
Enhanced Real Time Content Delivery using vCPE
and NFV Service Chaining

Pouya Yasrebi
Dept. of Electrical and
Computer Engineering
University of Toronto
Toronto, ON, Canada

pouya.yasrebi
@mail.utoronto.ca

Hadi Bannazadeh
Dept. of Electrical and
Computer Engineering
University of Toronto
Toronto, ON, Canada

hadi.bannazadeh
@utoronto.ca

Alberto Leon-Garcia
Dept. of Electrical and
Computer Engineering
University of Toronto
Toronto, ON, Canada

alberto.leongarcia
@utoronto.ca

Abstract—Real-time content delivery (RTCD) systems have
become a prominent aspect of telecommunications as evidence by
popularity of news-casting, real-time event subscription / publi-
cation and live media streaming. Unlike conventional content
delivery systems, RTCDs need to deliver processed information
to users in real time. This may require the network to handle
some of the processing closer to the users to efficiently use the
bandwidth consumed by the applications. The combination of
Network Function Virtualization (NFV) and service chaining is
a promising solution to address this challenge.

Our work applies a service chaining algorithm to place
NFV modules of an RTCD application in a Software Defined
Infrastructure (SDI), where virtualized Customer Premise Edges
(vCPEs), possessing scarce resources, are employed. We suggest
containers to efficiently pack VNFs into vCPEs. Our objective is
to maximize the total number of chains that can be serviced in
the RTCD application. To optimally chain the NFV modules, a
heuristic algorithm is proposed and evaluated.

Using simulations, we show that our algorithm with the help
of vCPEs can support higher number of users while providing
high-level service quality.

I. INTRODUCTION

Real-time content delivery (RTCD) systems support appli-
cations and new business models of sectors such as finance,
security, and telecommunication. In security, face recognition
algorithms determine identities and report flagged criminals to
police departments. In telecommunication, the live content of
sports events is streamed to video subscribers with low delay.
RTCD systems are required to avoid content delivery delays
for different geographical locations, minimize system inacces-
sibility in dynamic applications, and provide applications to a
higher number of users.

To avoid excessive content delivery delays and enable
buffering, computing and networking resources need to be
provisioned to provide the considerable processing and signifi-
cant bandwidths capacities required by RTCD networks. These
resources have become an essential part of content upload,
distribution, and streaming in settings where live content needs
to be processed rapidly to meet customer needs for superior
quality and lower delay.

Availability of dynamic RTCD applications can be improved
by converged management of heterogeneous network and

compute resources via a software-defined infrastructure (SDI).
To cope with dynamic nature of RTCD applications, SDI effi-
ciently handles configuration modifications for the application
by rerouting network traffic, scaling computational resources
or even fully migrating computational resources [1]. SDI also
employs a unified interface that facilitates deployment and
management of RTCD technologies such as monitoring and
live broadcasting [2]. The architecture of an SDI implementa-
tion shall be used to enhance RTCD in this work. The Smart
Application on Virtual Infrastructure (SAVI) testbed is a fully
deployed SDI resource management system (RMS). SAVI
aims to support low-latency and high data volume applications
based on a multi-tier cloud including Smart Edges. The notion
of multi-tier cloud on SAVI extends to sensor networks with
a third tier that contains virtualized Customer Premises Edges
(vCPEs). vCPE’s definition in SAVI is different from virtual

Core Edge vCPE

Tier 1 Tier 2 Tier 3

Edge vCPEvCPEvCPE

Fig. 1: Abstract multi-tier cloud

customer premises equipment, running fixed set of network
functions. vCPEs in SAVI are referred to container hosting
platforms located at the extreme Edge. vCPEs do not have
enough resources to handle computation for high volumes of
traffics, so a cloud-based solution with either Core or Smart
Edge nodes is required to satisfy end-to-end requirements for
an application.

