QoS-aware Multipathing in Datacenters Using
Effective Bandwidth Estimation and SDN

Runxin Wang
VMware Inc., Ireland
Email: runxinw @ vmware.com

Abstract—Datacenter networks are commonly structured with
hierarchical topologies in which multipaths are provided to
create redundant paths between end-to-end servers. Without a
dedicated flow control mechanism, different sizes of traffic flows
are statically allocated to links without sensing the current link
utilization, which can result in transient network congestion
that impacts on the latency experienced by users of the hosted
applications. Existing works aim to realize load balancing by
efficiently scheduling flows based on their sizes and link utiliza-
tion. However, many applications’ performance is bounded with
specific QoS targets, so load balancing may not directly address
their QoS requirements. In this paper, we present a latency-aware
flow scheduling system that schedules flows based on a tenant
application’s QoS target and empirical estimations of the effective
bandwidth required to meet these QoS targets. The approach
seeks to ensure that, following a network-aware placement of
VMs hosting application components, the latency associated
with communications between these VMs is controlled even as
the inter-VM traffic patterns change, or as the background
traffic associated with other applications changes. We describe
a prototype implementation of the approach that extends our
MAPLE network-aware VM placement system. Our experiments
in an emulated datacenter indicate that our scheduling approach
leads to fewer QoS violations compared to ECMP.

I. INTRODUCTION

Recent studies indicate that the network is often the
bottleneck in the performance of applications hosted in dat-
acenters. Delivering performance guarantees to datacenter-
hosted applications is challenging [1], so many cloud providers
have resorted to the practice of over-provisioning bandwidth
resources in order to prevent violation of QoS guarantees
for cloud tenants. Several network-aware resource allocation
and VM placement techniques [2]-[4] have been proposed in
order to deliver guaranteed performance to datacenter-hosted
applications. These proposals aim to allocate network and
computing resources to the application VMs to guarantee
the satisfaction of their performance targets, while optimizing
utilization of compute, storage and network resources. How-
ever, given the nature of networking demands that can vary
dramatically over time, traffic loads can become unbalanced
in a datacenter network, causing performance degradation of
applications associated with the congested links while other
links having unused bandwidth are not efficiently utilized due
to static provisioning schemes.

There is a gap between existing network-aware VM
placement techniques and flow scheduling algorithms. Most
network-aware VM placement techniques are designed as-
suming that network resources can be abstracted as a hose

978-3-901882-85-2 (©) 2016 IFIP

Simone Mangiante
EMC?, Ireland
Email: simone.mangiante @emc.com

Alan Davy, Lei Shi, Brendan Jennings
Waterford Institute of Technology, Ireland
Email: {adavy, Ishi, bjennings} @tssg.org

model [1], in which an application specifies per-VM bandwidth
requirements for all of components deployed in individual
VMs. As long as the network requirements of VMs do not ex-
ceed the capacity specified, adequate resources can be secured
and effectively allocated. Given the multipath technologies
commonly used in nowadays datacenters [5], this assumption
relies on the presence of a flow scheduler to ensure that every
link has equal networking conditions, thus the hose model
may not be aware if VMs use the congested links over time.
ECMP [6] is the common protocol used in datacenter networks
to map flows into multi-equal paths; existing studies [7] have
shown its deficiency in the presence of larger flows, which
often leads to link congestion onset. On the other hand, most
proposed flow scheduling techniques ignore the individual QoS
required by each VM—they only ensure that, overall, the
flows are evenly allocated to the given links, but they do not
directly address the network resources needed by each VM.
The aforementioned issue can be usually found in the resource
allocation approaches that are based on end host measurement
and end host congestion feedback mechanisms [2], [4], [8], as
measuring at the end host level cannot accurately estimate the
conditions of the associated up links.

