Cresco: A distributed agent-based edge computing
framework

V. K. Cody Bumgardner
Department of Computer Science
University of Kentucky
Lexington, Kentucky, USA
Email: cody @uky.edu

Abstract—The Cresco distributed agent-based framework is
designed to address the challenges of edge computing. We
present an actor-model implementation for the management of
large numbers of geographically distributed services, comprised
from heterogeneous resources and communication protocols, in
support of low-latency realtime streaming applications.

We present the purpose of our work, the basic methodology,
the initial results already obtained, the relationship to the
existing software, and the potential of the presently implemented
framework to a number of potential further projects that could
be developed on the basis of the existing implementation.

I. INTRODUCTION

In China alone there were a reported 9 billion devices as of
2014, with estimates of 24 billion by 2020 [1]. By the year
2020 there will be an estimated 50 billion network connected
devices globally [2], [3].

Whether referred to as IoT, Cyber-Physical Systems (CPS)
[4], Machine to Machine (M2M) [5] technologies, Industrial
Internet [6], or Smart Cities [7], all of these efforts aim to
improve society through the harnessing of data and resources
from distributed system.

The Cresco framework was created to assist in the
development of globally distributed applications where data
collection and processing take place on the network edge.
In addition, the framework provides the ability to coordinate
further processing of data between other edge and remote
data center resources. For example, the framework can be
used to develop applications that process high-rate or globally
inaccessible data on network edges, assign workloads to and
between appropriate edge devices, and coordinate central
processing of filtered, enriched, and/or edge-aggregated data.

The authors believe the Cresco framework addresses the fol-
lowing characteristic challenges inherent to edge computing,
as defined by Bonomi et al., 2012 [8]:

e Low latency and location awareness: There is a tradeoff
between moving data to processing resources Or mov-
ing resource to sources of data generation. The Cresco
framework provides a global view of distributed resource
performance allowing for the programatic management of
both low latency network edge processing and data center
processing. The Cresco Agents, described in Section II-B,

978-3-901882-85-2 (¢) 2016 IFIP

Victor W. Marek
Department of Computer Science
University of Kentucky
Lexington, Kentucky, USA
Email: marek@cs.uky.edu

Caylin D. Hickey
Department of Computer Science
University of Kentucky
Lexington, Kentucky, USA
Email: caylin.hickey @uky.edu

and Agent-Plugins, described Section II-C, operate in
a role-based structure where workload assignments and
locations are known globally.

Wide-spread geographical distribution: The Cresco
framework was developed to operate on a globally dis-
tributed level. Using our hierarchical agent architecture,
described in Section II-D, Cresco-Controller, we provide
fine-grained control over the structure, communication
protocols, and security of distributed systems.

Very large number of nodes: Actor-model [9] concurrency
provides great scalability through a natural hierarchical
structure of node processes. In order to manage large
numbers of nodes, higher levels in the hierarchical struc-
ture are responsible for lower levels in the structure. An
Actor implemented in an Agent-Plugin is managed by
an Agent, which is managed by a hierarchy of agent
controllers.

Mobility: In our framework Agents are deployed directly
on mobile devices or Agent-Plugins can be used to rep-
resent individual external devices or networks of devices.
Our text-based messaging protocol allows Cresco partic-
ipating Actors described in Section II-A, Methodology
to be implemented in many languages or directly in
hardware.

Predominant role of wireless access: Cresco Agents can
be deployed in wireless agents and participate as part of
a wireless network. Additionally, Cresco can be used to
construct distributed applications using common, light-
weight wireless protocols like MQTT [10].

Strong presence of streaming and real-time applications:
Cresco originated from the need to deploy interconnected,
but geographically distributed resources for streaming and
real-time applications. Using Cresco, large distributed
applications can be deployed for real-time event process-
ing and data enrichment, cross-region aggregation, and
central stream analysis.

Heterogeneity: A key differentiator of the Cresco
framework its ability interface with heterogeneous
computational, network, and operating environments
through text-based configurations and messaging.