Another recent technological breakthrough, which can rev-
olutionize RTCD, is Network Function Virtualization (NFV)
that aims to make a shift in the implementation of network
functions [3]. NFV, a flexible networking architecture vir-
tualizing network nodes, allows modular development and
quick deployment. Each network module individually deploys
a virtualized network function (VNF). VNFs require both
computing and networking resources when deployed on the
cloud. A network application might demand a set of these
inter-connected VNFs to work together in a complex manner.

978-3-901882-85-2 c© 2016 Crown

The logic and process of connecting these VNFs together
are called VNF service chaining [4]. There are two phases
in VNF service chaining: placement and chaining [5]. VNF
placement is concerned with the number of VNFs needed
for an application and their mapping to physical servers. The
VNF placement objective can vary from lowering deployment
cost to maximizing traffic requests, and maximizing clustering
of VNFs. Chaining is concerned with routing traffic through
VNFs to minimize VNF chain traffic congestion, total pro-
cessing, and propagation delay, and preserving Service Level
Agreement.

Our work aims to create a scalable algorithm that processes
submitted requests to the VNF chaining platform [6] of an
RTCD application running on SAVI. The objective of this
algorithm is to place and connect the VNFs in a way to
maximize the capacity of submitted requests. The results
of this algorithm note the importance of having vCPEs in
increasing service coverage of the RTCD application.

The rest of paper is dedicated to studying the effect of
vCPEs and Service chaining on an RTCD application. Section
II discusses an RTCD application on SAVI and considers basic
cases with and without vCPE to demonstrate the necessity
of vCPEs on SDI. Section III describes the service chaining
and provides a mathematical formulation for reaching to the
optimal solution of service chaining capacity maximization
problem. To make service chaining (an NP-hard problem)
tractable, a heuristic solution has been proposed and evaluated
in Section IV. Section V discusses related work and section
VI concludes the paper.

II. SYSTEM DESCRIPTION

Kaleidoscope [2] is an application that involves the gather-
ing and distribution of video in live events to and from massive
groups of users, and as such it is an ideal use case for an RTCD
application on the SAVI testbed. Kaleidoscope can leverage
dynamic cloud resource allocation and network configuration
in real time to achieve efficient resource management and
better service performance. Our work can be used for resource
allocation and service chaining in Kaleidoscope.

We consider a stadium using Kaleidoscope (seen in Fig. 2).
The stadium is equipped with high-quality cameras placed in
different angles of the stadium. These cameras are connected
to Wi-Fi access points and send video feeds to a streamer
server. In this work, we solely focus on content distribution
from the streamer-server to the fans in the stadium.

β2β1β0Smart
Edge

Low-tier
Switch

Top-tier
Switch

#:𝐾1 #:𝐾2
β3

Access
Point

Low-tier
Switch

Branch

Fig. 2: Stadium physical topology considered in basic cases

In the setting under consideration, all users should be able
to stream content captured by the cameras in the field at all
times. In addition, a playback feature has to be available for
a percentage of these users.

To enable stream and playback features, a set of traffic
requests should be submitted to the VNF chaining platform
of the SAVI testbed. These traffic requests contain service
chain information for content distribution originated from a
streamer-server. Each service chain traffic request includes
deep packet inspection (DPI), HTTP-streamer, cache, and the
streamer-server. Aside from the streamer-server, the locations
of all VNFs are unknown. The streamer server is located on
the Smart Edge as a single shared instance. Therefore, most
of the requests will be directed from the vCPE nodes to the
Smart Edge.

In our case an ordering for placement of all VNFs is
necessary. Each user request is in a form of a strand, a small
set of connected chains that form a graph. The VNF strands
are as shown in Fig.3 . In the stream case, the DPI has to be
the first module that a request from a user logically visits. This
is to prevent harms that a request can cause on the SDI. It is
important to note that DPI is only used on the uplink (having
5% of the downlink traffic) to avoid any contention. Following
the DPI, a request should face an HTTP-streamer module. In
this configuration, a separate HTTP-streamer VNF (for stream
and replay) and Cache VNF (for replay) is needed for each
request. These VNFs might change the nature and size of the
bandwidth. DPIs forward data that is passed to them without
changing the bandwidth of the flows.