To address the issue, we leverage the Software Defined
Networking (SDN) paradigm [9] to develop a flow scheduler,
termed the MAPLE-Scheduler, which monitors the network
changes in switches and dynamically reschedules flows to
meet the QoS requirements, while balancing the link utilization
across links. This QoS-aware flow scheduler is designed for
incorporation with the MAPLE system, a network-aware VM
placement system described in [8], [10]. Whilst MAPLE
succeeds in finding appropriate, network-aware placements of
an application’s VMs at the time of initial placement, it does
not address the impact of subsequent changes in networking
conditions. The addition of the MAPLE-Scheduler seeks to
address this shortcoming by harnessing SDN to adjust flow
routing in order to avoid QoS violations due to increased
latency caused by datacenter link congestion. Crucially, the
MAPLE-Scheduler utilizes an empirical effective bandwidth
estimation technique [11] to assess whether flows need to
be re-routed in order to meet QoS targets. We carried out
experiments on a testbed using 4 servers to emulate a multipath
datacenter with up to 210 VM nodes. We show that the
MAPLE-Scheduler can ensure the QoS targets are met for the
VM requests in the presence of cross-competing traffic, which
is not the case for an approach based on the use of ECMP.

The paper is structured as follows. In §II we review some
related work on flow scheduling techniques in datacenters.

The concept of effective bandwidth applied to manage QoS
requirement is introduced in §III. In §IV and §V the MAPLE-
Scheduler is described and its flow scheduling algorithm is
specified. In §VI, MAPLE-Scheduler is evaluated based on
a testbed constructed using 4 physical servers. Finally, §VII
provides concluding remarks.

II. RELATED WORK

In recent years SDN, albeit a relatively new paradigm,
has been deeply investigated and already deployed in datacen-
ters [12] and wide area networks [13]. However there are still
some research challenges to be addressed. Several proposals
target innovation in datacenter network design, QoS improve-
ment and traffic engineering by leveraging SDN concepts.

In [14] a deep analysis of multipath routing outlines the
weakness of ECMP and encourages more advanced packet-
based routing mechanisms in datacenter networks. In the
literature there are many proposals implementing such ad-
vanced mechanisms; we provide here an overview of the most
significant proposals for such advanced mechanisms that em-
body SDN approaches using both centralized and distributed
architectures.

MicroTE [15] proposes a fine-grained traffic engineer-
ing system using OpenFlow [16] and a centralized network
controller, but it requires minor modifications to end hosts.
Hedera [7] implements an adaptive flow scheduling system for
multi-stage commodity switching fabric and unmodified hosts,
leveraging OpenFlow and a centralized controller. In contrast,
the focus of our work is to develop an alternative solution to
static load-balancing methods (e.g., ECMP) for multipath tree
topologies towards an efficient usage of network resources,
concentrating on QoS target satisfaction. Other approaches
try to improve QoS in OpenFlow networks by extending the
OpenFlow protocol to support rate limiters, packet schedulers
and more efficient actions. Particularly interesting is how
DevoFlow [17] achieves a scalable flow management: it keeps
flows in the data plane as much as possible to avoid overheads
in the controller, but it maintains enough visibility over net-
work flows to provide effective aggregated flow statistics. It
uses a trigger-based flow statistic gathering mechanism which
inspired us to design an efficient link monitoring component.
Presto [18] pushes the load-balancing functionality to the edge
nodes, requiring modifications to edge switches (implemented
using Open vSwitch [19]).

Many researchers have been exploring distributed solutions
to QoS issues in networks. We highlight DIFANE [20], one
of the first contributions to this area, and the more recent
Conga [21], which proposes a congestion-aware load balancing
mechanism for datacenters using custom ASICs inside net-
working fabric. It is optimized for a 2-tier Clos topology (also
called Leaf-Spine) typically deployed in enterprise datacenters.
Unlike our approach operating at flow level, it uses a novel
mechanism to convey path-wise congestion metrics between
pairs of leaf switches operating on flowlets to achieve a higher
granularity of control. Recently the flow balancing technique
in [22] operates on newly introduced coflows.

