LLDP Based Link Latency Monitoring in Software
Defined Networks

Lingxia Liao
Department of Electrical and Computer Engineering
The University of British Columbia
Vancouver, Canada
Email: liaolx @ece.ubc.ca

Abstract—Current latency monitoring approaches for Software
Defined Network often use the control plane as the infrastructure
to inject time-stamp data packets as probe packets to measure
the network latency at a particular time, but suffer from three
major issues when the network latency needs to be continuously
monitored: 1) the increased control plane’s overhead, 2) the
feasibility of using data packets as probe packets, and 3) the
increasing measurement error using OpenFlow messages to
measure the time from the controller to a switch as the network
scale grows. To overcome these issues, this paper proposes link
latency monitoring using time-stamped Link Layer Discovery
Protocol (LLDP) packets, aided by a linear calibration function
to reduce errors of measuring switch-controller delays. Time-
stamping LLDP packets, which are used to discover the global
network topology in SDNs, does not add extra workload to
the control plane and the results always reach the controller
thus while avoiding measurement failures that might occur in
existing approaches. Our linear calibration function can reduce
the measurement error to less than 5% of the link latency
measured by ping in a network with up to 30 switches and the
link latency not less than 1ms.

I. INTRODUCTION

Running latency sensitive applications over current Internet
Protocol (IP) network with high user experiences often needs
to accurately and continuously monitor the latency of all the
routes in the network, and then quickly route the packets away
from the busy route. However, current approaches accurately
and continuously monitoring the latency of all the routes of an
IP network are expensive due to the lack of a dedicated net-
work infrastructure to handle probe packets in active latency
measurements [2], or a global clock among network devices
in passive latency measurements [1]. Traditional ping utility
also cannot be used due to the restriction in accessing to the
user hosts in many networks.

OpenFlow [3] is a protocol commonly used to control
the data plane in a Software Defined Network (SDN) by
the decoupled control plane. Using OpenFlow, the control
plane can insert flow entries as well as packets into the
OpenFlow switches in the network to program the behavior
of the network flows. Therefore, the control plane can provide
the network infrastructure dedicated to support active latency
measurement by generating probe packets, inserting them to
the data plane, and calculating the time difference between
receiving and sending a probe packet. This time difference

978-3-901882-85-2 (©) 2016 IFIP

Victor C.M. Leung
Department of Electrical and Computer Engineering
The University of British Columbia
Vancouver, Canada
Email:vleung @ece.ubc.ca

(tmeasureq) minus the time delay from the controller to
the source switch (Zc4t0src) and the time delay from the
destination switch to the controller (tgs¢roct;) represents the
latency of a route (ts,-ctodst) [4]. However, injecting OpenFlow
messages to switches to measure the time delay from the
controller to switches cannot give accurate results because
the behaviors of the controller and switches are different
in processing an OpenFlow message as opposed to a probe
packet, and periodically injecting probe packets to the data
plane also change the overhead of the control plane and affects
the measurement accuracy. More importantly, time-stamping
data packets as probe packets [4] [5] can cause measurement
failure, because the flow entries for the real data packets will
forward the time-stamped data packets to its next hop rather
than the control plane. How to correctly generate probe packets
to accurately and continuously monitor the latency of all the
routes in a SDN without changing the behavior of the real
data packets has not been explored in current research.
Observing that existing OpenFlow controllers often insert
Link Layer Discovery Protocol (LLDP) [6] packets to the data
plane to discover the global network topology, we therefore
propose a novel link latency monitoring approach based on
LLDP in SDNs to address the above issues (a link represents
a route with only two adjacent switches in this paper). Directly
measuring the latency of links of a network can form a link
latency map to quickly find out a path with the lowest latency
for a flow to provide best user experiences for latency sensitive
applications. Time-stamping LLDP packets to measure the net-
work latency does not add extra overhead on the control plane,
and hence does not reduce the measurement accuracy as it
in current proposed latency monitoring approaches. Moreover,
LLDP is a protocol used among switches. LLDP packets are
not data packets generated and consumed by an application
running at a host. Therefore, time-stamping LLDP packets
does not require that each switch of the network matches flow
entry to these packets and therefore it does not impact the
behaviors of the data flows in the network. To minimize error
in measuring the controller-switch latency as the network scale
grows, we generate a linear function to calibrate the measured
time delay from sending to receiving a probe packet over an
emulated SDN with up to 30 switches using Mininet [7]. Using
an emulated SDN to study the major factors affecting the

latency measured by our proposed approach and to evaluate
its accuracy is feasible because our measurement is fully done
at the control plane. An emulated SDN provides us a scalable
network environment to identify the major factors affecting
the measurement accuracy, study the possible relationship
between the measurement error and these factors, and develop
a calibration function to improve the measurement accuracy.