The Cresco framework, the subject of this paper, has been
designed from the ground up with edge computing applica-
tions in mind. The following section describes the framework
architecture.

II. ARCHITECTURE

The Cresco framework was created to address the challenges
of managing resources across local, regional, and global
domains. Cresco [11] is a free and open-source distributed
agent-based resource management framework available under
the Apache Version 2.0 license [12]. Initial project goals are
to provide a framework for resource comparison, performance
observation, and establish a means of control over collections
of resources and related applications.

A. Methodology

The presented framework is based on Actor-model dis-
tributed concurrency. In this model an Actor is a primitive unit
of isolated computation that uses asynchronous messaging to
communicate with other Actors. While the details of the Actor-
model are beyond the scope of this paper, basic operations
of Actors include message-based creation of more Actors,
Actor-to-Actor messaging, or the generation of state decisions
applying next arriving message. Erlang [13], an example
of a popular programming language based on the Actor-
model, introduced a let it crash” philosophy for distributed
computation. Instead of focusing on defensive programming to
prevent failures, using an offensive (create, monitor, and ver-
ify) philosophy one relies on Actors to supervise other Actors
creating “self-healing” distributed processing environments. In
addition, the isolated operation of Actors makes continuous
self and supervisor reporting of KPIs across heterogeneous
environments possible.

Actors operate in isolation with the exception of inter-Actor
messages, making Actor communication critically important,
especially for geographic distribution. The Cresco Actor-
model implementation aims to address challenges related to
interoperability, performance, and security related to Actor
communication channels.

While Actors are typically represented as critical sections of
code in programming frameworks like Erlang, Scala [14], and
Akka [15], Cresco Actors can be critical sections of code ex-
ecuting from within the native (Java) framework or abstracted
Actor interfaces (APIs, CLIs, etc.) into external systems. For
instance, a Cresco Actor responsible for aggregating data
within the framework communicates with other Cresco Actors
responsible for monitoring, measurement, and processing of
an external sensor networks. In support of heterogeneous
operations across a wide variety of environments both Actor
configurations and messages are UTF-8 [16] encoded text. It is
sufficient to think of the Cresco Actor-model implementation
as a graph of text-defined primitives describing distributed
applications.

The text-based abstraction of Cresco Actors is accomplished
through the implementation of software agents. Agent ter-
minology makes it easier to solve the problems related to

programatic information processing and resource management.
We are not developing agent programming, which is an
existing large area in the methodology of programming, but
rather use an existing framework presented by Subrahmanian
et al., 2000, [17] as part of this effort. Cresco software Agents
and Agent-Plugins have been developed in the Java language,
but given the text-based nature of our Actor implementation
agents can be developed for a wide variety of hardware and
software environments.

Actors are naturally hierarchical with every Actor being a
child of another Actor. In order to manage the communication
aspects of the Actor hierarchy in our agent system we have
defined three primary operational agent hierarchies including
Agent, Regional, and Global. While additional levels of Actor
hierarchies may exist within the defined agent hierarchies,
agent discovery, communication, and security isolation is
enforced within each level. In addition, working with agents
in a hierarchical model makes it easier to solve issues related
to system scalability.

Cresco is composed of three primary types of components:

e Cresco-Agent: Endpoint resource management unit in
charge of orchestrating Cresco-Plugins state, messaging,
and monitoring aggregation.

e Cresco-Plugins: Work units providing communication
channels at the agent, region, and global level, perfor-
mance monitoring, as well as custom work units through
extension of the Cresco-Plugin-Library.

e Cresco-Controller: Special plugin required to establish
agent, regional, and global management plane.

The following subsections will further define each of these
component types in the context of the Cresco framework.

B. Cresco-Agent

Agent-based modeling (ABM) [18] is a computational
model used in the simulation of agent interaction. There exist
a large body of research for ABM across many disciplines, in-
cluding: biology, economics, social sciences, and engineering.