Our proposed solution addresses the problem of meeting
QoS targets in a multipath datacenter controlled by a logically
centralized SDN controller. This work is an enhancement of

our previous work MAPLE [8], [10], which is a network-aware
VM ensemble placement system that uses empirical estima-
tions of the effective bandwidth required between servers to
ensure that QoS violations are within targets specified in the
SLAs for tenant applications.

III. EFFECTIVE BANDWIDTH IN MULTIPATH TOPOLOGIES

Effective bandwidth (EB) is the minimum amount of
bandwidth required by a traffic source (for example, a VM
hosting an application component) to maintain a specified QoS
target. In a communications network, the EB of a traffic source
depends not only on the traffic generation behavior of that
source, but also on the whole set of systems, including link
capacities, background traffic characteristics and the desired
QoS target [23]. EB can be analytically estimated through the
application of large deviation theory [24]. In this work, we
apply an empirical approach based on the analysis on traffic
traces collected at real time [11]. At predefined intervals, we
estimate the EB for a given delay-based QoS target for the
aggregated traffic collected on devices.

The previous work MAPLE [8] measures EB for links
by relying on dedicated modules installed on end servers to
monitor and regulate their traffic. To cope with multipath
topologies, EB estimation needs to be revisited in order to
take into account that it is practically and computationally
hard to measure and run the EB estimation algorithm at every
single link in the network. We logically divide the network
in two parts—the edge and the core—and accordingly use
two different approaches to conduct EB estimation. At the
edge of the network, where top-of-rack switches (ToR) are,
we apply the precise EB estimation method for every uplink
port connecting the ToR switch to the core. Since the ToR
switch aggregates traffic coming from the host and the VMs
in the same rack, it is practically feasible to make the link
selection (flow scheduling) decision informed by an accurate
estimation of the EB supported by the ToR switch.

For the switching layers forming the core of the datacenter
network, we employ the approach of Effective Bandwidth
Coefficient (EBC) [25] to estimate the EB for the observed
links. EBC captures the relation between estimated EB and its
corresponding mean throughput of a link regarding a specified
QoS target. Let R.q ; represent the EB of a given link ¢, mean;
is the current mean throughput of the link, the corresponding
EBC can be calculated as:

Reff,t (1)
mean;

The EBC can be calculated offline from collected packet
traces and then used to estimate the EB required by a given
link for a given QoS target (see [25] for a full description of
this process), as long as the throughput of the given link is
known.

EBC; =

IV. MAPLE-SCHEDULER

The MAPLE-Scheduler is a flow scheduling system that
monitors flows’ QoS performance, and dynamically resched-
ules flows, aiming to maintain their QoS needs. We assume
that ECMP is used as the default function to map new flows
to equal paths, whilst the MAPLE-Scheduler monitors the
network status and provides flow rescheduling when it is

needed. This means that after the initial VM placement, ECMP
will manage routing new flows from source VMs to destination
VMs, when the flows first arrive to the switches and no
associated flow rules can be applied. If existing flow rules
can be applied, the switch will apply them to route the flows.
Meanwhile, the MAPLE-Scheduler monitors the QoS chang-
ing over time and reschedules some flows to mitigate QoS
degradation. This rescheduling essentially means that some
higher bandwidth flows that are contributing to congestion on
a link are rescheduled to another link with higher residual
bandwidth. This rescheduling is controlled such that flows are
re-routed through links with sufficient residual bandwidth to
meet their EB requirements and in a manner that ensures that
there is sufficient capacity on the original link to meet the EB
requirements of those flows that were not reschedule.The key
components of MAPLE-Scheduler are:

e A centralized controller built on SDN technologies
(for our prototype the Ryu controller is used);

e A flow scheduling algorithm making schedule deci-
sions based on a combination of different measure-
ment mechanisms at the edge and at the core of the
network, both relying on EB estimations;

e Distributed monitoring agents residing on servers and
edge switches (which do not require any modifications
to hardware or protocols in the network devices).

