
Traffic Optimization in Anonymous Networks

Patrik Kristel

Faculty of informatics and information technologies

Slovak University of Technology in Bratislava

Bratislava, Slovakia

patrik.kristel@onedata.sk

Ján Lučanský

Faculty of informatics and information technologies

Slovak University of Technology in Bratislava

Bratislava, Slovakia

jan.lucansky@stuba.sk

Ivan Kotuliak

Faculty of informatics and information technologies

Slovak University of Technology in Bratislava

Bratislava, Slovakia

ivan.kotuliak@stuba.sk

Abstract—Anonymous communication networks, such as Tor,

are facing big challenge how to deliver content to users in low latency

and with no interruption. The latency issues were caused by

increased amount of transferred data and low-bandwidth nodes in

Tor network. Those are limiting overall circuit capacity providing to

users. Conflux, the Tor plugin, is improving effort and decreasing

latency time by creating multipath within Tor circuits. Conflux is

doing dynamic traffic-splitting and load-balancing through

multipath to improve throughput and avoid bottlenecks in Tor

circuits. Our solution is focusing to analyze and modification

network flows and sessions in Tor network. As an output of

problem’s analysis we’re proposing possibilities to improve

Conflux’s performance by its modification and deploy to the Tor

network. The paper describes solution implementation, setup and

configuration Tor client and Tor exit node. We’re explaining

necessary modifications that need to be provided on Tor

components. Our solution achieved average improvement versus

Conflux more than 20% decrease of download time in various file

size.

Keywords— Anonymity Networks, Tor network, Bottlenecks in

Networks, Network Traffic load-balancing

I. INTRODUCTION

Tor network is hiding source or destination address and help to
protect end user and other communication instances like devices
or equipment’s to against their identity in the network. Low-
latency anonymous systems, such as Tor, are designed for
applications which are operating in real-time. As a real-time
applications increased their popularity in last couple of years by
increased amount of users and amount of transferred data, it caused
performance issues in Tor network’s nodes bandwidth.

 Currently, Tor network has over two million active users

[2] and over 7,000 active nodes as of April 2017 [3]. Tor is very

popular mainly in countries where access to Internet is restrict or

where is strong censorship and users cannot web-browsing freely.

Countries as China, Russia or countries of middle-east. By using

Tor, users can avoid the censorship in effective way. In another

cases we just don’t want uncover our real Internet identity,

location and avoid collecting data about ourselves by various web

services.

Amount of users are increasing as well as amount of servers

but nowadays communication, such as real-time or streaming

need to their functionalities definitely more bandwidth capacity

then network applications couple years ago. Regarding to

statistics we can see while in year 2014 (January) was transferred

about 50 Gbit/s so in the year 2017 (January) it was a bit more

than 200 Gbit/s. It means about fourfold transferred data

increased [4]. Obviously, it could cause an issue in Tor

performance near future.

Tor nodes are running on volunteer-based platform and most of

the nodes are not connected with high speed Internet link with

enough bandwidth capacity. The overall circuit bandwidth is

limited by the low-bandwidth node which is participating on

circuit. Means, if user creates a circuit through the Tor network

and for some of them use same low-bandwidth node it will be

limited by the low-bandwidth node even if the exit node will be

super-fast. [1]

Conflux is Tor network tool which provides better stability and

performance for Tor users. Conflux is creating multipath inside

Tor network to divide and load-balance amount of data

transferred from client side to server side or vice-versa. Amount

of the data (traffic) is divided by dynamic traffic-splitting

algorithm. It is ongoing client side and exit node, those are shared

within multipath. During all the time when data are transferred

conflux is load-balancing data flow base on latency measurement

each of the created path.

Measurements and evaluation prove approximately 30%

improvement in expected download time [1]. Based on prove

facts we can state it significantly improves the experience of

streaming data’s users.

II. TOR NETWORK OVERVIEW

A. How Tor Network works

Tor network consist of three types of nodes: onion routers

(nodes), onion proxy (clients) and directory servers. Directory

servers consists of a few machines which stored network

consensus file, a database of all active nodes with their

parameters. Nodes are volunteer-based servers across the world

which are backbone of Tor network. They’re responsible for all

traffic passed by or to users through the Tor. Nodes are only

instance which using to communicate with ‘other’ world, outside

of Tor. Clients are running on end-users machines and they’re

‘consumers’ of data and data streams transferred in Tor.