Local caches reduce bandwidth consumption of playback
feature. This local caching and computation illustrates the
benefits of using vCPEs by saving on total bandwidth and
allowing more users to stream. In order to more efficiently

5

3

4

6 5
User

DPI

HS

SS

Cache

User

DPI

HS Cache

Replay

Stream

Fig. 3: Flow strands of stream and replay requests

use scarce resources on vCPE, we propose the use of the
containers instead of VMs for deploying VNFs. In other
words, VNFs will be deployed on containers that are running
on vCPEs. [7].

Here we define multiple basic cases and find the maximum
number of users (streaming and replaying with b = 5Mbps)
that can be supported by the SDI. As seen in Fig.2, β0 is the
bandwidth between the Smart Edge and the top-tier switch,
β1 is the bandwidth between the top-tier switch and each low-
tier switch, β2 is the bandwidth between low tier switches and
each of their connected access points, and β3 is the bandwidth
of wireless link connecting each access point to its user group.

K1 is the number of low-tier switches and K2 is the number
of the access points per low-tier switch according to the figure.

Lets consider few numbers for a set of parameters to ease
understanding the first few cases: β0 = 10GigE, β1 = 1GigE,
β2 = 600Mbps, β3 = 200Mbps, K1 = 300, K2 = 5.

A. collocated chain model

First we assume all VNF modules of a strand have been col-
located on the same compute module. The strands have been
transformed to chains by ignoring the up-link due to its smaller
bandwidth, and video has been multi-casted from streamer
server to all possible locations for the HTTP-streamers (seen
in Fig.4).

User

DPI

HS

User

DPI

HS Cache

Replay

Stream

Fig. 4: simplified chains of stream and replay requests. Cache
modules are considering processing power per user and do not
have a local copy per user.

1) Smart Edge compute only: In this case, the bottleneck
is the link between Smart Edge and the top-tier switch with
bandwidth β0. The SE can support up to β0/b users (2000
fans in our example).

2) vCPE enabled access point only: Despite the previous
case, all VNFs have to be placed on the APs. Each user needs b
bandwidth per stream or replay from the wireless bandwidths.
Hence (β3/b) users can be supported by an AP accounting
for K1K2(β3/b) in total(i.e.72000 fans in our example).

3) limited vCPEs only: Let’s consider a case that only K ′
2

(i.e. 1) out of K2 APs are equipped with vCPEs. Therefore
these vCPEs could be shared by their neighbor APs. The multi-
cast used to distribute V (i.e.V = 10) camera feeds only
consumes a bandwidth V b from the link connecting low-tier
switch to the vCPEs. β2−V b is available to service neighbor
access points. Therefore number of users supported by the
SDI (here ≈ 42000 fans) is limited to the capacity of wireless
links (WIFIcap)and capacity of outgoing links from the APs
with vCPEs (vCPElink-cap)

minimum WIFIcap, vCPElink-cap

WIFIcap K1K2(β3/b)

vCPElink-cap K1K
′
2((β2− V b)/b+ β3/b)

4) Smart Edge and limited vCPEs: In this case the band-
width left from multicast on the main link shall be used
to service the users. This modifies the previous formula to:
(43980 users)

minimum WIFIcap, vCPElink-cap + SElink-cap

SElink-cap ((β0− V b)/b)

5) Processing limit on the vCPEs: Let’s assume that collo-
cated VNFs from a stream request chains require res1 amount
of vCPU and each vCPE has vCPU capacity of RES1. The
problem becomes

minimum WIFIcap, vCPEcap + SElink-cap

vCPEcap min(vCPElink-cap, vCPEres-cap)

where vCPEcap is the number of users supported by resource
and link capacity of vCPEs (i.e. RES1/res1 is the users
supported by resources). To increase the vCPEcap, it seems
reasonable to distribute VNFs of the strands instead of collo-
cating them.