On a high-level, the Cresco framework functions as an
Actor-model, implemented as a multi-agent system. The
Cresco-Agent provides dynamic configuration, loading, and
unloading of Cresco-Agent-Plugins within the agent. The
agent directly routes messages between intra-agent plugins and
with the use of the Cresco Agent Controller Plugin, described
in Section II-D, Cresco Controller, transmit messages on
regional and global levels. The Cresco-Agent provides the un-
derling runtime environment for all native Cresco components.

C. Cresco-Plugins

Cresco plugins provide communication channels for agents,
native execution environments, interfaces to resources, and
other operational functions. There are two classifications of
plugins in the Cresco framework. The first type is a resource
plugin, and the second type is used in the core operation of
Cresco. Resource plugins must be implemented for specific



resource(s) managed by the Cresco framework. These plug-
ins report resource information pertaining to active resource
instances. For example, the same resource plugin deployed
on agents across two providers might provide differing per-
formance information, for the same observed workload. Core
plugins are required by the Cresco framework. We discuss
one such plugin, the Cresco-Controller, in the following
subsection.

D. Cresco-Controller

The Cresco Controller is a core plugin required by an
agent to govern its operation. On agent initialization, the
controller plugin is loaded and begins its discovery of other
Cresco controllers, deciding its operating mode based on local
discovery and configuration parameters provided by the Cresco
Agent. Following a secure initial discovery phase!, in which
secure connection credentials are generated for each Cresco
Agent, the open-source package ActiveMQ [19] is used for
further communications between agents.

By default, ActiveMQ uses auto wire format detection
AUTO [20] to detect the protocol being used for com-
munications in the Cresco framework. Natively, ActiveMQ
supports channels using MQ telemetry transport (MQTT?),
advanced message queuing protocol (AMQP) [21], Open-
Wire [22], representational state transfer (REST) [23], RSS
and Atom [24], streaming text oriented messaging protocol
(STOMP) [25], web services invocation framework (WSIF)
[26], WebSocket Notifications [27], and extensible message
and presence protocol (XMPP) [28] natively. Regardless of
the transport protocol, the text-based MsgEvent format is
used. The MsgEvent protocol allows for the heterogeneous
operation of the Cresco framework across a broad variety
of communication channels. Contained within the MsgEvent
object are attributes related to the state and behavior. This is
achieved through a combination of required header fields, used
in the routing of messages throughout the Cresco Framework,
and a set of optional supplementary fields, consisting primarily
of key-value pairs, constituting the body of the message.

An operating mode defines where a controller resides in
the Cresco hierarchy. There are three operating modes of a
controller, shown below:

e Global: Responsible for establishment of a global man-
agement plane across and inter-region message routing.

e Regional: Responsible for communication between re-
gions and with one or more global controllers as well
as intra-regional message routing.

e Agent: Responsible for communication with regional con-
troller.

1) Global Controllers: The global controller establishes a
global view of resource status across regions. This view is
inclusive of all resources assigned at regional and agent levels.
A global resource view is established by maintaining a graph
database of all known local and regional relationships. We use

IThe initial Discovery phase functions over IPv6, in addition to TPv4.
2MQTT is a widely adopted transport protocol in IoT applications.

the open-source graph database OrientDB [29] for database
services. We define all node and edges in our graph database
to be the complete graph of the Cresco system. We define the
topology graph to be a sub-graph of the complete graph, which
contains nodes, edges, and labels related to arrangement and
connectivity of Cresco components. We define arrangement in
this context to be the spacial positioning of Cresco components
based on regional, agent, and plugin assignments. We define
connectivity in this context to be the path in which MsgEvent
messages are routed between components. The topology graph
is maintained by the global controller, based on regional
topology information provided by the regional controller.

We define the resource graph to be a sub-graph of the
complete graph of the system, which contains nodes, edges,
and labels related to the arrangement, configuration, and uti-
lization of resources managed by Cresco components. In this
context, configuration is related to the textual configuration of
agents and plugins as described in Section II-B, Cresco Agent.
Utilization is defined as a set of resource-specific metrics,
reported by resource managing Cresco plugins.

