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Abstract—The legitimate driver of a vehicle traditionally gains
authorization to access their vehicle via tokens such as ignition
keys, some modern versions of which feature RFID tags. However,
this token-based approach is not capable of detecting all instances
of vehicle misuse. Technology trends have allowed for affordable
and efficient collection of various sensor data in real time
from the vehicle, its surroundings, and devices carried by the
driver, such as smartphones. In this paper, we propose to
use this sensory data to actively identify and authenticate the
driver of a vehicle by determining characteristics which uniquely
categorize individuals’ driving behavior. Our approach is capable
of continuously authenticating a driver throughout a driving
session, as opposed to alternative approaches which are either
performed offline or as a session starts. This means our modeling
approach can be used to detect mid-session driving attacks, such
as carjacking, which are beyond the scope of alternative driver
authentication solutions. A simulated driving environment was
used to collect sensory data of driver habits including steering
wheel position and pedal pressure. These features are classified
using a Support Vector Machine (SVM) learning algorithm. Our
pilot study with 10 human subjects shows that we can use various
aspects of how a vehicle is operated to successfully identify a
driver under 2.5 minutes with a 95% confidence interval and
with at most one false positive per driving day.

I. INTRODUCTION

Ignition keys have served as authentication tokens for
vehicle drivers for decades. More recently, traditional keys
based on physical shape have been augmented with embedded
Radio Frequency Identification (RFID) tokens to provide an
additional layer of protection against theft. Unfortunately,
such keys are susceptible to theft, cloning, forgery, and relay
attacks. However, RFID enabled steering columns represent
only a small portion of the sensing hardware available on
modern vehicles.

Traditionally, measuring driver habits involved conducting
costly traffic surveys which take a large amount of time
and human effort yet yielded results with limited accuracy
[1]-[3]. Recently, however, several technological trends have
converged to allow affordable and efficient collection of
driver data [4], [5]. The cost and availability of wireless
communication and sensing hardware has allowed for easy
collection of data, often in real time via ubiquitous devices
installed in vehicles or worn by drivers. This has enabled
a variety of potential applications, including more accurate
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pricing determinations for insurance (Pay as you drive (PAYD)
or Usage-Based Insurance (UBI)) [6], [7] and finer grained
traffic planning for improved public safety [8].

This research seeks to solve the problem of unsafe and
untrustworthy transportation systems caused by vehicle misuse
by authenticating drivers according to the manner in which a
vehicle is operated. To this end, we conducted a study with
10 human subjects to assess the efficacy of using the data
collected from the vehicle sensors on identifying the driver.

In this paper we propose to authenticate drivers based on a
variety of data that is available via common onboard vehicular
sensors and systems. There are a variety of stakeholders
involved in the operation of transportation systems for which
a more thorough guarantee of a driver’s identity would be
of interest. For example, municipal governments may wish
to ensure that buses are being operated by a predetermined
employee. Similarly, car sharing service providers may want
to confirm that a member has picked up the correct vehicle, and
owners of taxi fleets may wish to ensure their vehicles have not
been operated without permission. Insurance providers may
wish to verify that only drivers listed on a particular policy
are allowed access to a covered car. Finally, recognition that a
vehicle is being operated by someone other than the vehicle’s
typical owner may allow for advanced notice in the event of
vehicle theft.

The remainder of this paper is organized as follows. Section
IT summarizes pertinent related work. Section III introduces
our threat model, discusses the design and experimental setup
of our human subject study, and discusses our approach to the
problem of driver behavior modeling. Section IV presents the
outcome of our study. Section V concludes the paper.

II. RELATED WORK

Vehicle-based performance technologies infer driver behav-
ior by monitoring car systems such as lane deviation, steering
or speed variability [9]. Such systems are critical to identify
and avoid driver sleepiness, which is associated with around
20% of serious car injuries [10]. Jensen et al. proposed
mathematical strategies to classify drivers into various levels
of aggressiveness using vehicle information such as vehicle



speed, engine speed, mass air flow rate, coolant temperature,
and throttle [11].