The rest of this paper is organized as follows. The related
work is summarized in Section II. The feasibility of using
LLDP packets as probe packets is discussed in Section III.
LLDP based link latency measurement is proposed in Section
IV. Section V introduces the experiments showing the major
factors that affect the link latency measured by our LLDP
based approach. A linear calibration function is developed
in Section VI to facilitate time-cost measurements. Section
VII evaluates the measurement accuracy, and Section VIII
concludes the paper.

II. RELATED WORK

References [4] and [S] implement the same approach that
uses control plane to inject probe packets to switches to
monitor the latency of a route for SDNs. The former generates
Ethernet frames carrying the time-stamps and develops a
calibration constant to improve the measurement accuracy for
a physical network with 2 switches, while the latter time-
stamps real data packets as probe packets and targets a network
with long route latency to ignore the measurement error. Both
of them do not consider the potential issue in generating probe
packets, and their experiments are done over a network with
very limited number of switches, while our proposed approach
addresses the issue in generating probe packets and conducts
experiments over an emulated network with up to 30 switches.
TTL-looping [8] [9] targets a network with low link latency.
It sends probe packets to the source switch of a path, and then
lets the probe packets loop the path a number of times before
finally sending them back to the controller. By calculating
the time difference between receiving and sending a probe
packet divided by the number of loops, the measurement error
caused by the time delays from the controller to the source
switch and from the destination switch to the controller can
be significantly reduced. However, this approach adds a huge
amount of extra workload to the data plane. While it may
be used for measuring the latency of a particular route in
a network at a particular time, it may not be feasible to
continuously monitor the latency of all the routes in a network.
SLAM [10] presents an approach to continuously monitor the
network latency of a SDN by injecting time-stamped data
packets, but its monitoring frequency relies on the active time
of a flow entry, while our approach can adjust the monitoring
frequency based on the requirements.

III. FEASIBILITY OF LLDP PACKETS AS PROBE PACKETS

To discover the topology of a conventional IP network,
each layer 2 switch has a particular process that periodically
broadcasts LLDP packets to and receives LLDP packets from
its peers. However, in a SDN, this process is implemented

in the control plane that periodically injects LLDP packets to
each OpenFlow switch of the network. When an OpenFlow
switch receives a LLDP packet from the control plane, it
floods it. When an OpenFlow receives a LLDP packet from
its adjacent switch, it packs the received LLDP packet into
an OpenFlow packet-in message and sends it back to the
controller. This way, a LLDP packet in the network is always
forwarded to the controller by a link destination switch to
discover a link and hence the network topology.

For the purpose of latency measurement, a probe packet
is a time-stamped packet. SDNs can use the control plane
to generate, send, and receive probe packets. To ensure a
successful latency measurement, each probe packet has to be
sent from and received back at the controller. To meet this
requirement, a probe packet should not have any matching
flow entry stored in the switches along its path.

Most data packets do not meet this requirement because
they are usually sent by an application and received by another
application. There is no way to ensure that no matching flow
entries are stored in the switches along the path. Therefore
time-stamping a data packet so that it also serves as a probe
packet for latency monitoring purpose may fail as a switch
along its path will forward the probe packet to its next hop
switch rather than the controller. If we force a time-stamped
data packet to be forwarded to the controller by removing the
matching flow entry at a switch, the data packets may also be
forwarded to the controller, and hence the behavior of the data
packets is changed. Using different flow entries to differentiate
a data packet and a time-stamped data packet can solve
this problem, but cannot be supported by current OpenFlow
protocols. Therefore, time-stamping real data packets as probe
packets may not be feasible in practice.