The resource graph includes active plugins related to spe-
cific global applications. Information is provided to the con-
troller by one or more regional controllers. These plugins es-
tablish communication with the global controller and provide
both regional and agent resource metrics for topology and
resource graphs.

2) Regional Controllers: The regional controller plugin
manages reachable agents in its region. This plugin serves
as a gateway connecting reachable intra-regional components
and inter-regional components. Agents status is detected by
the regional controller plugin as changes on the agent-level
are discovered. However, it is not necessary for the agent to
maintain connectivity to a Regional controller at all times. The
system is designed with the expectation that agents and plugins
can both appear and disappear without warning, so state
discovery is accomplished using several methods described in
the following subsection.

3) Agent Controllers: The agent controller manages inter-
agent communications to the regional controller.

ITI. OPERATIONS
A. Agent Initialization

On startup, the Cresco Agent validates its configuration files
and will attempt to establish regional communication using
the Cresco-Controller. An unconfigured Controller Plugin will
utilize automatic local discovery over both IPv4 broadcast
and IPv6 multicast channels to search for existing regional
controllers with which to communicate. Discovery functions
as follows:

When attempting to connect to a Regional Controller, as
well as a Global Controller, an encrypted shared secret is
checked to ensure the joining Cresco Agent has the proper
rights to join the regional group. As an added benefit, the
formation of Regional and Global controlled groups can be
shaped by controlling the shared secret they use to join the
group. The automatic discovery can also be overridden through



configuration such that the Cresco Agent will alway elect to
be a regional controller, should it be desirable to select which
host controls regional communications.

The regional controller acts as a gateway between local
agents inside its region and the Global Controller with which
it communicates. This abstracts away any need for lower
level agents to have any knowledge of the presence of the
Global Controller. These channels are monitored to ensure
connectivity. Should a Regional Controller fail in a specific
region, Local agents will detect the failure and attempt to
connect to another Regional controller through the previously
detailed discovery functions, or elect to become a Regional
Controller in the absence of a suitable candidate. Once the
communications channel is established, the remainder of the
plugins configured to load automatically are processed and
loaded by the Cresco Agent. In the next section, we will cover
the basics of Cresco Plugins as well as how they are accessed
via the Cresco Agent.

B. Plugin Engine

Plugins are agent modules that are implemented through
independent compilation units. Loading and unloading of the
plugin codebase is performed at runtime by the host agent,
which loads the code through independent and contained
systems within the virtual memory space of the agent, with
the agent controlling the access levels granted to the plugin
code. In order to facilitate communication between agents
and plugins, a common CPlugin Abstract definition is shared
between their respective codebases. The plugin is then required
to implement a small subset of these methods from the
abstract, with the ability to override more low-level operations
should the need arise.

C. Message Routing Engine

The agent’s msgInQueue is a concurrently accessible FIFO
(first-in-first-out) ordered MsgEvent queue. The MsginQueue
process thread waits for the the arrival of messages in the
queue. For each new message arrival a MsgRoute thread is
created to route the incoming message and the message is
removed from the msgInQueue.

Messages are either routed to a specific plugin or executed
on the agent itself. The route thread terminates on route
completion, which is sufficient for unidirectional messages.
However, there are cases where we want a response to our
messages.

In the context of the Cresco framework we define Remote
Procedure Calls (RPC) as bi-directional asynchronous method
executions. These calls can be performed between all Cresco
components.

In the next section we demonstrate a Cresco distributed
application.

IV. CRESCO DEMONSTRATIONS

The Cresco framework is currently being used for
operational data collection, monitoring, and complex event
analysis within GENI, distributed clinical genomic processing

for a major research hospital, and distributed device control,
data collection, and measurement as part of a International
Research Network Connections (IRNC) [30] program.
Describing the Cresco applications in relation to these
programs is beyond the scope of this paper, instead we
provide an example demonstrations of Cresco capabilities.

The optimal assignment of workloads between geographic
regions and data centers, or edge resources, that account for
network communications cost can be addressed as an NP-
hard [31], [32] graph partitioning problems. While we make
no claims to the advancement of optimization algorithms, we
do provide a framework to quickly access global metrics,
make new resource assignments, and easily evaluate overall
performance impacts.

