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Abstract—The exponential growth of network users and their
communication demands have led to a tangible increment of en-
ergy consumption in network infrastructures. A new networking
paradigm called Software-Defined Networking (SDN) recently
emerged which simplifies network management by offering
programmability of network devices. SDN assists to lower link
data rates via rate-adaptation technique which reduces power
consumption of the network. The main idea behind this paper
is to find a distribution of traffic flows over pre-calculated paths
which allow adapting the transmission rate of maximum links
into lower states. We first formulate the problem as a Mixed
Integer Linear Program (MILP) problem. We then present four
different computationally efficient algorithms namely greedy first
fit, greedy best fit, greedy worst fit and a meta-heuristic genetic
algorithm to solve the problem for a realistic network topology.
Simulation results show that the genetic algorithm consistently
outperforms the three greedy algorithms.

I. INTRODUCTION

Information and Communication Technologies (ICT) is be-
coming a key contributor to global warming and environmental
pollution emissions [1], [2]. Consequently, green networking
and energy saving mechanisms attract a growing attention
from the networking industry and research community. In this
context, many studies are unanimous in indicating that hard-
ware technologies are expected to improve energy efficiency
over next decade.

The main problem tackled in this paper is the reduction of
energy consumption in the network using SDN capabilities.
Indeed, the facility brought by SDN technology to control
network devices and adapt their transmission rate to the
current traffic load motivated us to propose a new power
management strategy. The main contributions of this paper
are summarized as follows: 1) Power consumption at network
level is optimized by taking advantage of SDN capabilities,
2) Rerouting of flows in an unsplittable way through several
preestablished paths is considered with adjusting the rate of
links in an SDN-enabled infrastructure, 3) Flow allocation
problem with an energy minimization objective is formulated
as an MILP problem. 4) Extensive simulations are carried out
to assess the performance of the proposed algorithms. It is
shown that genetic algorithm can save up to 60% of energy
consumption by incorporating rate adaptation into network
devices. Notwithstanding that researchers have proposed many
approaches for power saving in traditional networks; there
has been little effort on reducing the energy consumption
in SDN-enabled network infrastructures. Generally, for both

legacy and SDN networks, there are two well-known strategies
targeting network energy efficiency namely switch-off and
rate adaptation [5]. The First approach attempts to reduce the
set of active network resources by redistributing the traffic
into a sub-network in a power-aware manner so that the
rest of the network sleep and consequently energy is saved
[8]–[16]. The latter one aims to achieve proportional energy
consumption by adapting links data rates. It is shown in [5] that
power consumption can be reduced considerably by lowering
link data rates. However, the proposed algorithm in [5] is
based on the switch-off strategy. Several problems may arise
when completely turning off routers and switches such as
route oscillation and tardy network convergence. During the
convergence phase, the network can experience performance
degradation due to temporarily unfeasible paths, that is, loops.
Moreover, time to switch off/on device can increase waiting
time for optimizing all network flows and may lead to reducing
the responsiveness of new flows. To avoid these problems, we
choose a different methodology and opt for the so-called rate-
adaptation strategy. The idea of adapting link data rate to the
traffic load is not new and has been investigated formerly [5].
[6] addressed the splittable flow allocation problem for both
single and multiple communication sessions to optimize power
saving. However, splitting streams are typically undesirable
due to adverse reordering effects in the transport layer. In this
paper, we exploit the rate-adaptation strategy similar to [5]
and [6]; However, we consider an unsplittable flow allocation
problem to minimize the energy consumption.

The rest of the paper is organized as follows; We briefly
describe the problem and formulate it in Section II. The
proposed algorithms are described in Section III. We evaluate
and discuss the performance of the proposed approaches in
Section IV and finally, we conclude the paper in Section V.

II. PROBLEM DESCRIPTION AND FORMULATION

In the following we consider SDN networks where the
controller can collect information about flows carried by
each path between each Origin and Destination nodes
(O-D). Monitored traffic load on each link is the input of
flow allocation algorithm which aims to optimize energy
consumption of the network. Based on the result of proposed
flow allocation algorithm, the controller redistributes flows
among such given multipath [7] and re-adapt links rate to
their new traffic load while preserving connectivity and
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satisfying links capacity constraints. Note that the main target
is not to propose a new routing algorithm but to bring forth
a complementary flow allocation algorithm which can be
handled by an SDN controller and can operate jointly with
routing protocols. Practically, SDN controller can compute
any standard routing protocol to find a set of candidate
paths between each (O-D) and thereupon the proposed flow
allocation algorithms can be executed to distribute traffic load
over these paths.