Clients are building circuits across of Tor network to reach

their destination (server or other side of communication). First of

all, clients connect to the directory server, then load the network

consensus file and start to establish new connections – circuits.

Circuits are Tor network paths through which the client’s traffic is

transferred and routed. Traffic data are relayed in fixed-sized (512

byte) units called cells [5].

The onion proxy can also multiplex several TCP streams over

one circuit, which generally has a lifetime of ten minutes. To

ensure flow control of data in flight, Tor employs an end-to-end

window-based flow control mechanism in which every time the

OP (or exit OR) receives 100 cells, it acknowledges windows of

data cells using SENDME (or acknowledgement) cells. [6]

B. Improving Tor’s quality of service

If we take a look to various video streaming or file sharing
services, we will see much more data flooding across Internet
nowadays. For example, in last four years average size of web page
increased from 1000KB in 2012 to 1620KB in 2016 [7]. Which
means 60% increase over just four years. In a future we can expect
web page’s size increasing as well and Tor need to be adapt to the
changing web.

Currently, Tor project not recommends to use Tor network to
any video streaming, file sharing or torrent using [8]. Although it
hard to separate streaming from web browsing. Therefore, in order
to survive and continue to attract new users, it is crucial for Tor to
meet the demands of its users and the changing web by improving
the experience for streaming users.

III. CONFLUX AND ITS MODIFICATION

A. Multipath creating and Dynamic Traffic splitting

As we mentioned, Conflux is creating parallel path to already
exist primary path in Tor network. Primary path is constructed by
Tor’s client according to the bandwidth-weighted router selection1
[9]. There is only one constrain while Conflux is creating
multipath that exit node must be same as exit node linked with
primary circuit. Entry and middle nodes are different each other
and they’re selected by bandwidth-weighted router selection
algorithm. After both paths are established, client sends a

“multipath cell” through both circuits (paths) to the common exit
node. This process enables the exit router to associate the OP’s
TCP streams with its linked circuit [10]. After that client use both
circuits to send and receive data through Tor. Closing a multipath
is no different from closing circuits in Tor. If a circuit in a
multipath exceeds its lifetime or if it is idle, the circuit is turned
down. Closing one circuit it not affect other, as client builds a few
circuit more to spare. In fact, it also not required any higher load
on client side, as Conflux using circuit build in spare [10].

After multipath is created, there is a mechanism to dynamically
split traffic to two sub-streams. The splitting end points assign
different amount of traffic to each circuit. Algorithm is design to
load-balancing traffic between circuits based on latency inside
them. It is observing current throughput relative to other circuits
[10]. The algorithm works as first splitting point (Tor client or Exit
node) is frequently measuring latency on all circuits. This can be
done by storing time every 100th cell is sent down a particular
circuit, noting the time that the corresponding circuit-level
SENDME arrives. Splitting end points are allow to compute
current round-trip time (RTT) based on this. The list, where the
RTTs are stored is periodically updated regarding to
measurements assigned to each linked circuit [10].

Based on mechanism describe above, every time when data
need to be transmitted through multipath circuit, algorithm choose
one with best current RTT.

B. Conflux vs. pure Tor

Conflux was developed primary for clients using low-
bandwidth nodes such as bridges. Bridges are specific types of Tor
nodes. They’re not distributed by standard way, through directory
servers, but just on demand. Their mainly use in countries with a
strong censorship [11], where access to Tor network nodes is
blocked by default. Bridges are typically lower-bandwidth as
normal Tor nodes. This is one of the reason to build tools such as
Conflux.

Conflux has significantly better improvement in performance
than pure Tor. Based on present results it reaching an improvement
of approximately 30% in expected download time for web
browsers who use Tor bridges and for streaming application users
[10]. The results were taken while Conflux was ran with one
primary and one secondary circuit, while it divided traffic to two
parts based on dynamically splitting traffic algorithm, what we
mentioned above.

C. Our approach-ConfluxM

Our approach is based on question: How to do traffic-splitting
even more effective? If we take a look to the Conflux’s design, we
can find scheme how traffic is divided. We can assume if we
extend number of circuits in multipath and we will be able to
divide traffic to three independent sub-streams in the first end point
(and collect in the other end point), we can reach more
improvement in same scenarios.