In our demonstration we will simulate a distributed com-
putational workload between four hypothetical edge or data
center regions. Unique data is generated from, and processed,
by each region, with fixed aggregate data sources and des-
tinations assigned to each area. The demonstration simulates
moving computation to data sources dynamically based on
observed performance.

In the example case, workload Actors are implemented in
native code as Agent-Plugins. However, the demonstration
would work exactly the same if the Agent-Plugins functioned
as interfaces to external systems.

Demonstration workloads are described as the following:

e Workload In: Every second, a node generates and trans-
mits one universally unique identifiers (UUID) [33] to a
queue.

o Workload Out: A node receives UUID(s) from a queue
and creates a MD5 [34] hash for the associated UUID(s).

Demonstration metrics include:

e etln: The time it takes to generate and transmit a single
UUID (32 digit hexadecimal number) to a queue.

e w: The time it takes a message spends in the queue.

e etOut: The time it takes to transmit a UUID from a queue
and create a MD5 Hash (32 digit hexadecimal number)
from the UUID.

e 1: The total time from UUID creation to MDS5 creation.

In the demonstration we want to maximize global produc-
tion by observing workload performance of individual Actors
and managing workload assignments within the simulated
edge environments.

A. Demonstration Environment

The demonstration, environment is composed of four sepa-
rate OpenStack [35] tenants. Tenants are groupings of virtually
isolated compute, network, and storage resources. Through the
use of tenant isolation, we simulate the use of resources from
four edge regions. Intra-provider traffic is switched, allowing
low-latency communications between hosts on the same ten-
ant. Inter-provider traffic will be routed and then translated



(NATed) on the network increasing communication latency.
In the described network configuration, tenants can initiate
connections to external destinations, but external destinations
can not initiate connection to tenant networks.

The topology graph maintains the status of two agents in
each of the four regions. In addition, one agent in each tenant
acts as the Regional Controller for that tenant. The topology
graph is communicated to the global controller (not shown),
through regional controllers.

Through the global controller we have access to resources
represented in the topology graph. To construct the resource
graph, commands are issued from the global controller to
agents to download the workload plugin. Next, the global
controller specifies configurations for each agent to be config-
ured with four ”in” and four “out” workload plugins. Initially,
plugins on each agent will be configured to use a fixed queue
in each of the regions.

B. Optimization Procedure

Once a plugin is enabled, performance metrics are reported
to regional controllers and propagated to the global controller.
The isConnected edge represents configuration parameters and
performance metrics for a specific plugin, agent, regional, and
global application relationship.

From the resource graph and associated isConnected re-
ports, we can determine the highest performing plugins. Using
the topology graph we associate plugin performance with
plugin, agent, and regional configurations. We both observe
performance and take subsequent actions to improve perfor-
mance through configuration and resource management.

Plugin performance is evaluated in consecutive rounds
where the lowest performing plugin configurations in each
agent will be replaced with the highest. Performance is eval-
uated based on minimum workload execution time, measured
in nano seconds.

To account for data transfer cost and latency that would typ-
ically be experienced in geographically distributed resources,
a 20%?> improvement in reported performance will be added
to plugins communicating within the same region.

C. Demonstration Results

The results of the optimization procedure in the demonstra-
tion environment is shown in Table L.

Round etln etOut
0 8.27e7 | 8.24e6
1 6.78e7 | 5.68¢e6
2 5.48¢7 | 4.61e6
3 5.10e7 | 4.78e6
4 4.80e7 | 4.40e6
TABLE 1

MEAN EXECUTION TIME (ET) PERFORMANCE
IN MILISECONDS

3Percentage based on our enterprise experience of 15-30% per VM for
cloud transfer rate cost.

In the demonstration application, mean etln and etOut
was reduced 42% and 46% respectively. Even with the 20%
incentive provided to intra-regional queue assignments, only
46% of plugins were associated with queues found in their
own regions. While one would expect interoperating work-
loads to cluster around regional resources, resource contention
within regions can create opportunities for global improvement
through intra-regional cooperations. The underlying infrastruc-
ture supporting the demonstration environment, much like a
public cloud or edge resource, is often a shared service and
resource contention will vary from physical server, data center,
and even region.

