Bhigh, Bmas]
/softmax server polling for TP

measurements, use Trull

init done
B € [Bhigh. Bmaz)
/select best conn
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Fig. 2. Graphical illustration of the server selection strategy showing the
different states and state transition policies.

registering the measured throughput. In this way, the algorithm
has an initial view of the server space and their respective
characteristics. Once every server has been polled, the server
selection procedure switches to either the depleting, target or
full state, based on the current buffer filling level.

If the buffer filling level B is less than the critical buffer
filling level B,,;;, the algorithm is in the depleting state. This
indicates that the streaming client is close to running into a
buffer starvation and a more prudent strategy should be taken.
When this state is entered, the throughput estimates of each
server are taken as input and the list of servers is sorted
in decreasing order of estimated throughput. The algorithm
cycles through this list and downloads segments for each of
the servers. If the perceived throughput for the server exceeds
the bitrate of the segment, the strategy continues downloading
segments from this server. If this is not the case, the next server
in the sorted list is selected. When the end of the list is reached,
the servers are ordered again using the new information on
the estimated throughputs. The algorithm keeps on cycling
through the sorted lists until the buffer filling level B exceeds
the critical level B,.;.

The rarget state is entered when the buffer filling level B is
in the interval [Bey i1, Bhrigr[. In this state, the server providing
the best estimated throughput is selected to download the next
segment from. However, since the network conditions can vary
over time, continuously selecting the same server could lead
the selection strategy to end up in a local optimum. Therefore,
the server space is randomly explored using a probability
search which is based on the softmax action selection rule,
first proposed in the field of reinforcement learning [16]. The
Boltzmann distribution is used to determine the probabilities
based on the normalized throughputs T'P; = m.
The probability that a server s € S is selected, is expressed in
Equation (3). The parameter 7 represents the temperature and
can be configured to either stress exploration or exploitation.
A large 7 value leads to increased exploration, since the
probability of selection is comparable for each of the servers.
A small value for 7 puts the focus on exploitation, since the
differences in probability are much larger. An illustration of
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Fig. 3. Tllustration of the probabilities subject to various values of 7 for 3
servers with normalized throughputs TPy = 1, TP» = 0.7 and T'P3 = 0.6.

the probabilities as a function of 7 for 3 servers sy, sz and s3
is shown in Figure 3 where the normalized throughputs 7" P
are 1, 0.7 and 0.6 respectively. The value of 7 used for the
target state is indicated as Tiqrge¢ and should be set to favor
exploitation over exploration, since the buffer is not fully filled
and thus the margin for error is not that large.

exp 2

Prob[s] = 3)

TP,
Zs’ es &Xp ‘ré
Once the buffer filling level exceeds the Bj,gy threshold,
the full state is entered. The same probabilistic server selection
approach is used as in the target state. Since the streaming
environment is dynamic, it is possible that other streaming
origins become better suited than the current one. Therefore,
in order to avoid getting stuck in a local optimum, the proposed
approach also performs the probabilistic search while in the
full state. However, since the margin for error is now larger,
the algorithm can afford to take more risk and thus increase
the exploration behavior. Therefore the 7¢,;; value that is used
during the full state will be higher, increasing the probability
that servers with smaller estimated throughput could also be
selected.

IV. EVALUATION

This evaluation section is structured as follows. First, the
experiment setup is discussed, followed by an elaboration
on the metrics that are used during the evaluations. Third,
the different configurable parameters 6, Tiqrger and Ty, are
optimized in terms of reaction time, stability and optimality.
Finally, the proposed dynamic server selection heuristic is
evaluated using the proposed configurations for various sce-
narios using 3 or 5 servers and subject to variable bandwidth.

A. Experiment setup

Figure 4 gives an overview of the experimentation frame-
work that was developed to evaluate the proposed dynamic
server selection approach. The client is based on the libdash*
library and is extended to also include the server selection
strategy proposed in the previous section. To this end, a

4Bitmovin - https://github.com/bitmovin/libdash
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Fig. 4. Evaluation setup showing a client connected through configurable
links to multiple servers. All components in the setup are configured by the
controller.

TABLE I
BIT RATES AND CORRESPONDING RESOLUTION FOR EACH OF THE
SELECTED QUALITY LEVELS [15].

Level | Bit rate (kbps) | Resolution

0 250 360p
1 500 480p
2 1200 480p
3 2000 720p
4 4000 1080p

list of bandwidth estimators for each server proposed in the
manifest file is maintained. The quality adaptation heuristic
is plugged in into the server selection algorithm. During the
evaluations the FINEAS algorithm proposed by Petrangeli et
al. was used [17]. Note that any other adaptation heuristic
could be plugged in as well. The buffer levels are based on
the evaluations of Petrangeli et al. [17] and Famaey et al. [18]
and are set to be equivalent to those of the quality adaptation
heuristic: Ber;y = 30% and Bpgn, = 80%. The maximum
buffer size B,,q. is set to 20s.

