Graph-based Diagnosis in Software-Defined
Infrastructure

Joseph Wahba, Hazem Soliman, Hadi Bannazadeh and Alberto Leon-Garcia
Department of Electrical & Computer Engineering
University Of Toronto
Toronto, Ontario

Abstract—Performing system diagnosis is a critical task in
modern datacenters. Investigating individual resource behavior
may not be efficient in detecting abnormal behavior in large
and complex datacenters. In this paper, we propose a scalable
graph based diagnosis framework to detect system anomalies
in Software-Defined Infrastructure running in SAVI testbed. We
have leveraged Graph Mining and Machine Learning techniques
in our approach in order to detect different kinds of anomalies.
We have experimentally tested our framework on several use
cases: Webserver-Database workload pattern, bandwidth throt-
tling between a pair of VMs, denial-of-service (DoS) attack on
a webserver and Spark Job failure. Our framework was able to
detect the aforementioned anomalies accurately.

Index Terms Anomaly Detection, Graph Mining, Machine
Learning, Software-Defined Infrastructure, System Diagnosis

I. INTRODUCTION

As different cloud platforms continue to grow in scale and
complexity, the diagnosis and management task of cloud data
centers and platforms becomes a critical challenge. Detecting
abnormal behaviors in a data center targets to spot unusual
system behaviors such as operator errors, hardware, soft-
ware failures, different attacks and anomalous communication
patterns. Resource based anomaly detection techniques are
useful in diagnosing anomalies in individual resources. By
leveraging Graph-Mining and Machine Learning techniques,
unusual behaviors in data centers could be detected not only
based on a per-resource behavior, but using a holistic view
of inter-dependency and inter-communication pattern between
different resources.

One such cloud platform is the SAVI [1] testbed on which
we have implemented our approach. The SAVI project was
established to investigate future application platforms designed
for rapid applications enablement. SAVI testbed has been
developed for controlling and managing converged virtual
resources focused on computing and networking. In a SAVI
Smart Edge we have compute, network, storage, FPGA, and
other resources. OpenStack [2] is used for managing compute,
storage, GPU and FPGA resources. OpenFlow [3] controllers
are used for controlling network resources such as switches.

Our main contribution is developing a graph-based anomaly
detection framework for the SAVI testbed. Our framework
leverages the Apache Spark big-data platform for scalability.
We have tested our framework on several use cases including
Webserver-Database workload pattern, bandwidth throttling
between a pair of VMs, denial-of-service (DoS) attack on a
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webserver and Spark Job failure. Our framework was able to
detect the aforementioned anomalies accurately.

The rest of the paper is organized as follows. In Section II,
we have surveyed related work. In Section III, we describe
our system architecture. In Section IV, we present the design
of the diagnosis module. In Section V, we present a proof
of concept describing the various use cases of our system. In
Section VI, we provide our experiments’ results.

II. RELATED WORK

Graph based Anomaly detection has been studied under
many different settings using various statistics tools and graph
mining algorithms [4]. There are two main categories of
approaches for detecting anomalies in graphs: Methods for
static graph and approaches for dynamic graph data.

A. Anomaly Detection in Static Graphs

In static graphs, the main task for anomaly detection is
to discover anomalous network entities (e.g., nodes, edges)
given the entire graph structure. Static graphs are either plain
graphs which do not have attributes or attributed graphs where
nodes and/or edges have features associated with them. Given
a snapshot of a plain or attributed graph, the anomaly detection
problem could be defined as finding the nodes and/or edges
that are few and different and are significantly different from
the patterns observed in the graph historical patterns. In static
plain graphs, the only available information is the graph’s
structure. Therefore, in order to detect anomalies, the structure
of the graph is used to find patterns and spot anomalies. There
are two main categories of methods in detecting anomalies
in static plain graphs: structure-based methods [5] [6] [7]
[8] and community-based methods [9] [10] [11] [12]. In
static attributed graphs, anomaly detection methods exploit the
structure as well as the correlation of attributes of the graph to
find patterns and spot anomalies [13] [14] [15]. In community
based methods, approaches aim to identify those outlier nodes
in a graph that attribute values of which deviate significantly
from the other members of the specific communities that they
belong to [16] [12] [17].

B. Anomaly Detection in Dynamic Graphs

Dynamic graphs are time-evolving graphs which are com-
posed of sequences of static graphs. Given a sequence of
graphs, the anomaly detection problem could be defined as
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whether graph has become significantly different from its
predecessors. Hence, it is necessary to define two things: first
the features that represent a graph; second a distance measure
between these features. Based on the distance, we can train the
system to decide whether a specific graph is anomalous or not.
Authors in [18] studied different graph similarity measures,
anomaly detection techniques in large network based data and
clustering similar graphs together. Different approaches have
been used in detecting anomalies in dynamic graphs such
as feature-based events [19] [20] [21], decomposition-based
events [22] [23], clustering-based [24] [25] and window-based
events [26] [27]. In [28], an eigen-space based approach has
been proposed for modeling graphs and detecting anomalies.