B. Service Chaining on constrained heterogeneous resources

We have realized by now that reducing compute on the
vCPEs of the AP can lead to more number of users. To
efficiently use compute on the APs the location of DPIs
and HTTP-streamers, as the main compute hungry VNFs, are
of great importance. So far the effect of adding vCPEs on
number of users was observed. The vCPEs and Switches with
processing are becoming very common in today’s networking
research. It was notable that vCPEs do not need to be installed
on each and every AP to provide a reasonable service to the
users.

In this case, we are assuming APs and lower-tier switches
are equipped with heterogeneous resources. Computing the
maximum number of users that can be supported by the
infrastructure may not be as straightforward as it was in
previous cases. To explore the effect of service chaining on
the maximization of the number of users, a mathematical
formulation is developed in the next section.

III. PROBLEM FORMULATION

Connectivity of servers(compute modules) S with direct
physical links L is represented by a directional graph G(S,L)
in which server Si is connected by link Lij with effective
bandwidth (chosen below 70% of actual rate to avoid queuing
delay) of βij(Gbps) and propagation delay of δij(ms) to
server Sj . Delay on the links (header processing delay) is com-
parably smaller than computational delays (delays involved
in using RAM). This makes the total delay the sum of all
processing delays and a constant number. The constant delay
eliminates the need to discuss the notion of delay bound in
our problem formulation. Each server has a set of resources
R = {r1, r2, ...} i.e: CPU (GHz), RAM (GB), Disk (GB),
Disk Read Speed (Mbps) and a capacity associated with each
resource Crs . Since abundant storage is available, the storage
capacity is not considered as a bottleneck and is removed from
the calculations.

In our use-case, a group of requests T is submitted to the
RTCD application. Each request t contains an ingress point
ut, an order of VNF chain ζt, a vector of bandwidths βt that
could change in each VNF process. Every VNF m ∈ ζt has a
set of required resources ρrm that need to be fulfilled with the
SDI. Also a vector of virtual links Γt is associated with each
request. A hypothetical physical link from a server to itself,

modeling inter-server traffic forwarding, has been considered
for collocated VNFs on servers.

To be fair between users, our goal is to equally maximize
number of users that can stream among different branches. A
branch is a sub-tree of the SDI tree (as seen in Fig. 2 with
a low-tier switch as its root. Our topology has K1 branches
(equal to the number of lower-tier switches in the SDI). By
defining Tstream,i as the number of users that can stream from
an AP of branch i, our goal becomes maximizing the minimum
of the Tstream,is among different branches. This problem is
equivalent to maximizing number of chains per AP when all
access points have similar number of chains:

maximize Tstream

s.t Tstream = αTreplay

Tstream = Tstream,1 = ... = Tstream,k

Treplay = Treplay,1 = ... = Treplay,k

α Replay percentage
constraints bandwidth and compute limitations

The maximum number of chains depends on the allocation
of VNFs onto the physical servers. To formulate this allo-
cation, a parameter xtms is needed to indicate whether VNF
m from traffic t is assigned to server s or not. On the other
hand, physical links that are used to connect VNFs together
have limited capacity. To determine physical link l usage for
virtual link γ, another parameter ytγl is necessary.

To ensure that traffic requests T are assigned and connected
as submitted to the chaining service, additional constraints
need to be applied to the optimization problem as described
next.