The video segments are hosted onto a set of n Apache’
HTTP servers. The bandwidth and delay of the interconnecting
links are configured using LARTC®. The controller uses a
configuration file to set the different traffic traces on each link
and perform the LARTC shaping on each node simultaneously.
Furthermore, this node is responsible for starting and stopping
the streaming scenarios and to collect the relevant statistics at
the end. The evaluations were conducted using the iMinds
iLab.t Virtual Wall infrastructure’.

The DASH dataset provided by the Information Technology
department of the University of Klagenfurt is used as a test
set [15]. The content is a video recording of the Red Bull
Playstreets, a freestyle skiing competition. Table I lists the
quality level, bit rate and resolution for the selected represen-
tations. A segment duration of 2s was selected. The number
of servers offering the video content was varied between 3 and
5, to evaluate the convergence speed subject to an increasing
number of servers.

To evaluate the algorithm in scenarios with realistic network

5 Apache - http://www.apache.org

Linux Advanced Routing and Traffic Control - http:/www.lartc.org

7iMinds iLab.t Virtual Wall - http://ilabt.iminds.be/iminds-virtualwall-
overview
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Fig. 5. Tllustration of metric Moptpownload- $2 18 the optimal server,
nevertheless, the algorithm selects s1 two times (i.e., for segment 2 and 7).
Hence, MoptDownload =0.8.

behavior, bandwidth traces that represent fluctuations in the
network were constructed. The work of Riiser et al. is used
as a starting point [19]. They present real-world throughput
measurements of TCP streaming sessions over the mobile
network in Oslo (Norway). Measurements are done using
mobile devices while traveling with different types of public
transportation (e.g., train, ferry, bus, etc.)®. Not all of the
available traces are used directly. Some of them are scaled with
a factor so that the values are in the same order of magnitude.
Furthermore, some traces are shortened because not all traces
have the same length. The resulting test traces have a duration
of 400s, which is equivalent to the video duration that is
considered during the experiments. Unless otherwise stated,
the experiments are repeated 6 times and the average values
are shown in the graphs.

B. Evaluation metrics

Several metrics are used to assess the performance of the
dynamic server selection algorithm. We will compare the
proposed approach with the theoretical optimum which selects
the optimal server in terms of bandwidth based on a priori
knowledge of the available bandwidth towards each server.
Both the proposed and optimal implementation use the same
quality selection heuristic. As a consequence, only the multi-
server aspect is evaluated, irrespective of the quality selection
heuristic’s settings.

A first metric that will be used, Myt Download, €valuates the
fraction of segments that are downloaded from the optimal
server. Figure 5 shows an example of how this metric is
calculated. The M,:pownload Metric only awards the selection
procedure when the optimal server is selected. However, if the
bitrate of two servers is close, there is only a small drop in
performance when selecting the lower throughput server.

To account for the aforementioned example, a second metric
Mt pratio 18 proposed which evaluates the average ratio of the
selected server’s throughput (T'Pp,cqsured) to the throughput
of the optimal server selection strategy (1'FPyptimat). Figure 6
shows an example of the My p,q., for a scenario where the
throughput of two servers are close to each other.

The previous metrics are agnostic of the actual QoE that is
provided to the end-user. Therefore, a third metric evaluating
the QoE is expressed as an estimated Mean Opinion Score
(MOS)-score. The calculation of this score is based on a QoE-
metric defined by Claeys et al. [20]. For a video with K

8Dataset - http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
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Fig. 6. Illustration of the My p,qtio metric where the throughput of both
servers is close. The average is indicated by the dashed line: M7 pratio =
0.89.

segments, N quality levels and played quality level @ for
each segment k, the estimated MOS is defined as:

eMOS = max (5.67x p — 6.72x 0 — 4.95 % ¢ + 0.17,0)
“)
Where p, o and ¢ are defined as shown in Equations (5), (6)
and (7) respectively. In these equations, Ff.., and Fy,,
respectively represent the frequency of buffer starvations and
the average duration of video freezes.
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The third metric M ;05 measures the ratio of the estimated
MOS obtained by using the proposed server selection algo-
rithm to the estimated MOS of the optimal implementation.