1 Bandwidth-weighted router selection algorithm is intending to improve
the overall system performance in Tor network. It is trying to select best path in

created Tor circuit [9]

Figure 1 below shows our re-design of Conflux. We’re adding
one more parallel circuit in to the multipath. In this scheme Tor
client will start to build a circuit from primary path (through
Entry1, Middle1 and Exit nodes) by ordinary Tor’s way, after that
client will build secondary path by Conflux’s way (Entry2,
Middle2 and Exit nodes), and finally we will build one more path
from client stand point (Entry3, Middle3 and Exit nodes). All
traffic will be handled by dynamic traffic-splitting algorithm to
load-balancing data flow through all three paths. On the other side
of communication will be buffer proceeding [10] running by
Conflux to collect traffic back together in same order as it was
split.

Fig. 1. Live performance comparison between Tor, Conflux and ConfluxM for

400 KB file

 Our approach assuming that our Conflux’s re-design will affect
mainly Tor client and Exit node. Both will divide and split traffic
on their side. Exit node will also connected with remote side of
communication, same as in Tor.

 The dynamically traffic splitting process will be same as
Conflux implemented. Once we get all three paths up and ready
we will send multipath cell to test their availability [10].

 Our approach is based on the recommendation as a future work
in publication: The Path Less Travelled: Overcoming Tor’s
Bottlenecks [1] and motivation to find relevant difference and
relation between Conflux and our approach.

D. Implementation details

 We have run this implementation in private Tor network builds
with a several Tor nodes, as two of them were run as Tor directory
servers and a Tor client. All nodes have communicate to each other
through TCP connections build just after private Tor network’s
convergence was done [12] [13]. Tor client and all nodes were
running on separate Linux machines and on same Tor version
(0.2.9.5-alpha) with the Conflux code. We did modification Tor
and Conflux source code in order to reach design requirements
presented in part of our approach.

IV. PERFORMANCE EVALUATION

 Conflux’s paper presented improvement of download time
average at least at 30%. There are also presented partial
improvement results for small-size files (300–400KB) it was 42%
and for larger-size files (1–10MB) improvement was about 25%
of decreased download time.

In our approach we’re focusing to compare our result with
presented ones [10], but off course we cannot simulate and
compare results on same topology, with same scheme. We are
conscious there will variance caused by different implementations
setup what we used. Accordingly, we will do first at all same
measurement as was presented by Conflux’s paper, in order to get
as much accrued results, as we can.

In generally, we’ve setup local remote server outside of private
Tor network’s nodes, but in directly connected network. On
remote server we’ve run file server, which we kept running and
serving files “forever”. On the other side, we have setup file
application which was connected through ORPort [14] on Tor
client machine.

In our measurements we have choose samples of test files of
400KB, 5MB and 10MB. File sizes were taken to maximal our
effort to approximate web browsing and download (or streaming)
users [7] [15].

All the values in measurements, what we’re presenting on
Figures 1 and 2 are averages of series of measurement. Each value
represent average of 10 measurements, according to
implementation setup.

A. Small-size files evaluation

Firstly, we took sample of 400KB test file to evaluate time for
Tor, Conflux and ConfluxM setup, each of them separately. Figure
2 below shows average improvements what we get once we did all
measurements. From the graph we can see Conflux and ConfluxM
time decrease improvement against Tor. We have reach average
improvement of 23% (Conflux), 12% (ConfluxM) and 33% (total)
decrease of downloaded time.

Fig. 2. Live performance comparing between Tor, Conflux and ConfluxM for

400 KB file

0.000

0.020

0.040

0.060

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
[s

]

Measurements

Test file: 400 KB

Tor Conflux ConfluxM

 From the graph we can also see that time decreasing, if we
compare Conflux and ConfluxM, the improvement is not that
significant as in Tor vs. Conflux case. From this statement we
can assume, if we add even one or few more parallel path, we
cannot reach so much improvement as in Conflux case.