Var. Description
VNF m from traffic t on server s

xtms placement decision variable
virtual link γ from traffic t on physical link l

ytγl chaining decision variable

To guarantee that all VNFs for the stadium are placed on
the network, each VNF has to be allocated to one and only
one server:

∀t ∈ T,m ∈ ζt∑
s

xtms = 1

Allocated containers to a server should require less re-
sources than what is available on that server:

∀s ∈ S, r ∈ R∑
t

∑
m∈ζt

xtms ∗ ρrm ≤ CrS

Each virtual link connects a VNF to another. To avoid
redundant traverses, only a single direction of a physical link
should be associated to a virtual link (l̄ is the reverse direction
of physical link l).

∀l ∈ L, t ∈ T, γ ∈ Γt

ytγl + ytγl̄ ≤ 1

Virtual links that are mapped to a physical link should
require less bandwidth than what that link provides:

∀l ∈ L∑
t∈T

∑
γ∈Γt

ytγl ∗ βt ≤ βl

The following constraint assures that at least a physical link
is used for each virtual link:

∀t ∈ T, γ ∈ Γt∑
l∈L

ytγl ≥ 1

Next one needs to assure that every link of the traffic
requests is fully mapped to the physical network. This con-
dition is sufficient only if two consecutive VNFs on a chain
do not collocate. We also require full path connectivity by
equivalent input/outputs for flows between nodes. The reason
for separating sums in the below expression is to emphasize
the inbound and outbound traffic. The source and destination
of each traffic are considered in above constraint.

∀t ∈ T, γ ∈ Γt, {(i, j)|γ = (i, j)},
{(s, d)|(s, d) = l ∈ L, s 6= d}∑
d∈S

yt(i,j)(s,d) −
∑
d∈S

yt(i,j)(d,s) = xtis − xtjs

To consider inter-server links, the possibility of incorrect
collocations are eliminated as follows:

∀t ∈ T, γ ∈ Γt, {(i, j)|γ = (i, j)},
{(s, d)|(s, d) = l ∈ L, s = d}
yt(i,j)(s,d) ≤ x

t
is

yt(i,j)(s,d) ≤ x
t
js

IV. HEURISTICS

Due to the binary nature of variables and integer format of
constraints, the mixed binary linear problem above is an NP-
Hard problem (proof in the appendix). Since each VNF can
be placed on n servers, the solution space grows exponentially
with respect to the number of servers in the SDI service
chaining problem. Due to the tree topology of the graph,
the paths between two VNFs in a chain can be uniquely
determined. This tree feature keeps the complexity at the
node selection level. nT possibilities for the ILP problem
makes finding the optimal solution quite time-consuming and
possibly unfeasible.

Based on the problem formulation we believed that con-
sidering a possibility of all servers for each VNF, and the
possibility of all physical links for each virtual-link were the
main reasons for increasing the size of the problem. It was
possible to benefit from the tree nature of the SDI to control
the size of the problem. Our goal was to abstract global
branches as simple resource pools (black-box) for chains in
a local branch. In this approach, each chain will use its own
branch if possible before borrowing resources from rest of the
branches.

We propose a two-step heuristic process for solving the
problem: Move DPIs to the Smart Edge to efficiently utilize
vCPEs, and next find a right balance between inner and outer
chain capacities for each branch to maximize the number of
users per AP.

The DPI is on the upstream with minimal bandwidth passing
through it. To avoid waste of resource on the vCPEs, it seems
legitimate to offload the DPIs to the Smart EDGE. Placing
DPIs on the vCPEs could drastically decrease the number
of users benefiting the vCPEs. The placement of the Http-
streamers and the caches is still a question.