Since LLDP is a protocol among switches, the process
that discovers the network topology does not involve any
application running at hosts. Since no host will send LLDP
packets to other hosts in the network, there is no need to setup
flow entries for LLDP packets in the network. In fact, current
switch and routing applications of OpenFlow controllers never
setup flow entries for LLDP packets to ensure that each LLDP
packet can be sent back to the controller to discover the
global network topology. Therefore, LLDP packets can meet
the requirement of probe packets, and it is feasible to time-
stamp LLDP packets to continuously monitor the link latency
of a network.

IV. LLDP BASED LINK LATENCY MONITORING
When we use time-stamped LLDP packets as probe packets,
the route latency measurement described in the first section
monitors the latency of a link in the network. We formulated
this measurement as the following:

tmeasure = tctltosrc + tsrctodst + tdsttoctl (1)

tsrctodst = tmeasure - tctltosrc - 7fdsttoctl (2)

Here, we use t,cqsure to represent the delay of the packet
seen at the controller from the time it is sent to the time it

comes back, fcitosrc to be the time delay incurred by the
packet from the controller to a link source switch, fg,ctodst
to be the time delay incurred by the packet from the source
switch to the destination switch of a link, and %g4szt0c11 tO be
the time delay incurred by the packet from a link destination
switch to the controller.

Our prototype is built on top of the discovery component of
current Nox classic project [11]. Particularly, we modify the
discovery.py of the discovery component by adding a system
capabilities TLV [6] to each LLDP packet before the end TLV
for latency monitoring. Since discovery.py uses a timer to
periodically send LLDP packets to each port of each switch
in the network, when the timer fires, we retrieve the current
time, and take the fractional part of the current GTC time and
convert it to a 4-byte integer. We store the higher 2 bytes of
the integer in the capabilities available field and the lower 2
bytes of the integer in the capabilities enabled field, then send
the LLDP packet out. When a time-stamped LLDP packet
comes back to the controller, the LLDP input handler function
that handles the incoming LLDP packets in discovery.py firstly
retrieves the current time, then decodes the incoming LLDP
packet to get the time-stamp. The fractional part of the current
time minus the time-stamp in the incoming LLDP packet is
the tneasure 0 (1) and (2). Since the system capabilities TLV
has not been used in topology discovery, using it to carry
the time-stamps for latency monitoring does not affect the
behavior of network flows. However, a more general way to
prototype our LLDP based link latency monitoring is to define
an organizationally specific TLV [6] for latency measurement.

In order to measure the time delay between the controller
and a switch, our prototype also periodically sends a barrier
request to each switch of the network. We use a hash map
to store the time-stamp when a barrier request is sent to a
switch and calculate the time difference when a barrier reply
is received from a switch. Since a barrier request message has
no payload, and has to be replied without further decoding, this
time difference represents the RTT between the controller and
a switch. This way, we have t,,cqsures tetitosres and tasttoctls
and tg,cr0ds¢ can be calculated from (2).

V. FACTORS AFFECTING MEASURED LINK LATENCY

Any factors that affect the t,,cqsure> tetitosre, and tgsttoct
will affect the t,,c10q5:- Here, we consider 1) the inaccuracy
when measuring tciiosre and tgsiroctis 2) the time-stamped
LLDP packets injecting frequency, and 3) the number of
switches in the network. We conduct several experiments
based on an emulated network using Mininet to investigate
how these factors affects the monitored latency. We consider
a network with light work load at the data plane. A SDN
emulated by Mininet has each of its switches virtualized by
a virtual switch process. This difference between an emulated
SDN and a physical SDN does not really affect our latency
measurement, because our measurement is fully done at the
control plane. All the experiments in this paper choose a
linear topology rather than any others, because emulating
a linear topology costs less resource, a computer running

Mininet can uses its limited resource to emulate a larger
network. Meanwhile, our proposed approach directly monitors
the latency of all the links in a network, the topology of the
network does not really affect the measured results. With — link
TC parameter provided by Mininet to adjust the link latency,
an emulated SDN is very suitable to study the factors affecting
measurement latency as well as to evaluate the measurement
accuracy for our proposed approach.

A. Time Delays between Controller and Switches

To achieve a high measurement accuracy at (2), the tczosre
and tgsit0ct; have to be accurately measured. Current ap-
proaches using control plane to measure the network latency
often insert OpenFlow messages to every switch of the net-
work from the controller and calculate the time difference
between the sending and reception of each message. Since the
behavior of a switch is different when processing an OpenFlow
message as opposed to a probe packet, the controller-switch
time delay measured by these approaches does not really rep-
resent the time delay experienced by a probe packet traveling
between the controller and a switch. This difference can create
serious measurement errors, especially in a local area network
with low link latency.