In contrast to the current work, we focus on anomaly
detection in the physical infrastructure itself, unlike [28], and
detect a wider range of anomalies in several use cases. We have
used a novel approach in detecting anomalies by leveraging
both graph-mining metrics and machine learning techniques.
Our work is the first to address graph-based anomaly detection
in virtualized heterogeneous environments.

III. SYSTEM ARCHITECTURE

In this section of the paper we present our system archi-
tecture used for graph-based diagnosis in the SAVI testbed.
Figure 1 depicts the architecture for our system. The system
is composed of four main modules: The monitoring and
measurements module, the diagnostics module, the decision
making module and the orchestration module. The monitor-
ing and measurements module is responsible for collecting
different metrics from SAVI heterogeneous resources such
as Network and Compute metrics and building graphs for
different applications running in SAVI testbed. The diagnos-
tics module is responsible for performing the Graph-based
Anomaly Detection which present in this paper. The decision
making module is responsible for performing suitable actions
in order to heal the system from the effect of the anomalies.
Finally, the orchestration module is responsible for executing
the suitable decisions made in order to return the system to
its steady state condition. The focus of this paper is on the
diagnostics module as this where the anomaly detection is
done.

IV. GRAPH DIAGNOSIS MODULE DESCRIPTION

In this section of the paper we present our design for the
graph-based diagnostics module of the system described in
Section III.

A. Application Graphs

The Application Graphs module is responsible for
identifying different applications graphs running in SAVI
testbed. It is responsible for classifying application graphs into
Static and Dynamic graphs. Since there are different anomaly
detection techniques to be used, classifying application
graphs into Static and Dynamic is important in identifying
anomalies. The nature of distributed applications running in
cloud platforms raise the importance of studying application
graphs instead of individual resources behavior.

B. System Profiles

This module is responsible for saving different application
profiles running in SAVI testbed. Those generated profiles
represent the normal behavior state of the running applications.
The profiles are made of different features and metrics
calculated for different application graphs using NetworkX
[29] software package. New incoming measurements are
compared with those profiles in order to identify whether the
monitored resources graphs are behaving in a normal manner
or not.

C. Forensics

The Forensics module is responsible for investigating
whether the detected graph anomalies resulted from an appli-
cation misbehavior or not. Furthermore, the Forensics module
is responsible for performing Root Cause Analysis for the
detected graph anomalies. The Forensics module is responsible
for investigating what are the sources of these graph anomalies
as well as why these sources raise such anomalies to predict
these anomalies in the future.

V. PROOF OF CONCEPT

In this section of the paper, we demonstrate how our graph-
based anomaly detection framework operates. The first 3 use
cases illustrate static graphs scenarios while the last use case
illustrates a dynamic graph one.

A. Webserver - Database workload pattern

In this scenario, we consider a workload running on a
webserver that is serving requests by accessing a database
as shown in Figure 2. When the workload increases on
the webserver, the workload increases consequently on the
database and vice-versa. In order to illustrate our graph-based
anomaly detection approach, we have intentionally connected
another webserver running a workload to the same database.

We train our system by monitoring the database behavior in
two cases: First, running workload-1 as show in Fig. 2 while
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workload-2 is suspended. Afterwards, we suspend workload-1
and run workload-2.

The main idea in this scenario is to illustrate that monitoring
the database application solely will not be able to detect
anomalies as its pattern is periodic and normal looking. In
order to detect anomalies in this scenario, we have used Linear
Support Vector Classification (LinearSVC) [30] to perform
the classification between normal behavior and anomalous
behavior of the system. We have trained our system and we
present our detection results in the evaluation section.

B. Bandwidth throttling

In this scenario, we consider two communicating virtual
machines forming a graph. A virtual link between two Virtual
Machines belonging to the same application is suffering from
bandwidth throttling. This can be a useful scenario to detect
the efficiency of isolation between different slices, as well as
detecting misconfiguration of the network parameters.

In this scenario, we use time series adjacency matrices
of the graph in order to detect anomalies. We calculate the
distance between every two consecutive adjacency matrices.
The distance d;(A, B) between adjacency matrices if the
matrices are A = (a;;) and B = (b;;) could be expressed
as : d1(A,B) = ZZL:l Z?:l Qij — bij.

In order to train our system, first we initiate a file transfer
between the two virtual machines and we calculate the dif-
ferent values of dl. Afterwards, we introduce a Bandwidth
throttling over one of the virtual links between the two VMs
and calculate the corresponding values of d1. Finally, we use
LinearSVC in order to build a model. This model will be used
in detecting Bandwidth throttling anomalies between the VMs
in the evaluation section.

C. DoS attack on a webserver

In this scenario, we consider a graph composed of three
nodes : Denial of Service attacking node, Webserver node and
a back-end database node.

In this scenario, we use time series adjacency matrices
of the graph in order to detect anomalies. We calculate the
distance between every two consecutive adjacency matrices
as previously discussed. In order to train our system, first we
initiate a denial of service attack and we calculate the different
values of d1. Afterwards, we use LinearSVC in order to build a
model. This model will be used in detecting DoS anomalies in

the evaluation section. The main difference between this case
and the previous one is that the magnitude of d1 decreases in
the Bandwidth throttling scenario whereas in the DoS scenario
it increases.