MILP formulation: In order to present Mixed Integer
Linear Program (MILP) formulation for the unsplittable flow
allocation with rate adaptation problem, we define L as the
set of edge pairs (physical links) in the network. A path in
the network is the sequence of links. P denotes the set of
paths in the network. For every pair of nodes in the network,
say node a, b , we consider different number of pre-calculated
paths from node a to b, {pab(1), pab(2)..pab(N )} where
pab(n) = pba(n). We also assume that there are always some
existing flows between all source and destination nodes. K
commodities are assumed in the network where for commodity
k, dk denotes its demand traffic. Given a set of Pk candidate
paths for kth traffic demand where {pk ∈ Pk} denotes an
appropriate path, We seek fpk

, the amount of traffic routed
through each given path pk. This traffic setting should be
done in a manner that total power consumption of network is
minimized, and traffic demand of all commodities are satisfied.
We consider the power consumption of link ` as discrete step
increasing function W(f`) of its traffic load f`. Link ` can
work in one of S` states . Each link at state s has a fixed
capacity cs with corresponding fixed power consumption ws

such that ws−1 < ws ⇔ cs−1 < cs. So, energy consumption
of link `, represented by W(f`) can be obtained by,

W(f`) =



ω1 if 0 < f` < c1
ω2 c1 < f` < c2
. . .
ωs cs−1 < f` < cs
. . .
ωS` cs`−1 < f` < cs`

(1)

Equation 1 is not a linear conversion and can not be modeled
with MILP. So, it is required to add extra complementary
binary variables namely ys` such that,

ys` =

{
1 if link ` works in state s
0 otherwise

(2)

Then, the total energy consumption of the network is equal to:∑
∀`∈L

∑
∀s∈S` ωsy

s
` . Moreover, to make sure that the path

of the traffic demands are unsplittable, other complementary
binary variables namely xpk

s should be defined as,

xpk
=

{
1 if fpk

> 0
0 fpk

= 0
(3)

Then, the optimization problem is given by,

min
∑
∀`∈L

∑
∀s∈S`

ωsy
s
`

subject to
f` − cs−1

cs`
≤ ys` ≤ 1 +

cs − f`
cs`

(C.1)

∑
∀p∈Pk

fpk
= dk (C.2)

fpk
− xpk

≥ 0 (C.3); θxpk
− fpk

≥ 0 (C.4)∑
∀p∈Pk

xpk
= 1 (C.5)

f` =

K∑
k=1

∑
∀p,`∈Pk

fpk
(C.6); f` ≤ cS` (C.7)

In the above optimization, objective is the sum of energy
consumption of all network links. (C.1) which stand ∀s ∈
S`, ` ∈ L, is applied to extract the complementary binary
variables yses out of the traffic rates variables of `s represented
by f`s in a linear format. Group (C.2) Constraints, which
stands ∀k ∈ K, ensure the traffic demands are satisfied. (C.3)
and (C.4), which stand ∀p ∈ Pk,∀k ∈ K, are applied to
extract the complementary binary variables xpk

s out of fpk
s

(traffic rate of commodity k in path p variables). In fact, they
are applied to linearize Eq. 3. Constraint group (C.5), which
stand ∀p ∈ Pk,∀k ∈ K, ensures that the path attributed to
kth demand traffic is unsplittable. Note that θ is assumed as
an arbitrary integer much larger than the capacity of links.
Group (C.6) Constraints evoked f`s variables out of fpk

s.
Finally, group (C.8) ensures the capacity constraint of links
are satisfied. (C.6) and (C.7) group Constraints stand ∀` ∈ L.
The aforementioned problem is NP-hard and can not be solved
in a short period. Hence, in next Section, few low complexity
algorithms are proposed to solve this optimization problem.