We conduct an experiment over an emulate linear network
with 10 switches. We let the controller inject barrier messages
to each switch of the network and calculate the time difference
between reception and sending of each message. The average
time delay from the controller to the first switch measured by
our LLDP based approach is about 0.3 ms, the average time
delay from the second switch to the controller is about 0.5 ms,
and the time difference between a time-stamped LLDP packet
on receiving and on sending is about 1.338 ms. Therefore, the
one way link latency between the first and second switches is
1.338—(0.3+0.5) = 0.538ms. To reduce the influence of the
software fluctuation at the control plane, all the results used
are the averaged latencies.

We also use ’hl ping -c¢ 1 h2” inside Mininet to test the RTT
between the first and second switches; the average half RTT is
about 0.3 ms. In fact, the half RTT measured by ping should be
larger than the real link latency due to the delay between hosts
and switches. However, it is smaller than our measured latency
when considering the delay between controller and switches.
Using the half RTT measured by ping as the base line, we
calculate the measurement error when omitting the time delay
from the controller to the switches, the measurement error is
346% ((1.338 —0.3)/0.3 = 3.46), while the measurement
error when using barrier messages to measure the time delay
from the controller is 79% ((0.538 — 0.3)/0.3 = 0.79).
Therefore, our measurement exists serious measurement error,
though the measurement error can be reduced when the real
link latency of a network is increased.

B. LLDP Packets Injection Frequency

Frequently injecting the time-stamped LLDP packets to
switches consumes the resources of the controller and the
bandwidth of the control channel, and this in turn affects the

3000

§

z
z £
5 8
bef
§ a2
b 2 3000 +
[y € .
% 2000 - §]
£ . = .
x + ldp-Oms-measued £ 1
£ = ® lldp-src-dst T 2000 L
E T+ I lidp-cthsrc ;_ el T =
%1000 lidp-dst-ctl s
5 ing-
'z T - ping-Oms g 1000
é Pl [T (w -
1} " o
0 10 20 30 ap Switches 0 %0 20

a b

- 8000
E .
+ i '
& 7000 v
+
E] -
a + —
geooo .,
Eﬂ 5000
il + lidp-1ms-measued E + lldp-5ms-measued
= |ldp-src-dst ‘g‘ 4000 u |ldp-sre-dst
lldp-etl-sre F- lldp-etl-sre
lldp-dst-ctl é 3000 lldp-dst-ctl
o
ping-1ms E 2000 ping-5ms
=
1000
° itch
switches
30 40 switches 0 10 20 30 40

©

Fig. 1. The tmeasure, tetitosres tdsttoctl, ANd tsrctodst comparing to the half RTT measured by ping. Fig. a, b, and c¢ are the test results when the link

latency is set to Oms, 1ms, and Sms, respectively.

TABLE I
LINK LATENCY USING VARIOUS LLDP PACKET INJECTING FREQUENCY
approach 1 packet/s | 2 packet/s | 10 packets/s
tmeasure 2056 us 2148 us 2187us
tsretodst 675 us 744 us 817 us
tsrctodstbyping 305 us 302 us 310 us

performance of the controller processing OpenFlow messages
and probe packets, and hence the link latencies measured by
our LLDP abased approach. We conduct an experiment that
uses Mininet to emulate a network with 30 switches, and
we let the controller inject 1, 2, and 10 time-stamped LLDP
packets per second, and measure the t,,cqsure> tetitosre, and
tasttoctl- We also use “hl ping -c 1 h2” to measure the RTT
between the first and second switches of the tested network.
The same as last subsection, we measure multiple times and
take the average results. The test results are listed in Table I.
It is apparent that as the frequency increases, the ¢ eqsures
tetitosres Ldsttoctl, and tsrcrodst also increase, while the half
RTT measured by ping is almost unchanged. Since the half
RTT measured by ping does not involve the control plane,
the overhead change in the control plane does not have any
influence in the RTT measured by ping. It also implies the
overhead change at the data plane does not really change the
half RTT measured by ping as well as the latency measurement
in our proposed approach. Therefore, the overhead change at
the control plane decides the measured latency in our proposed
approach.