The MAPLE-Scheduler supports fat tree like topologies,
which are typically used in datacenter networks [5]. In the-
ory, it can be extended to support any kind of multipath
network topology, as long as the requirements for network
to be composed of OpenFlow enabled switches and for traffic
being captured and analyzed are met. The MAPLE-Scheduler
leverages the separation of control plane and data plane, as
stated by the SDN paradigm: switches only forward packets
according to the rules installed by the logically centralized
controller. The MAPLE-Scheduler is always aware of the
network topology and of the resources consumed by each
running flow, by using its distributed monitoring module.

The MAPLE-Scheduler achieves end-to-end dynamic QoS-
aware switching by performing a two stage flow scheduling,
as shown in Figure 1. This figure abstracts datacenter network
into two layers: the edge layer and core layer. It schedules
flows based on the availability of sufficient residual bandwidth,
calculated based on estimations of EB. At the edge layer,
effective bandwidths are estimated based on captured traces,
in which case the residual bandwidth is calculated using
Eq. 2. For other switches, the MAPLE-Scheduler first queries
the flow statistics on switches using the OpenFlow library,
and obtains the EBC from the MAPLE system. Once all
the required values are available, the residual bandwidth is
calculated using Eq. 3:

residual_BW,qge = link_capacity — effective_BW (2)
residual_BW_ e = link_capacity — EBC x mean 3)
The different approaches for the edge and the core mean
that we need only deploy EB agents on edge switches to cap-

ture traffic in order to calculate the EBs. For the other switches
that are not associated with EB agents, the EBs are estimated

Placement requests

7/

| SDN controller
MAPLE-Scheduler 1
ayer o
4 EB estimates
| Edge switch 7 EB agent MAPLE controller
/
7N 7\
AN
/
5 S N VM config
s s e Hypervisor fe———1

Fig. 1: The logical architecture of MAPLE-Scheduler and MAPLE
system.

Py
@
B
=
g
S

Cluster manager

by using Eq. 1, where the EBC is learned from previous traces,
and the mean throughput can be queried from the flow statistics
available to SDN controller. We deploy EB agents on Edge
switches to calculate the corresponding effective bandwidths
in order to obtain more accurate estimations, as they provide
first accessing points to the network, which are required
to be managed more accurately. A similar design can be
found in the Conga architecture [21]. The module performing
EBC estimation is deployed on the MAPLE controller, which
implements the techniques described in [25]. It communicates
with switches to collect the related datasets and then perform
the related training described in [25] to obtain EBC regarding
different QoS and applications.

The flow statistics of edge switches are learned by the
distributed monitoring agents who capture traffic packets and
perform the corresponding analysis. For the other network
information, MAPLE-Scheduler builds the related information
by using the OpenFlow protocol. Generally there are two
types of methods, namely pull based and push based, for
SDN controllers to gather flow statistics from the OpenFlow
switches. In the proposal of DevoFlow [17], the technical
comparison of these two approaches is discussed. In this work
we implemented a trigger based push method for gathering
flow statistics, with the aim to reduce the work loads and
enable the controller to be timely responsive to state changes
in switches. Basically, trigger based method means that the
OpenFlow switches update statistics to the central controller
only if the switches determined it is necessary to do so. The
related function is implemented on the monitoring agents,
which monitor if any large flows appear on the monitored
switches and if any QoS violations occur. The monitoring
agents will notify the controller to consider rescheduling flows
if it observes QoS violation. In other words MAPLE-Scheduler
will be only activated for scheduling large flows when QoS
violations occur.

V. MAPLE FLOW SCHEDULING

The flow scheduling algorithm is designed to work on fat
tree topologies, but it is topology agnostic as long as the given
topology has a hierarchical tree like structure.