III. PROPOSED ALGORITHMS

Finding flow routes in a general network while not ex-
ceeding the capacity constraint of any links is called multi-
commodity flow problem, which is known to be NP-Hard for
integer or unsplittable flows [17]. In this approach, demand
is represented by a set of flows so that each flow supports a
fixed sub-demand and have to be routed over one of the pre-
calculated paths which consequently is an NP-Hard problem as
well [18]. Thus, due to the large scale of the network and time
constraints for SDN controller to react instantly to the traffic
changes and reroute the flows, solving the exact optimization
problem is not applicable. Therefore, given a current network
flow configuration, following four computationally efficient
algorithms are suggested to address the problem above in large
scale SDN-enabled networks; Greedy : First fit, Best fit, Worst
fit algorithms and Meta-heuristic: GA

A. Greedy Algorithms: The proposed three greedy
algorithm are described in the following pseudo-code:

1: List nodePairs; //list of all (O-D)
2: List numFlowPerPairs; //Number of flows between (O-D)
3: List S= sortNodePairs(nodePairs,numFlowPerPairs);



4: For n in S
5: List X=kPaths(n); //return list of pre-calculated paths
6: List C=pathsCost(X);
7: List Y=sortPaths(X,C);
8: For i in Y
9: List Z=flowsInPath(i); //get all flows from path i
10: List W=sortFlows(Z);
11: For j in W
12: greedyStrategy(strategy,j);
13: end for
14: end for
15: end for

Explanation : Step(3): Sort (O-D)s in descending order
regarding their number of flows. Step(6): pathsCost();
Sort flows in descending order regarding their current load.
Step(7): sortPaths(); Sort (O-D)s in descending order
using parameter C which is computed at step(6). Step(10):
Compute the cost for all the path in X by summing of states
of all links in the path divided by the number of links of
the path. Step(12): If variable firstfit strategy, we try to
move the flows one by one in the first path of the sorted
list Y , which satisfy the capacity and cost constraints(energy
consumption) and update the path cost of both old and new
path. In Bestfit case we try to move one by one the flows
in the path of the sorted list Y , which provide the best costs
and satisfy capacity constraint. Finally, in Worstfit case, we
try to move the flows one by one in the path of the sorted list
Y , which provides the worst energy cost compared to others
paths in Y and satisfies the capacity and cost constraints.

B. Metaheuristic Algorithm: The fourth proposed strategy
is based on GA [20] which is a suitable method to work the
optimization problems out. GA algorithm uses three operators
on its population [21], which described in the following
pseudo-code of the proposed adapted GA:

1: List nodePairs;
2: List numFlowPerPaire;
3: Double porbMutation=0.02;
4: List S= sortNodePairs (nodePairs,numFlowPerPaire);
5: For n in S
6: List X=kPaths(n);
7: List Y=kFlows(n);
8: List init=initPopulation (X,Y);
9: List Selection=fitnessFunct(init);
10: Integer numCrossover= numFlow(Selection)*10;
11: Integer i=1;
12: while(i< numCrossover)
13: Integer path1=random(0,X.size());
14: Integer path2=random(0,X.size()); //path1!= path2
15: Integer pos1=random(0,nFlowperPath(path1).size());
16: Integer pos2=random(0,nFlowperPath(path2).size());
17: List crossover=Crossover(path1,path2,pos1,pos1);
18: Selection.add(crossover);
19: if (rand>probMutation)
20: Double rand=random(0,1);

21: Integer path3=random(0,X.size());
22: Integer path4=random(0,X.size());
23: List mutation=Mutation(path3,path4,rand);
24: Selection.add(mutation);
25: end if
26: i=i+1;
27: end while
28: Selection=fitnessFunct(Selection);
29: end for

Description : Step(8): Population is initiated, each path
receive the flows of others paths. Then the new path cost for
each new path added to the Initial Population is calculated.
Variable init contain the pre-calculated paths and their
respective flows for each (O-D). In addition, the flows of
the others paths are assigned to each path and the cost of
each new path are recalculated before adding it to init list.
Thus init.size() = X.size()2. Step(9,28): We assess for
each new path if it satisfies the capacity constraint. If not, we
remove the path from the initial Population. We also remove
the path with higher cost. Step(9,28): selection function
Contains the new population(paths with higher cost and path
in init not satisfying capacity constraint for each of their
links are removed. Step(17): For each two selected path, we
perform crossover between their flows at the selected position.
Then we add the newly generated path to the population
(Selection()). Step(17): For each two selected path, we
move the flow selected randomly from one path to the other.
We assess the satisfaction of the capacity constraint.

Fig. 1. Computation time of First fit, Best fit, Worst fit and GA (mutation
prob = 0.02 , number of crossover = 10 *number of flows).