C. Network Scale

We conduct an experiment that uses Mininet to emulate a
linear network with 2, 5, 10, 15, 20, 25, and 30 switches. We
use — link TC parameter provided by Mininet to set the link
latency to be 0 ms, 1 ms, and 5 ms to emulate a network
with very low link latency, a local area network, and a wide
area network respectively. We let the controller inject barrier
messages and time-stamped LLDP packets to the network with
the frequency of 2 packets per second. We calculate ,,¢qsure
and tgctodst, and compare them to the half RTT measured by
” hl ping -cl h2”.

As shown in Fig. 1, ¢eqsure increases as the number of
switches in the network grows, while the half RTT measured
by ping forms an horizontal line. Since the controller needs
to send time-stamped LLDP packets to each switch in the
network, the more switches has a network, the larger is the
number of time-stamped LLDP packets that the controller
needs to send per second, and the more overhead adds on the
controller and the control channel. This increased overhead
causes longer time cost for the controller to process an
OpenFlow message or a packet. Therefore, ¢,,eqsures tetitosres
and 4541001 InCrease as the number of switches in the network
grows. The number of switches in the network does not affect
the half RTT measured by ping because the control plane is
not involved in this process.

Since tetitosre, and tasttoct; measured by barrier messages
are not the real t.y0sre, and tastroct; that probe packets use,
the tgrctoas¢ measured by our LLDP based approach can
not keep horizontal like the half RTT measured by ping as
the number of switches in the network grows. In fact, the
difference between t,,,cqsure and ping or between tg,.ct04st and
ping is increased as the number of switches in the network
grows, especially when the link latency is configured to 1ms
and 5Sms. This implies the measurement error is increased as
the network scale grows, and this measurement error can not
be reduced using a calibration constant in a network, where
the network scale may grow up or shrink down depending
on the workload or requirements. However, this measurement
error should be reduced by using a linear calibration function,
because the t,,cqsure Values are linear to the number of the
switches in the network no matter the link latency is set to Oms,
Ims, or Sms. The ts,ctoq4st Values in Fig. 1 do not form a nice
line as the number of switches in the network grows when
the link latency is set to Oms due to the software fluctuation,
but they do when the link latency is set to 1ms and 5Sms. This
implies the smaller the link latency is, the more difficultly this
software fluctuation can be reduced (refer to the evaluation
section for details).

VI. CALIBRATION

From last section, we know the change in network scale can
increase the measured link latency when using our proposed

9000

8000

+ lldp-Oms

7000 =T ® ping-Oms
+ lldp-1ms

< ping-1ms

¢ lldp-5ms

* ping-5ms

Link latnecy (us)

4 —Linear (lidp-0ms)
e —Linear (ping-0ms)
o= —Linear (lildp-1ms)
e —Linear (ping-1ms)
—Linear (lldp-5ms)

—Linear (ping-5ms)

0 10 20 30 40 switches

Fig. 2. The one way link latency between two adjacent switches. The latency
measured by our LLDP based approach consists of the time delay from the
controller to switches.

approach. To improve it, we choose the t,,¢qsure rather than
the ts,-ctodst as the starting value to do the calibration, because
the ts,ctodst Mmeasured by our approach includes the measure-
ment error incurred by the controller-switch delay. As shown
in Fig. 1, the t,,eqsure presents better linear relationship with
the number of switches in the network than the ¢, ctoqst. Our
goal is to develop a linear function to calibrate the ¢,,cqsure-
We choose the ¢,,cqsure and the half RTT of ping from last
experiments, as shown in Fig. 2, and only consider the change
in network scale in our linear calibration. We measure the
latency several times and take the average to reduce the impact
of software fluctuation at the control plane.

We notice that the measured delays by our approach in a
network when the link latency is set to 1 ms and 5 ms form
two parallel lines. However, these two lines are not strictly
parallel to the line formed by the measured delays when the
link latency is configured to 0 ms. We therefore generate two
different calibration functions, one for the network with link
latency set to 0 ms, the other for the network with link latency
set to 1 ms or 5 ms.