B. Lagrer-size files evaluation

 Next, our attention will shift to larger-size files. We took two
files of size 5MB and 10MB. These two file samples should good
approximate a video stream on most wide streaming service, as
YouTube or Netflix [16]. Figure 3 below shows comparing
downloaded times for both samples. The main improvement we
have reach for files size of 5MB. We reach up to 69% (total)
decrease of downloaded time against Tor setup. For the partials
results, we have reach average improvement of 57% (Conflux) and
28% (ConfluxM).

Fig. 3. Live performance comparing between Tor, Conflux and ConfluxM for

5MB and 10MB file

As we can see, average improvement was much better for the
files sizes of 5MB then 10MB. On the other side, both Conflux and
ConfluxM setup times of download were much stable without any
unexpected peaks. We achieved that by dynamically traffic slitting
to two or three paths in whole multipath. Basically, we have split
all the traffic load by ongoing measurements during Conflux or
ConfluxM was ran. Another advantage, what we observed by
Conflux, if one of path has an issue with latency increase, we can
cover that by others running paths.

On the other side, running both Conflux and ConfluxM have
additional node’s performance (Exit nodes mainly), which are
involved to construct multipath. As we know, the exit node is
usually participating also on others Tor network connections as
any node’s role. We can expect, deploy Conflux to Tor network
globally could cause additional performance requirements to these
nodes (machines). But this is another stand point, what we cannot
evaluate currently, as we are doing our setup on laboratory based
environment in Private Tor network.

C. Overall improvement evaluation

In our approach evaluation we got several interesting results.

If we take all measurements what has been done, we can see that

ConfluxM setup has better results than any other. In the Table 1

below we can see comparing data for all three implementation.

All measurements were done in same Private Tor network. We

have changed only configuration of Tor client and Tor Exit node,

while we have shift the implementation setup.

TABLE I. OVERALL IMPROVEMENT EVALUATION

 Average improvement [%]

File size [MB] ConfluxM Conflux Overall from Tor

0.4 12.12 23.26 32.56

5 28.25 56.74 68.96

10 24.43 25.36 43.60

Average (overall) 20,43 35,22 47,88

Fig. 4. Overall improvement evaluation comparing between Tor, Conflux and

ConfluxM

Figure 4 above shows us an interesting point of view to our
results. From the graph we can see that in every case Conflux does
better average improvement than ConfluxM (in percentage). These
findings proving that adding more parallel paths are no more
needed. Also, we can assume that if we would add one more path,
efficiency will decreased directly meager to number of paths.
Next, we can see that in case of 10MB files improvements goes
down in all of the solutions. It is caused mainly by longer time that
is needed to transfer larger size data through Tor network because
paths in Tor network used to failed time-to-time and then need to
be re-establish.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
[s

]

Masurement

Test file: 5 MB

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
[s

]

Measurement

Test file: 10 MB

Tor Conflux ConfluxM

0

20

40

60

80

0.4 5 10

Im
p

ro
ve

m
en

t
[%

]

File size [MB]

Overall improvements

Conflux ConfluxM Overall from Tor

V. CONCLUSION AND RELATED WORK

 In the paper we’re presenting another approach to the

dynamic traffic splitting. We presented analyses, re-design and

implementation of Conflux Tor’s improvement tool. We did

overall more than 1,400 measurements to evaluate our approach.

We evaluated our approach named ConfluxM, using a small-scale

experiments using a private Tor network. In particular, we have

demonstrated the improvement against Tor and Conflux with

using ConfluxM. Our results, as well as Conflux, indicate

performance benefits with downloaded time decrease for Tor

users. In our approach we achieved average download time

decrease more than 20% versus Conflux.

 As we mentioned in overall results, for every setup case,

Conflux does better average improvement then ConfluxM. From

that point, we can assume that there is no space no needs to

additional time improvement, as extending Tor multipath.

Therefore, we are recommend as future work focus to privacy and

improving anonymity in Tor [17] [18] [19].

VI. ACKNOWLEDGEMENT

This work is a partial result of the Research and Development

Operational Program for the projects Support of Center of

Excellence for Smart Technologies, Systems and Services II,

ITMS 26240120029, co-funded by ERDF. It is also a part of

APVV-15-0731 project and VEGA 1/0836/16, KEGA KEGA

011STU-4/2017.

Our acknowledgment belongs also to Mashael AlSabah and

Ian Goldberg, University of Waterloo, CA. They gave us a lot of

information and technical details about Conflux implementation.