In recent work, such systems are suggested for driver
classification. Salemi proposed [12] to use vehicle information
such as the vehicle speed, engine speed, breaking speed, and
gyro data to profile the driver behavior. They use this profile
to authenticate a driver to avoid car theft. However, such
systems require access to a vehicle’s engine via a debug
interface, known as On-Board Diagnostics (OBD-II), which
may introduce a security risk by providing a vector for
attack through influencing vehicle control variables such as
steering, braking, and accelerating [13]. GPS tracking, which
may violate a driver’s privacy and lead to possible legal and
social implications [14], has been criticized for issues such as
insurance pricing manipulation. Researchers recently showed
that such systems can pinpoint a driver’s destination even
without GPS [15].

There exist sensing technologies for directly monitoring
driver fatigue using cameras placed on the dashboard [16]
or via biological modalities such as electroencephalography
(EEG) and electrooculography (EOG). These technologies
are cumbersome and intrusive, though, thus limiting their
widespread use. Following the advances in wearable technol-
ogy, recent work started addressing some of the aforemen-
tioned challenges using wearable devices for driver identifi-
cation. Karatas er al. proposed using wrist-worn wearables
for tracking drivers and identifying drivers by profiling the
drivers’ steering behavior [17]. This and some other driver
identification schemes [18], [19] have been presented in previ-
ous work, but the approach presented in this paper is the first to
the authors’ knowledge to be capable of detecting mid-driving
session attacks such as carjacking.

Vehicular sensing applications which respect occupant pri-
vacy is an emergent line of work. For example, Troncoso et
al. studied how PAYD insurance model can still be feasible
by revealing only the account information required for billing
purposes rather than all aspects of a driver’s activity [20].
This is achieved by a privacy-preserving mechanism, which
performs calculations locally, and sends only the aggregated
data to the insurance company. Checkoway et al. carried out
a formal analysis of the ways in which connecting devices to
a vehicle can increase its attack surface [21]. Authenticating
users prior to driving activity is another emerging research
field. In this context, beyond using car keys or tokens for
access control to the car, to allow the vehicle activation drivers
are required to be authenticated by verifying their posture [22],
[23] or fingerprints [24].

III. METHOD
A. Threat Model

There are clearly differences between authenticating a driver
to a vehicle and user authentication in traditional contexts
which impact adversarial capabilities. Whereas typical users
are fairly stationary and may walk away from a session at
any time, driving a vehicle is a high-speed operation which
cannot be terminated abruptly. We thus assume that the same

driver is in control of the vehicle throughout a session for
practical considerations, although a strength of our model is
its capability to detect changes in behavior even within a single
driving session.

Instead, we concentrate on attack situations in which an
unauthorized individual has somehow gained access to a
vehicle by bypassing existing authentication mechanisms. We
envision a variety of potential cases in which this could occur,
involving different combinations of stakeholders:

o A single-owner vehicle is stolen and driven away. Perhaps
the car is broken into by stealing a key, immobiliser,
or other access token. Vehicles can also be “hot-wired”
by circumventing the ignition interlock. Alternatively, a
careless owner may have simply left his or her vehicle
unattended and running; this parallels “lunchtime” attacks
against traditional computer systems [25].

o In many jurisdictions only insured drivers are permitted
to operate certain vehicles; operation of a vehicle by a
party not authorized by the insurance agency constitutes
a legal violation [26].

e Operators of transportation services, such as taxi and
bus companies, may wish to verify that certain drivers
are completing the correct routes for compensation and
liability purposes.

o Car rental agencies, and other car sharing providers,
frequently stipulate that only specific customers, clients,
or members may operate a vehicle during a particular
booking.

We assume an adversary with no special familiarity to
the driving patterns of other users; the impact of driving
knowledge on the ability of an attacker to emulate driving
patterns will be pursued as future work.

B. Experimental Study Design

For our study, we used the OpenDS 3.5 driving simulator,
which is based on the JMonkey Engine [27]. We used a
Logitech G27 Steering Wheel in place of a traditional mouse
and keyboard so that users could perform their driving task in
a more realistic manner.

Our study participants were asked to complete a specific
driving task using a scenario we designed using the OpenDS
driving simulation software [27]. During our study, each of
the 10 test subjects were asked to complete four 5 minute laps
with the OpenDS simulation, and consequently we collected
approximately 20 minutes of driving data per subject. The
simulation is set to have light traffic, frequent traffic light
changes, pedestrians, and road signs in order to simulate a
realistic driving experience.