The MAPLE-Scheduler works in parallel with ECMP; it
only reschedules large flows with the aim to maintain QoS
targets. It reschedules a flow based on two conditions: 1) if it
will not exceed the selected link’s residual bandwidth, based

Algorithm 1 MAPLE Flow Scheduling Algorithm
Input: Links, Capacity, «, 5
Output: updated links
1: sort T Links based on the remaining bandwidths
2: =0,
3: j = Links.length
4: for i in [0, Links.length) do
5. ALink = Links][i]
6: BLink = Links|[j]
7.
8

if ALink.remainBW > 8 x Capacity then

: return
9: end if
10: for flow in ALink.flows do
11: if flow.rate < a * capacity then
12: continue
13: end if
14: x = ALink.remainBW — flow.rate
15: y = BLink.remainBW + flow.rate
16: if x < y then
17: move flow to BLink
18: BLink.remainBW =y
19: break
20: end if
21: end for
2: j=j5-1
23: end for

on the EB estimations; and 2) that max-min fairness is met—
max-min fairness is applied to achieve fair loads of traffic
distributed across a multipath network. By meeting these two
conditions, this algorithm in turns provides two advantages
over ECMP alone: better QoS and better load balancing. When
these two conditions conflict with each other, we choose to
meet the QoS requirement over load balancing. Note that,
given all the feasible flow schedules, we consider a flow
schedule achieve max-min fairness by maximizing the residual
bandwidth of the link that has minimum residual bandwidth.
Note that the MAPLE-Scheduler algorithm only considers
moving large flows, where we apply the definition of large
flow from Hedera [7], i.e. a flow is large flow if it consumes
more than o = 10% of its hosting link’s capacity.

Algorithm 1 presents the pseudo code of the MAPLE flow
scheduling algorithm. The input is a list of links on the switch
providing equal paths to flows, with the assumption that all
links have the same capacity. Algorithm 1 loops through the
flows on each link to check if it is suitable to move a given
flow from the current link to its equal links.

Line 1 sorts all the links in an increasing order, thus
subsequently the links with less residual bandwidth (denoted as
remainBW) will be processed first. Line 2 sets ¢ = 0 to select
flows to be rescheduled from the link with smallest residual
bandwidth at first, while in line 3 setting j to Links.length,
attempting to find a feasible place to move in the selected
flows into the link that has largest residual bandwidth. Link A
represents the link that has flows to be moved out, and LinkB
represents the link attempted to be moved in flows.

Line 7 makes a condition to stop the algorithm earlier, if
the given link has remaining bandwidth greater than 3% of
the link capacity (we use 8 = 30 in our experiments). The

Core physical switch

| Physical server

Fig. 2: The emulated datacenter has a single root switch connecting
4 physical servers. One server is used as the management server;
the rest servers hosting 210 VMs that are connected by 2 levels of
vSwitches.

algorithm can return at this point as all the rest links will
only have greater (or at least equal) remaining bandwidths.
This is an optional condition that operators can change based
on their need, our justification is that it is barely necessary
to reschedule any flows for a link that still has 8% capacity
left, considering that the possibility of this link to be filled
up immediately is low enough (e.g., a large flow generally
consumes 10% capacity, and only 20% flows are large flows).

Line 14-16 present the condition that a flow should be
moved from its current link to an equal link. This condition
require a flow schedule should meet the max-min fairness. Line
18 updates a link’s residual bandwidth, once it is determined
to host a new flow. Thus in a later iteration, it will not be
incorrectly added in another flow. However, we do not update
the order of the sorted flow list, the iteration will just need to
continue on until all the observed flows are revisited.