Also, they gave us a many helpful advices how to proceed with

an issues, what we observed.

VII. REFERENCES

[1] R. Dingledine, N. Mathewson and P. Syverson, "Tor: The Second-

Generation Onion Router," August 2004. [Online]. Available:

https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf.

[2] The Tor Project, "Tor Metrics - Users," 20 April 2017. [Online].

Available: https://metrics.torproject.org/userstats-relay-country.html.

[3] The Tor Project, "Tor Metrics - Servers," 20 April 2017. [Online].
Available: https://metrics.torproject.org/networksize.html.

[4] The Tor Project, "Tor metrics - Traffic," April 2017. [Online]. Available:
https://metrics.torproject.org/bandwidth.html?start=2013-01-

23&end=2017-04-23.

[5] S. Chakravarty, M. V. Barbera, G. Portokalidis, M. Polychronakis a A. D.
Keromytis, „On the Effectiveness of Traffic Analysis Against,“ August

2013. [Online]. Available:

https://mice.cs.columbia.edu/getTechreport.php?techreportID=1545.

[6] M. AlSabah1, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage
and G. Voelker, "DefenestraTor: Throwing out Windows in Tor," July

2011. [Online]. Available:

https://www.freehaven.net/anonbib/papers/pets2013/paper_65.pdf.

[7] A. King, „Average Web Page Size Septuples Since,“ 2016. [Online].

Available: http://www.websiteoptimization.com/speed/tweak/average-
web-page/. [Cit. December 2016].

[8] The Tor project, "Bittorrent over Tor isn't a good idea," 30 April 2010.

[Online]. Available: https://blog.torproject.org/blog/bittorrent-over-tor-
isnt-good-idea.

[9] R. Pries, W. Yu, S. Graham and X. Fu, "On performance bottleneck of

anonymous communication networks," in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, 2008.

[10] M. AlSabah, K. Bauer, T. Elahi and I. Goldberg, "The Path Less

Travelled: Overcoming Tor’s Bottlenecks," November 2013. [Online].
Available:

https://www.freehaven.net/anonbib/papers/pets2013/paper_65.pdf.

[11] A. Lewman, "China Blocking Tor: Round Two," March 2010. [Online].
Available: https://blog.torproject.org/blog/china-blocking-tor-round-two.

[12] F. Liu, "Setup Private Tor Network," January 2015. [Online]. Available:

http://fengy.me/prog/2015/01/09/private-tor-network/.

[13] A. Smith, "Private tor network on kubernetes," March 2017. [Online].

Available: https://andrewmichaelsmith.com/2017/03/private-tor-

network-on-kubernetes/.

[14] R. Dingledine a N. Mathewson, „Tor Protocol Specification,“ Apríl 2015.

[Online]. Available: https://gitweb.torproject.org/torspec.git/plain/dir-

spec.txt?id=77d040439b787556aab4979789eddc66c6964abd.

[15] S. Ramachandran, "Web Metrics: Size and Number of Resources,"

August 2011. [Online]. Available:

https://code.google.com/speed/articles/web-metrics.html. [Accessed
April 2017].

[16] C. Moldovan, C. Sieber, P. Heegaard, W. Kellerer and T. Hoßfeld,

"YouTube Can Do Better: Getting the Most Out of Video Adaptation," in
2016 28th International Teletraffic Congress (ITC 28), September 2016.

[17] D. Gopal and N. Heninger, "Torchestra: Reducing Interactive Traffic

Delays over Tor," in Proceedings of the 2012 ACM Workshop on Privacy
in the Electronic Society, New York, NY, USA, 2012.

[18] J. Reardon and I. Goldberg, "Improving Tor Using a TCP-over-DTLS

Tunnel," in Proceedings of the 18th USENIX Security Symposium, August
2009.

[19] C. Tang and I. Goldberg, "An Improved Algorithm for Tor Circuit

Scheduling," in Proceedings of the 17th ACM Conference on Computer
and Communications Security, New York, NY, USA, 2010.

[20] The Tor Project, "Tor Network Status," April 2017. [Online]. Available:

https://torstatus.blutmagie.de/router_detail.php?FP=986d375159e7dcf9e
f8e225fb9a687ffd09f9a85.