During each session with the simulator, five driving pa-
rameters are collected from OpenDS at approximately 40
millisecond intervals. These parameters are vehicle position
(X, Y, and Z coordinates), speed (km/h), steering wheel
position, gas pedal position, and brake pedal position.



C. Data Modeling and Analysis

We chose five features as potentially discriminative char-
acteristics extracted from measurements to capture each sub-
ject’s unique driving pattern: (1) Euclidean distance traveled,
(2) average vehicle speed, (3) the standard deviation of the
steering wheel position, (4) the average change of brake pedal
position, and (5) the average change of gas pedal position.
These features were selected for a combination of practical
and theoretical considerations.

The OpenDS driving simulation software’s logging func-
tionality allowed easy access to low level driver tracking
details from which each of these features could be derived.
Additionally, we felt that these features would be good can-
didates for capturing driving activity because they covered a
wide range of the various controls one must utilize in order
to drive proficiently. Lastly, variations of these modalities had
previously been considered for different but related modeling
tasks [11], [12], [17]. We also included the vehicle’s location
coordinates and rotation in order to provide a basis for
comparison with our derived features.

We applied a variety of different machine learning algo-
rithms to our collected feature set in order to assess their ability
to discern between individuals as they operated a vehicle. We
implemented Matlab scripts to apply 3 different supervised
learning algorithms to our data: Decision Trees, Support Vec-
tor Machine (SVM), and k-Nearest Neighbor (kNN). We also
attempted to apply a boosting to increase our classification ac-
curacy: instead of using all features for classification, various
subsets of features are used and classification is determined
by which grouping is indicated by a majority of the learners.
In the case of k-Nearest Neighbor, this is referred to as the
random subspace method, while for decision trees, this results
in an approach known as Random Forests.

We plotted Receiver Operator Characteristic (ROC) and
Detection Error Tradeoff (DET) curves to provide a fair
comparison between these disparate classification techniques.
An ROC curve is a plot of a classifier’s true positive rate, or
sensitivity, against it’s false positive rate as the threshold for
classification is altered. Values to the lower left of the ROC
curve represent more conservative threshold values, with less
false positives (i.e., false alarms about an authentic driver’s
identity) but also less true positives (i.e., a less successful
unauthorized driver detection rate). The upper right of the ROC
curve, on the other hand, shows less conservative thresholds
where attacker detection is maximized at the cost of increased
false positives. Because the goal of driver classification is to
maximize the true positive rate of detection while minimizing
the number of false alarms raised during regular driving
activities, the goal is to maximize the area under the ROC
curve (AUC).

DET curves are very similar to ROC curves in that both plot
classifier performance as a function of threshold adjustment.
A DET curve plots a classifier’s true positive rate against its
false positive rate, however, while a DET curve instead plots
a classifier’s false rejection rate against its false positive rate.

DET curves are useful for visualizing the relationship between
these error rates. The point at which both error rates equal each
other is known as the Equal Error Rate (EER).

We conducted our SVM classification tests with the C-
support vector classification (C-SVC) training algorithm. Us-
ing logistic models with a complexity parameter, which is used
to control the number of support vectors used to form class
boundaries, of (C' = 10.0), resulted in the best achievable
classification performance.

D. Feature Analysis

To measure how well these features capture patterns specific
to a driver, we utilize Fisher’s separation function [28]. This
function, which is maximized to classify data in Linear dis-
criminant analysis, is the ratio between matrices representing
a feature’s scatter within a class and across classes. Due to
the proportionality between scatter and covariance, a Fisher
score can be expressed as the ratio between the within-class
variance and between-class variance of a feature [29]:
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where the numerator is the between-class variance for
feature n and the denominator is the within-class variance for

feature n.

E. One-Class Modeling

We explored the application of multiclass modeling pro-
cesses to the task of driver identification in order to perform
a comparison of alternative modeling techniques. In practice,
however, a particular driver’s vehicle would not have access to
information regarding how other drivers operate their vehicles.
Furthermore, even if this information was available, it would
be very difficult to scale to all users in a busy driving area.
For this reason, one class models, which require only positive
samples of an authentic driver’s behavior patterns, are much
better suited to the context of driver authentication.