In this simple example, the configuration and re-
configuration of distributed resources to show a global im-
provement was trivial. However, the way in which resource
information was obtained and acted upon was not. We demon-
strated how the use of a framework like Cresco could be
employed as a cornerstone for more advanced resource eval-
uations.

V. RELATED WORK

A number of software platforms [36], [37], [38], [39],
[40], [41] have been developed to support IoT efforts. IoT
platforms provide device management, data transmission en-
cryption [42], support for common data collection protocols
[43], and data analysis services. However, the majority of
existing platforms rely on public cloud providers such as
Amazon EC2 [44] and Microsoft Azure [45] for backend
services, requiring the movement of data from sources of
collection to remote data centers for processing.

Expanding the research of these and other systems, the goal
of the Cresco Framework is to provide a general platform for
global application configuration, monitoring, and optimization,
through the abstraction of resource instantiations as a graph
of metric reporting configurations.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1346688 Subcon-
tract 1939C and ACI-1450937

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

VI. CONCLUSIONS

In this paper we described our approach to edge computing.
We demonstrated a framework for overcoming a described
list of logistical challenges. Finally, we described possible
approaches to selectively optimize resources on a global-level.
Both the presentation of the problem and discussions related
to problem solving approaches, are framed in the context
of resources found on the edge if a network. However, the
demonstrated work and proposed research are applicable
to processing in the data center. This is to say, a plugin
could easily be any device software/hardware/mechanical



that could be represented by a key-value configuration,
and could produce utilization/performance metric(s). For
instance, consider an agent integrated into an electric utility
meter, where plugins could be assigned for all major electric
consumers serviced by that meter for distributed collection,
but processing might take place at a regional or cloud data
center. Likewise, consider that adaptive scheduling of traffic
around a congested city, based on a sensor network deployed
under this framework, could make coordinated scheduling
decisions without the use of a central coordinator. In each
of these cases plugins must be developed and optimization
procedures defined, but the core Cresco framework can be
reused.

The authors makes no claim to solve a wide range of
optimization problems. However, through the development of
the non-uniform (variable cost, availability, and performance)
resource case specified in this paper, the authors will further
demonstrate improvements of globally distributed applications,
using edge and cloud computing through advanced market-
driven distributed resource optimizations. The outcome of
this work will produce a framework that could be adopted
for a wide-range of distributed resource management, while
demonstrating the framework in the specified non-uniform
case presented in this paper.

REFERENCES

[1] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot:
Applications, challenges, and opportunities with china perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349-359, Aug 2014.

[2] L. Ericsson, “More than 50 billion connected devices,” Ericsson White
Paper, 2011.

[3] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, pp. 1-11, 2011.

[4] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, pp. 161-166, 2011.

[5] D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: a
systems approach. John Wiley & Sons, 2012.

[6] P.C. Evans and M. Annunziata, “Industrial internet: Pushing the bound-
aries of minds and machines,” General Electric. November, vol. 26,
2012.

[71 A.Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet

of things for smart cities,” Internet of Things Journal, IEEE, vol. 1,

no. 1, pp. 22-32, 2014.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the first edition of the

MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13-16.

C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formal-

ism for artificial intelligence,” in Proceedings of the 3rd international

Jjoint conference on Artificial intelligence. Morgan Kaufmann Publishers

Inc., 1973, pp. 235-245.

T. A. S. Foundation, “Apache activemq - mgqtt,” 2016, [Online;

accessed 31-May-2016]. [Online]. Available: http://activemq.apache.

org/mqtt.html

T. C. Project, “Cresco,” 2014, [Online; accessed 11-September-2016].

[Online]. Available: https://github.com/ResearchWorx/Cresco/wiki

T. A. S. Foundation, “Apache license, version 2.0,” 2014, [Online;

accessed 8-November-2014]. [Online]. Available: http://www.apache.

org/licenses/LICENSE-2.0.html

J. Armstrong, R. Virding, C. Wikstrom, and M. Williams, “Concurrent

programming in erlang,” 1993.