Equation (3) represents the line formed by the measured
delays when the link latency is set to 0 ms, where x is the
number of switches in the tested network and y iS t,,eqsure as
measured by our LLDP based approach. Using the averaged
half RTT measured by ping as the base line, we calculate the
parameters a, b, and c to be 35, 770, and 334 respectively. The
half RTT measured by ping is slightly larger than a real link
latency due the the delay between hosts and switches. How-
ever, the calibration function should be able to compensate
it. We then generate the calibration function for the network
with link latency set to Oms as shown in (4). Using the same
method, we generate the calibration function for the network
with link latency set to 1 ms or 5 ms as shown in (5).

y—c=alr—2)+b 3)

Yealibration = Y — 3 * (.T — 2) — 770 (@)
Ycalibaration = Y — 50 x (.13 — 2) — 890 5

Given a tested network, parameter c is critical to compute
the parameters a and b. Parameter ¢ can be determined by
the link latency measured by ping. In practice, we may have
to take some sample switches from different vendors, and
use the ping utility to test the link latency among them to
decide the parameter c. The limitation of our calibration is
that using different linear functions to calibrate the results for
a network with link latency less than 1 ms and a network
with link latency greater than 1 ms. For a network with link
latency less than 1 ms, our evaluation in next section shows
our calibration can only improve the measurement accuracy
to 80%. This suggests that the impact of software fluctuation
at the control plane cannot be fully compensated by taking
averaged results for such networks. For a network with link
latency not less than 1 ms, our calibration can achieve at
least 95% measurement accuracy (refer to next section for
details). This implies the impact of the software fluctuation at
the control plane is reduced by using the average results. Since
the work load change in the data plane does not really change
the measured latency in a network with light work load, given
a certain latency monitoring frequency, the change in network
scale is the only factor significantly affecting measured latency,
and hence, our calibration function can be used in such a
network in practice.

VII. EVALUATION

This section evaluates the measurement accuracy of our
proposed approach after calibration. We use (4) and (5) to
calibrate t,,cqsured, and compare it to the half RTT measured
by ping when the link latency is set to 0 ms and 1 ms/5 ms,
respectively, as shown in Fig. 3. The one way link latency
measured by our proposed approach after calibration is from
284 us to 407 us, 1249 us to 1332 us, and 5276 us to 5509
us when the link latency is set to 0 ms, 1 ms, and 5 ms,
respectively; while the half RTT measured by ping is from 312
us to 350 us, 1320 us to 1360 us, and 5320 us to 5380 us when
the link latency is set to 0 ms, 1 ms, and 5 ms respectively.
The measurement error is about = 70 us, -70 us to -6 us, and
-90 us to +170 us comparing to the half RTT by ping when
the link latency is set to Oms, 1ms, and Sms, respectively. The
measurement accuracy comparing to the half RTT measured
by ping is greater than 80%, 95%, and 97% when the link
latency is set to 0 ms, 1 ms, and 5 ms, respectively.

Though we have taken the average latency to reduce the
influence of the software fluctuation, we are still not able to
achieve high measurement accuracy when the link latency is
set to Oms. This suggests that the software fluctuation can be
the major factor affecting the measurement accuracy for a low
link latency network when using control plane to measure the
network latency. Since the software fluctuation is caused by
the CPU clock speed fluctuation, it is hard to find a pattern
for it, and hence hard to calibrate it. However, as the link
latency increases, the influence of the software fluctuation is
decreased. Our evaluation shows that using our calibration
function can reduce the measurement error to less than 5%
when the link latency is set to greater than 1ms.

TABLE 11

LINK LATENCY MEASUREMENT COMPARISON

Approach Network | Topology | Switches | link latency set Calibration link latency by ping | measurement error
LLDP based Mininet linear up to 30 | Oms calibration function | 0.3ms 20%

LLDP based Mininet linear up to 30 Ims calibration function | 1.3ms 5%

LLDP based Mininet linear up to 30 | Sms calibration function | 5.3ms 3%

Probe packet [4] | Mininet linear 2 0, 10ms, 20ms, 30ms | calibration constant | not provided 0.88%

TTL-looping [8] | physical not linear | 4 no set no calibration 20-30 us 25%

W & B W0 O
G o o o o
S © © © o
e © © © o

+ lldp-calibrated-Oms

® ping-Oms

w
o
=]
o

4 lldp-calibrated-1ms

N
o
o
(=]

ping-1ms
lldp-calibrated-5ms

One way link latency after calibration{us)