IV. TESTS AND SIMULATION RESULTS

In this Section, several tests are conducted to evaluate the
proposed algorithms in different scenarios: Test 1: The first
test aims to compare our four proposed algorithms between
each other. For this purpose, we limited our first test to a pair
of nodes. We generate 10 paths with a random length between
this pair of nodes (O-D). Next, we simulate a different number
of flows equally distributed over the paths. In the case of GA,
the test is repeated for various Crossover values respectively
{1,3,6,10} *some flows with fixed mutation probability=0.02.
The probability of crossover is fixed to 1. Tab.1 gives the
corresponding capacity thresholds and power consumption
value in [6]. We repeated the simulation 10000 times, and we
collect the mean and the maximum energy saving percentage



at the end. In Fig.1, it can be seen the difference in term
of computation time between the four strategies. We notice
in this figure that all proposed algorithms provide relatively
small computation time in order of (ms). Analyses of Tab.I
and Tab.II shows that the GA outperform in term of energy
saving percentage which is around 60% for mean value in
10000 iterations and around 70% for the maximum saving rate
in the same number of iterations. By increasing the number of
generated flows, GA keeps saving the significant amount of
power compared to other three greedy algorithms. Particularly,
for the case where some crossovers are equal to 10×number of
flows (between the pairs of nodes). It is shown in this test that
GA provide better performance in polynomial time compared
to the others greedy algorithms in term of energy saving.
Thus the following criteria will be based only on GA.Test
2: to assess the performance of GA in realistic topology, we
consider two well-known network topologies: NSF network
with 14 nodes and 20 links and the Abilene network with
10 nodes and 13 links. For both topologies, we generate 2
disjoints paths between each pair of nodes. Next, 11 pairs
of nodes are chosen randomly, and 10 flows are generated
over their paths. Each path has a random load value between
[0,50] Mbps. Test 3: In this test, simulation is conducted
similar to test 2 but instead of generating 2 Disjoints paths, 2
Shortest paths are generated and computed by Yen’s algorithm
that we implemented between each pair of nodes. Each path
carries 10 flows with traffic load value randomly generated
between [0,100] Mbps. Test 4: In this test, 5 shortest paths
are generated. Each path carries 15 flows with traffic load
value randomly generated between [0,10] Mbps.

TABLE I
MEAN , MAX ENERGY SAVING OF FIRST, BEST AND WORST FIT(%)

TABLE II
MEAN , MAX ENERGY SAVING(%) OF GA :MUTATION=0.02

Result and discussion: Results for tests 2, 3 and 4 are shown
in Tab.III. An interesting observation is that our proposed
strategy based on GA performs better in the NSF network
than in Abilene Network. It is depicted that our solution
achieves average power saving {35.31%,21.72%,26.81%} for
3 scenarios respectively: 2 Disjoints paths, 2 Shortest paths,
5 Shortest paths. It also achieves maximum power saving
{66.93%,43.51%,62.54%} for the 3 scenarios respectively:
2 Disjoints paths, 2 and 5 Shortest paths. On the other

hand for the Abilene network, it gets average power saving
{18.63%,20.87%,11.01%} for the same scenarios with max-
imum power saving estimated to {54.45%,50.61%,38.89%}.
The power saving difference between NSF and Abilene net-
works is mainly because NSF network is denser with less
shared links among the pairs. Regarding the computation time,
it is noticed that computation time increases proportionally
with the growth of preestablished paths between (O-D)s which
can be justified by the fact that the proposed algorithm
proceeds iteratively between the pairs of nodes.
Assessment : In term of energy saving, our work give

a better energy saving percentage for the case of single
commodity flow allocation compared to [6]. Indeed, it is
shown in Table. 3 that we can save between 48% and 59%
depending on the number of flows per demand. However, only
26% were saved for the best case in [6]. Besides, for a large
number of flows this work outperform in time computation
too, in comparison with 2 LP solver (LP GAMS, LP GLPK)
[11] as it is show in Fig.2.

Fig. 2. Computation time for 800 flows.

TABLE III
MEAN , MAX ENERGY SAVING(%) AND COMPUTATION TIME (MS)

V. CONCLUSION

In this paper, we propose an energy-efficient scalable mech-
anism by exploiting the SDN capability to provide the global
view of the network and to adapt the links data rates regarding
their carried traffic demand. To do so, an MILP formulation of
the flow placement with energy minimization objective at the
link level is provided. Next, fours algorithms are proposed and
assessed to solve the problem. Simulations results indicate that
GA based method outperforms the greedy algorithms. Indeed,
it saves up to 63% between one O-D and between 11% to 35%
on the entire network which carries more than 800 flows, while
still preserving time complexity which does not exceed 13ms.
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