VI. EVALUATION
A. Experimental Setup

We emulated a fat tree datacenter network using 4 physical
servers, as shown in Fig. 2. One server is reserved as the
management server where the SDN controller and MAPLE-
Scheduler are deployed and connected to a separate manage-
ment subnet, while each of the rest servers virtualizes 2 pods in
a fat tree topology. Switches within the pods are Open vSwitch
instances with 1 Gbps upstream and downstream capacity.
Each Virtual Switch (vSwitch) is connected to our MAPLE
scheduler that is implemented based on the Ryu framework.
Each server runs Ubuntu 12.04 as the host operating system,
with the 1ibvirt library being used to manage up to 70 guest
VMs deployed on each physical server. Among these VMs,
we group 5 VMs together to form a virtual server (vServer),
wherein all VMs are directly connected to a vSwitch, to
emulate the scenarios that 5 VMs share one bottleneck link
within a physical server.

To emulate bulk data transfers within the network, we used
the following data applications: 1) a Hadoop application that
runs word count on distributed documents; 2) a data serving
application that combines YCSB (data client) and Cassandra
(data server), a benchmark recommended in cloudsuite [26];
finally, 3) a custom data backup application, created using the
SCP utility, which simulates the scenario where a data file is

[MAPLE-Schd [MAPLESchd
© 09 = ecmp 0.9F = ecmp

go 4 F 04
So3 S 03 J
3oz l 202 l
s S
o1 1 Soaf

I
5 [

Averaged Violations

Overall Violations Averaged Violations

(a) (b)

Fig. 3: Given the QoS target (0.02s, 0.1) and (0.04s, 0.05), MAPLE-
Scheduler generally meets the QoS targets, although averaged vio-
lation rates represent that there are some links still suffered QoS
violations. On contrast, ECMP cannot meet the QoS target at all.

copied to a number of remote nodes for backup purposes. The
applications are placed into the testbed with their correspond-
ing VMs by the MAPLE VM placement algorithm, according
to some pre-defined VM placement requests. To simulate large
flows that effectively change the QoS performance, we run
iperf on a dedicated VM to some randomly selected VMs (this
generates iperf sessions lasting 10 seconds), since there are not
many flows having size much larger than the others given that
all applications have similar configurations.

B. The Analysis of QoS Violations

We analyze QoS violations for the flows generated over
the emulated datacenter (EDC). The QoS violation rate is cal-
culated based on individual server’s egress links. Namely, the
violation rate is the proportion of a server’s outgoing packets
that experience delays longer than that specified in the QoS
target. We employ two metrics: 1) the overall violation rate
as defined in Eq. 4, which measures the overall performance;
and 2) the averaged violation rate as defined in Eq. 5, which
measures how strong the violations are on affected links.

sum(QoS_violation_rates)
|all_links|

4

overall_violation_rate =

sum(QoS_violation_rates)

&)

averaged_violation_rate =
8ec- - |links_with_violations|

Fig. 3a depicts the QoS violation results incurred respec-
tively by MAPLE-Schduler and ECMP for the QoS target
(0.02s, 0.1). Initially, VMs are placed in the EDC based on
the QoS requirement and MAPLE could achieve the QoS
guarantee. However, once we turned on the cross traffic genera-
tion program, MAPLE using ECMP suffered increasing packet
delays, as shown in Fig. 3a, leading to an overall violation rate
up to = 35%, exceeding the requirement that only 10% can be
delayed more than 0.02s. On the contrary, MAPLE-Scheduler
once detected the QoS degradations, it managed to reschedule
the flows to keep overall violation rates within the targets. The
difference is also evident in the averaged violation rates, where
MAPLE using ECMP shows slightly higher violation rates on
the affected links.

Fig. 3b presents the second set of experiments comparing
MAPLE-Scheduler and ECMP based on a new QoS target
(0.04s, 0.05). This set of experiments show similar results,

Mbit/s Residual Bandwidth
Mbit's Residual Bandwidth

=82 8 =

MAPLE-Schd EChP MAPLE-Schd ECMP

(a) (b)

Fig. 4: MAPLE-Scheduler achieves to meet the QoS target as
discussed previously, while also delivers slightly better throughput
comparing to ECMP.