* ping-5ms

itch
o] 10 20 30 40 Switches

Fig. 3. The one way link latency from two adjacent switches after calibration

We also compare our measurement errors to the ones of
some currently proposed approaches, as shown in Table II. The
measurement proposed by [4] can achieve up to 99% of mea-
surement accuracy after calibration, while the measurement
accuracy of our LLDP based approach after calibration is 80%,
95%, and 97% comparing to the half RTT measured by ping
when the link latency is set to Oms, 1ms, and Sms, respectively.
However, our calibration function fits a network with up to 30
switches, while the calibration constant of the probe packet
approach proposed by [4] can only used in a network with
2 switches. The TTL-looping approach proposed by [8] can
reduce its measurement error to -7 us compared with 20-30
us’ half RTT measured by ping without calibration, while our
approach after calibration has a +70 us measurement error
compared with 0.3 ms of the half RTT measured by ping
when the link latency is set to O ms. It should be noticed
that the one way link latency measured by our approach is 10
times greater than the one measured by TTL-looping, because
the TTL-looping approach measures the link latency going
through switches’ fast channel, while our approach measures
the link latency going through the switches’ slow channel
[12]. The TTL-looping has a measurement inaccuracy up to
25%, while our proposed measurement has a measurement
inaccuracy up to 20% comparing to ping when the real link
latency in a network is set to Oms. This implies that using
controller to inject probe packets to accurately measure the
link latency of a network with the link latency less than 1 ms
may not be feasible.

VIII. CONCLUSION AND FUTURE WORK

We have proposed a link latency measurement method for
SDNs using LLDP packets. By analyzing the fundamental idea
of using the control plane to monitor the network latency of a
SDN, we have highlighted three major issues in current SDN
link latency measurements, and shown how our LLDP based
approach can address them in a network emulated by Mininet
with a light workload. We have conducted experiments to show
the major factors affecting measured results, and developed
a linear calibration function to improve the measurement
accuracy. We believe our linear calibration function with
reconfigured parameters can be used in a real SDN with link
latency not less than 1 ms.

ACKNOWLEDGEMENT

This research work is supported by the Canadian Natural
Sciences and Engineering Research Council through grant
STPGP 447230.

REFERENCES

[1] Chuck Fraleigh, C Diot, B Lyles, etc. Design and deployment of a passive
monitoring infrastructure. Evolutionary Trends of the Internet. Springer
Berlin Heidelberg, p 556-575, 2001.

[2] A. Caida Ma, tools: measurement:
http://www.caida.org/tools/measurement/skitter/

[3] OpenFlow Switch Consortium. OpenFlow Switch Specification Ver-
sion 1.0. 0. (2009). Internet: archive.OpenFlow.org/documents/OpenFlow-
spec-v1.0.0.pdf

[4] Kevin Phemius and Mathieu Bouet. Monitoring latency with openflow.
Network and Service Management (CNSM), 9th International Conference
on. IEEE, 2013.

[5] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kuipers.
Opennetmon: Network monitoring in openflow software-defined networks.
In Network Operations and Management Symposium (NOMS), pp. 1-8.
IEEE.2014

[6] IEEE standards association, Link Layer Discovery Protocol.
http://standards.ieee.org/getieee802/download/802.1 AB-2009.pdf

[7] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[8] V. Altukhov and E. Chemeritskiy. On real-time delay monitoring in
software-defined networks. Science and Technology Conference (Modern
Networking Technologies)(MoNeTeC), 2014 International. IEEE, 2014.

[9] Sinha Debanshu Sinha, K. Haribabu, and Sundar Balasubramaniam. Real-
time monitoring of network latency in Software Defined Networks. 2015
IEEE International Conference on Advanced Networks and Telecom-
muncations Systems (ANTS). IEEE, 2015.

[10] Curtis Yu, C Lumezanu, A Sharma et al. Software-defined latency
monitoring in data center networks. Passive and Active Measurement.
Springer International Publishing, 2015.

[11] Nicira Networks, NOX Network
https://github.com/noxrepo/nox-classic

[12] Yu M, Rexford J, Freedman M J, et al. Scalable flow-based networking
with DIFANE. ACM SIGCOMM Computer Communication Review,
2011, 41(4): 351-362.

skitter.

Control Platform.