C. Parameter selection

The algorithm proposed in Section III defines several con-
figurable parameters that impact the dynamic server selection
algorithm. In this section, the influence of these parameters
is evaluated and the optimal parameter configuration is deter-
mined. First, the 7 parameter of the softmax function that is
used in the rarget and full state is evaluated. Subsequently,
the § parameter of the aged EWMA throughput estimator is
evaluated.

The impact of the temperature parameter 7 will be evaluated
in terms of the reaction time that is required for the algorithm
to detect that another server is outperforming the currently
selected server in terms of throughput. This reaction time
metric is illustrated in Figure 7. To evaluate the impact of
7T on Tpeqet, @ similar scenario is used, where the throughput
of sy evolves from half of the throughput of s; to twice the
throughput of s; in the middle of the experiment. Before
starting the evaluation, the 7 parameter is isolated from the
other parameters of the algorithm so that these do not have
an influence on the results. Therefore, only one quality level
is made available on the servers to avoid an impact of the
quality selection algorithm. Figure 8 shows the impact of
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7 on the reaction time 7,.,.:. There is an inverse relation
between 7 and T..qc¢. Increasing 7, decreases the differences
in probabilities for the various servers, and consequently,
servers that have a lower throughput will have an increasing
probability of being selected. Consequently, the changes in
throughput will be noticed much faster as the alternative server
will be selected more frequently. If 7 exceeds 0.4, the reaction
time becomes constant.

However, besides the reaction time, the optimality of the
server selection can be impacted by 7 as well. Although in-
creasing 7 has a positive impact on the reaction time thanks to
the increased exploration, it also entails that the optimal server
is selected a smaller fraction of the time due to the reduced
exploitation. Figure 9 confirms these statements and shows
that for increasing values of 7, the fraction of the time that
the optimal server is selected decreases, as well as the relative
throughput to the optimal server. For 7 € [0.0,0.1], both
metrics are at a minimum because the jump in the bandwidth
of sy is never detected. When 7 is in [0.1,0.2], the metrics
start to increase. A maximum is obtained when 7 equals 0.2.
At this point, the algorithm does enough exploration to detect
the jump of sy without selecting the non-optimal server too
frequently. If 7 exceeds 0.2, the ratios decrease while the
reaction time saturates. The loss in throughput ratio is not
compensated by a similar gain in reaction time.

As 0.2 can be considered as the optimal value for 7, Tyqrget
is set to 0.2 during the target state. In the full state, a larger 7
value can be selected to increase the exploration of the server
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Fig. 9. The average ratio of the measured throughput to the optimal
throughput (M7 pratio) in function of 7, and the fraction of segments that
are downloaded from the optimal server (Mop¢ Download) in function of 7.

space. Since the buffer filling B exceeds B4, the margin for
wrong decisions is larger and 7y, can be set to 0.333. The
performance for this value is slightly lower than for 7 = 0.2
due to the increased exploration, but the reaction times T}.cqct
are halved.

The second parameter that needs to be configured is the
exponential time constant 4 of the aged EWMA estimator. A
smaller value of J leads to a higher « and thus a larger weight
of the current measurement. There exists a trade-off between
how fast changes in throughput are picked up and how well
noise is canceled out. Therefore, two scenarios are constructed
to evaluate the impact of § on both aspects.

To evaluate the impact of J on the reaction time, a scenario
is constructed as shown in the first plot of Figure 10 in
which T'P;, evolves from 0.5 x TP, to 2 x TP, at 10s.
As before, only one quality level is present at the servers
(i.e. 500kbps). This way, the results will not be influenced
by the quality selection algorithm. The two other plots of
Figure 10 show the impact on the reaction time for § = 0.5 and
0 = 30 respectively. For a low value of d, a single throughput
measurement suffices to detect the increased throughput of ss.
For a higher value of J, the weight of the last measurement is
smaller, requiring multiple measurements (i.e. 3) to detect the
increased bandwidth.

Figure 12 gives an overview of the reaction times 7.+ and
the required number of measurements to detect the increase,
for various values of J in the interval [0,60]. As expected,
T'cact increases for increasing values of 4.

Another effect of the EWMA estimators is that traffic
peaks are smoothed out. Increasing § increases the weight
of the historic estimation, thus decreasing the variation in
the estimated throughput. To evaluate the impact of § on the
estimation variability, a scenario is constructed in which s;
has a larger throughput than s, on average, but where the
variability of the traces causes the best server to frequently
switch between s; and ss. The first plot in Figure 11 illustrates
the behavior of both traces over time. The second and third
plot show the estimated throughput for 6 = 0.5 and § = 30
respectively. Smaller values of J lead to a more varying
estimation of the available throughput, while larger values even
out the traffic spikes.