To see how a one-class model would perform with respect
to our driving features, we applied a one-class Support Vector
Machine (oc-SVM) to our data to create a separate model for
each user. Each user’s model was trained with 80% of their
driving samples, while the remaining 20% of driving logs were
reserved for testing. Each user’s model was trained only using
their driving data, but driving data from all ten subjects was
used to test the classification accuracy.

F. Time To Detection

Though the previous section’s analysis is useful for the sake
of comparing our approach to different modeling techniques
and behavioral modalities, it is also instructive to consider
the operational considerations of our approach. Specifically,
we would like to know how long it would take to identify
someone who has attempted to illicitly operate a car. The time
to detection (TTD) is a function of the true positive rate of our
driver modeling system, which is in turn proportional to our



model’s false positive rate. It is thus necessary to fix a false
positive rate before determining our model’s TTD.

Once a desired operational false positive rate is selected,
it can be used to determine a target per sample rate of false
positives. The resulting false positive rate of the classifier can
then be used to determine the true positive rate of the classifier
at that specific threshold value. Finally, the per sample true
positive rate can be used to determine how many samples,
and thus how much observation time, is required to achieve a
desired detection confidence rate.

IV. RESULTS
A. Model Comparison

We plotted the Receiver Operator Characteristic (ROC)
curves to provide a fair comparison between these disparate
classification techniques. Since ROC curves express binary
classification information, this was performed on a user by
user basis, i.e., user 1 was classified against users 2 through
10, then user 2 was compared to user 1 and users 3 through
10, etc.

More specifically, we conducted our SVM classification
tests with the C-support vector classification (C-SVC) training
algorithm. Using logistic models with a complexity parameter,
which is used to control the number of support vectors used
to form class boundaries, of (C' = 10.0), resulted in the best
achievable classification performance.

Figure 1 shows ROC curves which result from multiclass
SVM classification for all ten participants. In addition to the
ROC curves, Figure 1 also provides AUC values for each study
participant that resulted from training an SVM on our driving
features with a Polynomial kernel and applying 10-fold cross
validation; the average AUC across all users is 0.8138.

Figure 2 presents a DET curve for multiclass SVM clas-
sification averaged across all users. Our multiclass driver
detection SVM was capable of authenticating drivers with an
EER of 24.9%.
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Fig. 1. ROC Curves for Multi-Class SVM Classification of All Study
Participants.

Multi-Class SVM Average DET Curve
1 : :

\\ Average Driver (AUC: 0.186)
0.9 ,\\ ® Equal Error Rate (24.9%) 5
08l \ 1
\
0.7F |\ |
o) \
g \
o 06F 1\ 4
= \
S 05F \ i
g \
Q04 \ q
ks \
w \
0.3F \\ q
0.2+ ~— 1
0.1F \\ i
0 . . . n
0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 2. Average DET Curve for Multi-Class SVM Classification.
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Fig. 3. Multiclass Model AUC Comparison.

These per-user AUC values were averaged together to pro-
duce an AUC for each classifier, which is displayed in Figure 3
as a box-and-whisker plot. Decision trees displayed a similar
classification performance to SVMs on average, resulting in
AUC values of 0.902 and 0.91 respectively. However, decision
trees also fell into the lower quartile for a larger portion
of users. The kNN approach displayed the worst overall
performance, with an average AUC of 0.781. Though boosting
did increase the average AUC to 0.8 for kNN, it also resulted
in very poor performance for some users, with an AUC value
as low as 0.35. Though boosting decision trees to produce a
random forest ensemble learner increased the average AUC to
0.932, we believe this gain may be due in part to overfitting
on our relatively small sample size.

B. Feature Analysis

The Fisher scores for both the average values of our raw
driving data and our derived features are shown in Table I.
The features are listed in ascending order by their Fisher



TABLE I
FISHER SCORES FOR DRIVING FEATURES.