Now the balance between inner and outer chains per branch
must be found. Inner chains are the chains located in a
branch to support the users located in the same branch. With
this definition, outer chains become the chains in a branch
supporting users from other branches. A trade-off between
inner and outer chains is apparent. Users in a branch can have
their chains use resources from the local branch, global (other)
branches, or even Smart Edge. A branch can either support
global users using local resources or local users using global
resources but not both at the same time, since a branch either
has excess or lack of resources. The inner and outer chain view
to the problem is valid since having HTTP-streamer and caches
if placed in different branches, consumes a lot of networking
resources in the SDI.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
se

rs

total-users-per-AP

local users supported locally

maximum global users supported locally

local users supported globally

Fig. 5: lending chains to global branches

0

20

40

60

80

100

120

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

U
se

rs

total-users-per-AP

local users supported locally

local users supported globally

local users not supported globally

Fig. 6: borrowing chains from global branches

TABLE I: Number of users supported by Optimal (in total)
and by Heuristic (per branch) are compared with the RAM
required to solve the problems

total users in stadium RAM (GB)
Optimal 5 .4

30 9.4
200 ?

total users per Branch RAM (GB)
Heuristic 5 .2

30 .5
200 9.3

To obtain a heuristic maximum number of the users, a
similar set of figures as 5 and 6 has to be generated for each
branch. These figures demonstrate the relationship between
a number of users served per access point in a branch with
respect to the number of local users supported locally, global
users supported locally, local users supported globally, and
local users that cannot be supported.

A VNF service chaining in SDI is valid where a number
of total lent chains (possible global users supported locally)
is higher than total borrowed chains (local users supported
globally). This can be easily determined by combining all
branch figures. Note that Smart Edge itself has a separate
figure that only supports global users with local resources.

max
total users per AP

∑
i∈Branches,Smart Edge

GLi

where
GLi ≤ LGi

GLi global users supported locallyi

LGi local users supported globallyi

Table I compares RAM required to support optimal and
heuristic algorithms for three use cases. It is completely
notable that the optimal algorithm can only handle almost
up-to 30 service chain in one shot, despite 200 users (200
∗ number of branches in Total) for the heuristic solution.
40 users per AP in the heuristic scenario is enough for our
problem.

The Heuristic solution can be applied to more general cases
when each branch has an arbitrary topology with random
resources. This allows the heuristic solution to be truly scalable
(even for a stadium with 60000 users with 300 branches),
while optimal solution falls short due to its exponential RAM
Usage (seen in table I).

V. RELATED WORK

[8] by Luizelli et al. divides the service chaining problem
into three steps of placement, assignment, and chaining. This
work solely considers reducing the number of VNFs on
the infrastructure and it does not address service chaining’s
bandwidth consumption. [9] by Moens et al. considers a more
general hybrid infrastructure with legacy hardware and cloud
resources. It simply offloads work from legacy to the cloud
as the capacity of the legacy is reached. [10] by Mehraghdam
et al. considers traffic requests containing non-ordered VNFs.

To deal with the exponential growth of possibilities for non-
ordered chains, this paper suggests a heuristic to select one of
the possibilities. Maximizing remaining bandwidth for chain
placement is one of the prominent problems that it considers.
[11] by Huang et al. takes the same objective and proposes
inter and intra-chain congestion control as the cause of running
out of remaining bandwidth. Their service chain selection
algorithm maximizes the remaining bandwidth. Finally, [12]
by Bari et al. defines an ILP for the cost parameters in service
chaining and takes an exhaustive approach in finding the
minimum cost of service chaining in their network.

VI. CONCLUSION AND FUTURE WORK

In this paper, an algorithm to optimally map a set of
VNF chains to the physical network of SDI for an RTCD
application was designed. The heuristic reduces problem size
to multiple local problems, resulting in a very efficient and
scalable solution. The proposed scalable heuristic can support
more arbitrary configurations than what we examined in this
paper. In the future, we will consider placement of vCPEs
from different flavors on the stadium.