D. Spark Job failure

In this scenario, we consider a graph of a Spark [31] Cluster
composed of six nodes : A Spark Master node and five Spark
worker nodes. The cluster that we are using is running a job
of collecting monitoring data from SAVI testbed core node
and saving them into Hadoop Distributed File System (HDFS)
[32].

In this scenario, we use time series Assortativity coefficient
[33] calculated for the graph in order to detect anomalies. In
order to train our system, first we calculate the Assortativity
coefficient for the Spark Cluster running the monitoring data
collection job then we intentionally kill the job to generate
the labeled training dataset. Afterwards, we use LinearSVC in
order to build a model. This model will be used in detecting
Spark Job failure anomalies in the evaluation section.

VI. EVALUATION

In order to evaluate our system, we have conducted several
experiments to verify our approach in detecting anomalies.
We performed our experiments in the core node of the SAVI
testbed, composed of over 20 physical servers hosting a few
hundred VMs. We use the OpenStack and OpenFlow to collect
data about the various elements in our network. Collected met-
rics include: CPU utilization, amount of disk read and write
data, amount of memory read and write data, and network
bandwidth between each pair of VMs. Our experiments are
reproducible by requesting access to SAVI testbed from [34].
The details about the metrics available from Openstack can be
found in [35]. We use Hadoop as our distributed file-system
for data storage and Spark as our analytics framework. In the
following subsections, we present the verification for each use
case described in the Proof of Concept section.

1) Webserver - Database workload pattern: We have
trained our system using 5 hours of data. Afterwards, we
tested our system using 1.5 hour of data. We used the
CPU Utilization metrics collected from the Webserver and
Database. Figure 3 shows the testing phase of our system.
The dash-doted curve represents the CPU Utilization of the
Webserver, the dashed curve represents the CPU utilization
of the Database. The solid curve represents the labels of the
test data that we know beforehand ; high means anomaly, low
means normal behavior. The dots represent the predicted labels
of the data using LinearSVC. Our system was able to detect
the 11 anomalies accurately as shown in Figure 3.

2) Bandwidth throttling: We have setup two Virtual Ma-
chines with xlarge flavor that has 160GB of disk. We have
initiated a file transfer operation between the two VMs. The
file size was 100GB with a transfer rate 10 Mbps between
the two VMs.The throttling value in the training phase was
fixed at 512 kbps. The training set for LinearSVC was 134
data points. Afterwards, we tested our system by repeating the
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Fig. 3. Webserver Database testing phase

same experiment but while having random varying throttling
value between 1 Mbps and 5 Mbps as shown in Figure 4. The
dotted curve represents the time varying dl, the solid curve
represents the labels of the test data that we know beforehand
and the dots represent the predicted labels of the data using
LinearSVC. Our system was able to detect the 35 anomalies
accurately as shown in Figure 4.
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Fig. 4. Bandwidth throttling testing phase

3) Denial of Service Attack: We have trained our system
using 118 data points by initiating a Denial of Service attack
for 4.46 hours. Afterwards, we have tested our system by
repeating the experiment for 2 hours as shown in Figure 5. The
dashed curve represents the time varying dl1, the solid curve
represents the labels of the test data that we know beforehand
and the dots represent the predicted labels of the data using
LinearSVC. Our system was able to detect the 26 anomalies
accurately as shown in Figure 5.

4) Spark Job Failure: We have trained our system by using
the 327 data points collected from the Spark Cluster in 10.9
hours. Afterwards, we have tested our system by repeating
the experiment for 5.5 hours as shown in Figure 6. The solid
curve represents the time varying Assortativity Coefficient, the
dashed curve represents the labels of the test data that we know
beforehand. The dots represent the predicted labels of the data
using LinearSVC; high means normal behavior, low means
an anomaly. Our system was able to detect the 30 anomalies
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Fig. 5. DoS attack testing phase
accurately as shown in Figure 6.
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We have repeated the previous experiments several times.
Since the dimensionality of the data is relatively low as well
as the linear separability nature of our problem the LinearSVC
algorithm works accurately in all iterations. However, if the
problem complexity increases the performance of the Support
Vector Machines algorithm is expected to degrade and several
simulations will be required to evaluate its performance.
Dimensionality and non linear separable anomaly data can
increase the problem complexity.

VII. CONCLUSION

In this paper we have designed and evaluated a graph-
based diagnosis framework in Software-Defined Infrastructure
running in SAVI testbed. Our framework is able to accurately
detect system anomalies by leveraging different Graph-
mining and Machine Learning techniques. We have tested
our framework on several use cases covering different kinds
of anomalies affecting various types of application graphs.

VIII. FUTURE WORK

Our future work includes extending our experiments by
running our framework on many more test cases, many more
times and provide accuracy measures such as false alarm
probabilities.
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