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov,

M. Schinz, E. Stenman, and M. Zenger, “The scala language specifica-

tion,” 2004.

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]
[20]
(21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]

(30]

(31]

(32]

(33]

[34]
[35]

(36]
[37]
[38]

(39]

[40]
[41]

[42]

[43]

[44]

[45]

M. Thurau, “Akka framework,” University of Liibeck, available online
at http://media. itm. uni-luebeck. de/teaching/ws2012/sem-sse/martin-
thurauakka. io. pdf [consulted March 29, 2014], 2012.

F. Yergeau, “Utf-8, a transformation format of iso 10646,” 2003.

V. S. Subrahmanian, Heterogeneous agent systems. MIT press, 2000.
S. De Marchi and S. E. Page, “Agent-based models,” Annual Review of
Political Science, vol. 17, pp. 1-20, 2014.

T. A. S. Foundation, “Apache activemq,” 2013, [Online; accessed
13-November-2013]. [Online]. Available: http://activemq.apache.org
“Apache activemq - auto,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/auto.html

“Apache activemq - auto,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/amqp.html

“Apache activemq - openwire,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/openwire.html

“Apache activemq - rest,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/rest.html

“Apache activemq - rss and atom,” 2016, [Online; accessed 31-May-
2016]. [Online]. Available: http://activemq.apache.org/rss-and-atom.
html

“Apache activemq - stomp,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/stomp.html

“Apache activemq - wsif,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/wsif.html

“Apache activemq - websocket,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/websockets.html
“Apache activemq - xmpp,” 2016, [Online; accessed 31-May-2016].
[Online]. Available: http://activemq.apache.org/xmpp.html

O. LTD, “Orientdb,” 2016, [Online; accessed 27-May-2016]. [Online].
Available: http://orientdb.com/

K. Thompson and D. Gatchell, “Nsf international research network
connections (irnc) program,” in NSF IRNC Program Kickoff Meeting,
2005.

X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1-9.

M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in INFOCOM, 2012 Proceedings IEEE, March
2012, pp. 963-971.

P. J. Leach, M. Mealling, and R. Salz, “A universally unique identifier
(uuid) urn namespace,” 2005.

R. Rivest, “The md5 message-digest algorithm,” 1992.

V. Bumgardner, Openstack in Action. Manning Publications Company,
2015. [Online]. Available: http://manning.com/bumgardner

I. Amazon Web Services, “Aws iot,” 2016, [Online; accessed
27-May-2016]. [Online]. Available: https://aws.amazon.com/iot/

PTC, “Thingworx,” 2016, [Online; accessed 27-May-2016]. [Online].
Available: http://www.thingworx.com/

LogMeln, “Xively,” 2016, [Online; accessed 27-May-2016]. [Online].
Available: https://xively.com

B. 1. Suite, “Aws iot,” 2016, [Online; accessed 27-May-2016].
[Online]. Available: https://www.bosch-si.com/products/bosch-iot-suite/
platform-as-service/paas.html

SensorCloud, “Sensorcloud,” 2016, [Online; accessed 27-May-2016].
[Online]. Available: http://sensorcloud.com
IoTivity, “Sensorcloud,” 2016, [Online;
[Online]. Available: http://sensorcloud.com
J. Granjal, E. Monteiro, and J. Sa Silva, “Security for the internet
of things: a survey of existing protocols and open research issues,”
Communications Surveys & Tutorials, IEEE, vol. 17, no. 3, pp. 1294—
1312, 2015.

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” Communications Surveys & Tutorials,
IEEE, vol. 17, no. 4, pp. 2347-2376, 2015.

E. Amazon, “Amazon elastic compute cloud (amazon ec2),” Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

M. Inc., “Microsoft azure,” 2014, [Online; accessed 8-December-2014].
[Online]. Available: http://www.azure.com

accessed 27-May-2016].