VII. APPENDIX

Following is another formulation of the problem. By show-
ing that the new formulation is an NP-Hard problem, we
conclude that our original problem is also NP-Hard. We
intend to utilize the underlying SDI to maximally contain
Kaleidoscope VNF-graphs. The total number of VNF-graphs
can be translated to maximization of the total number of users
served by APs. Assuming nsi,nri are the total number of users
that can stream and replay in user group i, the objective would
become:

max (ns+ nr)

ns = nsi , nr = nri

Lets consider a user group i with our specific VNF-graph
shown in Fig.3. nsij is the number of streams from nsi that
have their DPIs located on node j. This would consume a
bandwidth correlated with nsij from node i to node j, and a
set of resources consumed on node j.
In a similar way nsijk is the number of streamers from
nsij with their Http-Streamers on node k. An additional term
nrijkh is used for the replay’s cache component

nsi =
∑
i

(nsij) , nsij =
∑
k

(nsijk)

nri =
∑
i

(nrij) , nrij =
∑
k

(nrijk) , nrijk =
∑
h

nijkh

(α− ε)nsi ≤ nri ≤ (α+ ε)nsi

Due to the tree form of the topology there is a unique way
to connect a node to another. Wij represents paths used to
connect node i to node j. Now we can construct formulation
of bandwidth usage in our case.
Let’s consider βsi to be the bandwidth used for stream i,
BsUD the bandwidth from user to the DPI,BsDH the band-
width from DPI to the Http-Streamer, BsHU the bandwidth

from Http-Streamer to the User-groups. βsi can be formulated
as follows:

βsi =
∑
j

nsijWijBUD +
∑
j

∑
k

nsijk(WjkBDH +WkiBHU)

βri =
∑
j

nrijWijBUD +
∑
j

∑
k

nrijk(WjkBDH +WkiBHU)

+
∑
j

∑
k

∑
h

nrijkhWhkBCH

Csiq = ρsD(nsiq) +
∑
j

ρsH(nsijq)

Criq = ρrD(nriq) +
∑
j

ρrH(nrijq) +
∑
j

∑
k

ρrC(nrijkq)

With physical resource constraint of :

Phys res.
∑
i

Csiq + Criq ≤ Cq

Netw res.
∑
i

βsi + βri ≤ B

As the above problem is ILP (therefore NP-Hard) and equiv-
alent with our original problem, the original problem is NP-
Hard as well.

REFERENCES

[1] T. Lin, B. Park, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed
architecture and federation,” in 1st EAI International Conference on
Future access enablers of ubiquitous and intelligent infrastructures
(Fabulous), September 2015.

[2] Q. Zhang, S. Q. Zhang, J. Lin, H. Bannazadeh, and A. Leon-Garcia,
“Kaleidoscope: Real-time content delivery in software defined infras-
tructures,” in Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, pp. 686–692, May 2015.

[3] ETSI, “Network function virtualization - introductory white paper,”
October 2012.

[4] M. Chiosi and et.al, “Network functions virtualisation: An introduction,
benefits, enablers, challenges and call for action,” in SDN and OpenFlow
World Congress, 2012.

[5] P. Quinn and T. Nadeau, “Service function chaining problem statement,”
draft-ietf-sfc-problem-statement-07 (work in progress), 2014.

[6] P. Yasrebi, S. Bembey, H. Bannazadeh, and A. Leon-Garcia, “Virtual
network function service chaining on savi sdi,” in 1st EAI International
Conference on Future access enablers of ubiquitous and intelligent
infrastructures (Fabulous), September 2015.

[7] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 275–287, Mar. 2007.

[8] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary, “Piecing
together the nfv provisioning puzzle: Efficient placement and chaining
of virtual network functions,” in Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on, pp. 98–106, May 2015.

[9] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), 2014 10th International Conference on, pp. 418–423, Nov
2014.

[10] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on, pp. 7–13, Oct 2014.

[11] P. H. Huang, K. W. Li, and C. H. P. Wen, “Nachos: Network-aware
chains orchestration selection for nfv in sdn datacenter,” in Cloud
Networking (CloudNet), 2015 IEEE 4th International Conference on,
pp. 205–208, Oct 2015.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Network and Service Management
(CNSM), 2015 11th International Conference on, pp. 50–56, Nov 2015.