The standard deviation o7 p is used as a metric to examine
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Fig. 13. Standard deviation o p of the estimated throughput in function of

the degree of fluctuation in the estimated throughput. Figure 13
shows that there is indeed a decrease in the standard devi-
ation orp of the estimated throughput for increasing §. In
the considered scenario, the standard deviation approximately
becomes constant when ¢ > 10.

The cases discussed above are extreme scenarios that were
used to clarify the trade-off for the value of §. The obtained
results can differ reasonably in other scenarios. To generalize,
both a very small and a rather large value for § are not advised
and will affect the algorithm’s behavior negatively. It is not
recommended to choose § < 1 or § > 10, but there are no
strict bounds. In the subsequent evaluations, the value of
is set to 3, this allows a sufficient smoothing behavior of the
estimations, while at the same time reducing the reaction time
to detect sudden throughput changes.

D. Server selection performance

Using the optimal parameter configurations that were se-
lected in the previous section, the performance of the proposed
approach is evaluated using realistic scenarios with 3 and 5
servers. The first plots of Figure 14 and Figure 15 show the
throughput traces for each server that was used during the
evaluations for a single run. The second plots show the buffer
filling levels, while the third plots show the probability that
each server will be selected, based on the softmax policy.

Table II lists the average and standard deviations of the
various metrics that were evaluated. These results were ob-
tained over 8 iterations during which the throughput traces
are varied. First, we consider the M,:pownload metric. Both
for 3 and 5 servers, the optimal server is only selected half of
the time. It can be seen from the rates in Figure 14 and 15
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Fig. 14. Evaluation of dynamic server selection for 3 servers, showing the
throughput traces, the buffer filling and the selection probabilities.

that for a large fraction of the traces, multiple servers offer
a comparable throughput, hence explaining the low values of
the Mopipownload metric. Looking at the relative throughput
that is achieved compared to the optimal throughput (i.e.
Mt pratio), the results show that on average a throughput is
achieved that is 81.02% and 74.26% of the optimal throughput
for 3 and 5 servers respectively. The value is significantly
lower if the number of servers increases. This is due to the
larger search space which leads to a higher fraction of the time
in which the non-optimal server is selected.

Table II shows a MOS score of 3.20 for the proposed
approach and 3.63 for the optimal approach for 3 servers.
Consequently, the metric value Mjy;os amounts to 0.8809.
This shows that the proposed algorithm performs quite good
as its MOS is only 12% below the optimum. Again, for
5 servers, the proposed approach suffers from the increased
search space, showing a Mjy;p0g value of 0.7665, which
indicates that the achieved MOS is 23% below the optimal
achievable MOS. This is mainly caused by a lower streaming
quality compared to the optimal solution. Figure 15 shows
that the buffer level in the proposed approach is in most cases
below the level of the optimal approach. Also, the observed
throughput is on average 26% below the optimal throughput
(cfr. M7 pratio).- Because the quality selection heuristic takes
decisions based on both the buffer level and the estimated
throughput, the average quality level of the proposed approach
will indeed be lower.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a dynamic server selection strategy is pro-
posed that enables the streaming client to select the optimal
video delivery server. The proposed mechanism allows any
adaptation algorithm to be plugged into it. Furthermore, no
adaptations to the server implementation are required. The
selection algorithm uses probability-based search strategies
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Fig. 15. Evaluation of dynamic server selection for 5 servers, showing the
throughput traces, the buffer filling and the selection probabilities.

TABLE 11
SUMMARY OF OBTAINED METRIC VALUES IN BOTH REAL-WORLD
SCENARIOS.

3 servers 5 servers
avg stdev avg stdev
MoptDownload | 04925 | 0.0861 | 0.4055 | 0.0564
Mt pratio 0.8102 | 0.0195 | 0.7426 | 0.0272
MOS, e 3.1979 | 0.2819 | 2.8501 | 0.1383
MOSoptimal 3.6301 | 0.0168 | 3.7185 | 0.0389
Mpyros 0.8809 | 0.0776 | 0.7665 | 0.0372

to explore the search space of available servers and to gain
insights in their characteristics. This prevents the selection
strategy to end up in a local optimum. To avoid buffer
starvations, the exploration behavior is dependent from the
current buffer filling. The proposed approach is able to select
the server of which the throughput is within 25% of the server
providing the highest throughput. Furthermore, this allows the
proposed strategy to achieve 88% and 76% of the optimal
MOS for a scenario of 3 and 5 servers respectively. These
results show that the proposed strategy is impacted by the
increased search space when the number of servers grows.
In future work, mitigation strategies to avoid these scalability
issues could be considered.
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