Feature Fisher Score glassqicat.l on

ontribution
Average Change in Accelerator Pressure 0.122 3.84%
Distance Traveled 0.101 0.23%
Average Speed 0.082 0.26%
Average Change in Brake Pressure 0.052 1.76%
Standard Deviation of Steering Position 0.039 0.60%
Average X Axis Position 0.037 0.46%
Average Z Axis Position 0.022 1.32%
Average Y Axis Position 0.020 0.00%
Average Z Axis Rotation 0.019 0.00%
Average Y Axis Rotation 0.018 -0.46%
Average X Axis Rotation 0.017 -0.03%
Average W Axis Rotation 0.014 0.07%

score. These scores capture the ratio of between-class and
within class variance, which essentially means that higher
ranked features are more consistent for a particular driver
over time, and more unique between different drivers. From
Table I, it is easy to see that our derived values have more
discriminative power than the “raw” rotational and coordinate
values collected from the simulator; recall that the coordinates
are roughly equivalent to geolocation information.

The third column of Table I, labeled “Classification Con-
tribution,” contains another measurement of the suitability of
each feature to the task of driver modeling. This value is
obtained by removing the feature from our SVM modeling
process and observing the new true positive classification
accuracy. The new TPR is subtracted from the original to
obtain the classification contribution.

As shown in Table I, the classification contributions are cor-
related with Fisher values, with higher valued features having
larger contributions to the overall modeling process. A notable
exception are the Distance Traveled and Average Speed. The
reason why SVM modeling retains its classification accuracy
when either of these features is removed is due to the fact
that they are highly correlated, thus removing one or the other
only removes a small amount of information from our models
due to the redundancy in these features. Some measurements,
particularly the Y axis position, which represents elevation, are
consistent across all users. The Fisher score and classification
contributions confirm that these features are not discriminative.
Including the Y and W rotational axes in our model even
turned out to be detrimental to classification. We believe the
reason for these features to have non-zero Fisher scores is
due to noise in the underlying data introduced by very small
variations in the data logged by the simulation.

C. One-Class Modeling

Figure 4 shows the ROC curves achieved for each driver
using the per-user oc-SVM modeling process, while Figure 5
displays the average DET curve for all users.

The oc-SVM achieved an average AUC value of 0.9219
and an EER of 14.7%, which represents an improvement over
multi-class modeling in terms of both metrics. This is due in
part to the fact that the one-class modeling process is asking
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a less specific question than the multi-class example. The
multiclass model is essentially asking “Are you driver X or
driver Y,” while the one-class model asks “Are you driver X
or a different driver?”

D. Time To Detection

We selected one false positive per driving day as a rea-
sonable performance target. According to a recent study [30],
the typical driver spends 46 minutes in his or her vehicle
per day on average. Our model works using a 10 second
sampling interval. Thus, to achieve a false alarm occurrence
rate of one per 46 driving minutes would require a FPR of
e X e 10seend _ 0,00362 or 0362%. At
this very restrictive FP rate, our oc-SVM model of driving
behavior is capable of performing driver classification with a
detection rate of 19.5%. This means that in any one particular
time window there is a 80.5% change of an illicit driver
avoiding detection. The following equations calculate how




many 10 second samples would be required to ensure that any
unauthorized drivers are detected with at least 95% confidence:

0.805* < 0.05
z < log(0.05)/1og(0.805)
r < 13.81

From an operational perspective our oc-SVM model of
driving behavior can successfully detect illicit vehicle usage
with 95% accuracy after 14 samples, or 2 minutes and 20
seconds of driver data collection, while keeping false alerts
to once per driving day at most. These results show that
identifying drivers is feasible in practice with active behavior
modeling without incurring any significant computation or
high false positives.

V. CONCLUSION

To summarize, this paper introduces a novel approach to
improve vehicular security in the form of driver modeling for
enhanced authentication. We propose to identify drivers via
unique characteristics which emerge as they operate a vehicle.
We performed a preliminary data collection effort with 10
human subjects in which they completed a simulated driving
task while recording their activity. We successfully constructed
models of driving activity via extracted features, namely pedal
control, steering, speed, and distance traveled. The results of
our experiment and modeling effort yield an average EER
of 14.7%, implying a time-to-detection of 2 minutes and 20
seconds at 95% confidence with at most one false alert per
day of driving.

These results provide strong evidence in support of our
hypothesis that drivers can be identified by observing the
manner in which a vehicle is operated. As future work, we
intend to explore different combinations of features, modeling
algorithms, and parameters in order to improve our classifica-
tion results. Furthermore, given the success of this experiment
we intend to pursue a larger scale user study which includes
an analysis of different features such as the alertness level of
the driver.
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