MAPLE-Scheduler is able to keep the overall violation rates
within required range, where ECMP overall has approximately
30% traffic suffered violations. Regarding the links that do
suffer violations, their averaged rates come close, yet MAPLE-
Scheduler still has slightly smaller violation rates. Comparing
to the previous Fig. 3a, all the involved techniques received
relatively less violation samples, though which is mainly due
to the relaxed delay requirement.

C. Analysis of Throughput Performance and Link Utilization

To evaluate the efficiency of MAPLE-Scheduler’s flow
scheduling, we analyze the link utilization and the throughput
performance of the servers based on the servers’ egress traffic.
Note that MAPLE-Scheduler reschedules flows in order to
maintain the delay QoS targets, delivering better throughput
or better link utilization is not the main goal.

Fig. 4a presents the throughput performance for the test
cases related to first QoS target (0.02s, 0.1). In general,
MAPLE-Scheduler shows significantly better throughput per-
formance comparing to ECMP. Though in terms of the mini-
mum throughput, there is no difference, they all down to 80
Mbps, while the median throughput for MAPLE-Scheduler
is approximately 260 Mbps and for ECMP is approximately
240 Mbps. The CDF of mean link utilization levels averaged
across the duration of an experimental run, presented in Fig.
5a, indicates that ECMP also shows similar link utilizations,
yet MAPLE-Scheduler shows slightly lighter loads on its links.

Fig. 4b presents the throughput performance for the test
cases related to first QoS target (0.04s, 0.05). Similar to pre-
vious experiments, MAPLE using MAPLE-Scheduler shows
significantly better throughput performance. The minimum
throughput is consistent, in that for all cases they all go
down to approximately 80 Mbps. In Fig. 4b, the difference
in median throughput is larger, MAPLE-Scheduler produced
approximately 260 Mbps as the median, while MAPLE using
ECMP produced approximately 220 Mbps. The CDF of mean
link utilization levels, averaged across the duration of an exper-
imental run, presented in Fig. 5b, shows that a relatively bigger
gap in the utilization rates up to 40%, regarding MAPLE-
Scheduler, there is about 70% of links with utilization rates
smaller than 40%, while regarding ECMP, there is about 59%
of links having utilization rates smaller than 40%.

oo
‘Q“E
W
cor
S
\‘w

& —©— MAPLE-Schd —6~ MAPLE-Schd
R ~#- ECMP g 4 —#- ECMP

o1 02 03 04 0s 08 07 o8 01 02 02 04 o5 os o7 0s

Link Utization

(a) (b)

Link Utization

Fig. 5: In the test cases based on QoS target (0.02s, 0.1), two
comparing methods show similar link utilization; while in the test
cases based on QoS target (0.04s, 0.05), the gap between two lines on
the range of link utilization between 0.2 to 0.4 that indicates MAPLE-
Scheduler achieve lighter loads across its links, comparing to ECMP.

VII. CONCLUSION

This proposed work addresses the issue that the QoS and
network aware VM placement system such as MAPLE has
no control to the VMs’ flows after initial placement of those
VMs. Common load balancing mechanism (e.g., ECMP) that
performs static mapping of flows to multi equal paths does not
consider link utilization status and QoS requirements, where
large flows can collide on same paths, making network links
congested and not suitable for latency sensitive flows. In order
to take into account of QoS targets, we designed MAPLE-
Scheduler built on SDN controller, which can effectively
schedule flows to enforce QoS guarantee in multipathing
datacenters. In the experiments based on our SDN testbed
consisting of 6 pods of multipaths, we show that, when large
flows arrive into the networks, MAPLE using ECMP cannot
maintain the delay requirement, while MAPLE with MAPLE-
Scheduler can effectively reschedule some appropriate flows
to keep the delay performance within the QoS targets.

REFERENCES

[1] J. C.Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 5, pp. 4448, 2012.

[2] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM, 2012, pp. 199-210.

[3] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing,” in Proc. ACM SIGCOMM, 2013, pp. 351-362.

[4] K. LaCurts, D. Shuo, A. Goyal, and H. Balakrishnan, “Choreo:
Network-aware task placement for cloud applications,” in Proc. ACM
IMC, 2013, pp. 191-204.

[5] N. Bitar, S. Gringeri, and T. Xia, “Technologies and protocols for data
center and cloud networking,” IEEE Comm. Mag., vol. 51, no. 9, pp.
24-31, 2013.

[6] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” Internet
Requests for Comments, RFC 2992, November 2000.

[71 M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Proc.
NSDI, 2010, pp. 11-19.

[8] R. Wang, J. Araujo Wickboldt, R. Pereira Esteves, L. Shi, B. Jennings,
and L. Zambenedetti Granville, “Using empirical estimates of effective

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

bandwidth in network-aware placement of virtual machines in atacen-
ters,” IEEE Transactions on Network and Service Management, 2016.

D. Kreutz, . M. V. Ramos, P. J. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: {A}
Comprehensive Survey,” Proceedings of the {IEEE}, vol. 103, no. 1,
pp. 14-76, 2015.

R. Wang, R. Esteves, L. Shi, J. Wickboldt, B. Jennings, and L. Granville,
“Network-aware placement of virtual machine ensembles using effective
bandwidth estimation,” in Proc. IFIP/IEEE CNSM, 2014, pp. 100-108.

A. Davy, D. Botvich, and B. Jennings, “Revenue optimized iptv ad-
mission control using empirical effective bandwidth estimation,” IEEE
Transactions on Broadcasting, vol. 54, no. 3, pp. 599-611, 2008.

S. Jain, M. Zhu, J. Zolla, U. Holzle, S. Stuart, A. Vahdat, A. Kumar,
S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, and
J. Zhou, “B4,” Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM - SIGCOMM 13, p. 3, 2013.

C. Hong, S. Kandula, and R. Mahajan, “Achieving high utilization with
software-driven WAN,” Sigcomm 2014, pp. 15-26, 2013.

N. Chrysos, M. Gusat, F. Neeser, C. Minkenberg, W. Denzel, and
C. Basso, “High Performance Multipath Routing for Datacenters,” in
Proceedings of IEEE 15th International Conference on High Perfor-
mance Switching and Routing (HPSR), 2014, pp. 70-75.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: fine grained
traffic engineering for data centers,” ACM CoNEXT, 2011.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in Proc. ACM SIGCOMM, 2011, pp. 254-265.

K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based Load Balancing for Fast Datacenter Networks,”
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication - SIGCOMM 15, pp. 465-478, 2015.

B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in Proc. ACM
HotNets Workshop, 2009.

M. Yu, J. Rexford, M. Freedman, and J, “Scalable flow-based net-
working with DIFANE,” in Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, 2010, pp. 351-362.

M. Alizadeh, N. Yadav, G. Varghese, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, and R. Pan,
“Conga,” Proceedings of the 2014 ACM conference on SIGCOMM -
SIGCOMM 14, pp. 503-514, 2014.

M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” Proceedings of the 2014 ACM conference on SIGCOMM
- SIGCOMM ’14, pp. 443-454, 2014.

F. Kelly, “Notes on effective bandwidths,” Stochastic Networks: Theory
and Applications, vol. 4, pp. 141-168, 1996.

C. Courcoubetis, V. A. Siris, and G. D. Stamoulis, “Application and
evaluation of large deviation techniques for traffic engineering in
broadband networks,” in Proc. ACM SIGMETRICS, 1998, pp. 212-221.

A. Davy, D. Botvich, and B. Jennings, “On the use of accounting data
for qos-aware ip network planning,” in Managing Traffic Performance
in Converged Networks, 2007, ch. 33, pp. 348-360.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: a study of emerging scale-out workloads on modern hard-
ware,” in Proc. ACM ASPLOS, 2012, pp. 37-48.

