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Abstract—Offloading mobile Internet data via WiFi has
emerged as an omnipresent trend. WiFi networks are already
widely deployed by many private and public institutions (e.g.,
libraries, cafes, restaurants) but also by commercial services to
provide alternative Internet access for their customers and to
mitigate the load on mobile networks. Moreover, smart cities
start to install WiFi infrastructure for current and future civic
services, e.g., based on sensor networks or the Internet of Things.
A simple model for the distribution of WiFi hotspots in an urban
environment is presented. The hotspot locations are modeled
with a uniform distribution of the angle and an exponential
distribution of the distance, which is truncated to the city limits.
We compare the characteristics of this model in detail to the
real distributions. Moreover, we show the applicability and the
limitations of this model, and the results suggest that the model
can be used in scenarios, which do not require an accurate spatial
collocation of the hotspots, such as offloading potential, coverage,
or signal strength.

Index Terms—WiFi offloading; Urban environment; Gener-
ation of WiFi hotspot distribution; Applicability; Limitations;
Performance evaluation.

I. INTRODUCTION

Due to the widespread coverage, end users access Internet

services on the run relying mainly on cellular networks. In

2015, the total mobile data traffic reached 3.7 exabytes per

month and this monthly volume is expected to surpass 30.6

exabytes in the year 2020 [1]. To cope with these trends,

WiFi offloading has gained a lot of attention both by industry

and research. Offloading mobile Internet connections to WiFi

reduces the load on existing cellular infrastructure, which

results in lower infrastructure expenses. Reduced cellular load

also leads to increased performance of the network, and thus,

to increased customer satisfaction. Moreover, WiFi offloading

helps end users to avoid exceeding their data plan volume

limitations, and permits the usage of bandwidth demanding

applications like video streaming and online gaming also in

areas with low mobile coverage.

The deployment of WiFi hotspots is essential for the cov-

erage and the strength of the received signal. Thus, when

designing or evaluating services, which rely on the WiFi

infrastructure (e.g., mobile traffic management solutions incor-

porating WiFi offloading [2], Internet of Things services for

smart cities [3]), the hotspot locations have to be taken into

account. A low signal strength of the WiFi signal results in

low throughput, which has an impact on energy consumption

and may not meet the requirements of the application [4],

[5], [6]. The distribution of public WiFi hotspots within

cities can be obtained from hotspot databases. However, using

this approach only the status quo for a given city can be

analyzed. To evaluate hypothetical scenarios and the scalability

of mechanisms, a generic model would be needed to generate

WiFi hotspot distributions for cities of different size, shape,

population density, and number of hotspots. Such a model

could then facilitate the design and performance evaluation of

mechanisms or services, which rely on WiFi infrastructure.

The goal of this work is to extend the work in [7], which

presented a simple model for the WiFi hotspot distribution

in cities, by investigating its applicability and limitations.

Therefore, the WiFi hotspot locations of ten large cities were

obtained from a public WiFi database and their characteristics

are analyzed. Using a transformation into polar coordinates

relative to the city center, we show that the hotspot locations

can be modeled with a uniform distribution of the angle and an

exponential distribution of the distance. We then compare the

characteristics of the real hotspot distributions and the model.

We investigate the accuracy of the model for performance

evaluation applications, such as offloading potential, coverage,

signal strength, interference, handovers, or bandwidth sharing.

This work is structured as follows. Section II describes

related work on WiFi hotspot models. Section III shows the

applied methodology and Section IV presents the characteris-

tics and model of hotspots distributions in cities. Section VI

investigates the applicability of the model for different use

cases, and Section VII concludes.

II. RELATED WORK

WiFi offloading/sharing started in specialized communities

(e.g., Fon1), but public WiFi is now widely available as

both free and commercial services. Many cities over the

world have comprehensive WiFi coverage in the city centers

just by free public WiFi hotspots provided by various cafes,

shops, bars, pubs, libraries, public buildings, and government

buildings. There are databases providing the locations of these

open/public WiFi hotspots. Many of these databases are user

based websites with hotspot locations gathered, uploaded,

and updated by a huge community (e.g., OpenWiFiSpots1).

1http://www.fon.com, http://www.openwifispots.com/

978-3-901882-98-2 c© 2017 IFIP



Moreover, also telecommunication operators (e.g., BT2) de-

ploy own private/closed WiFi infrastructure to offer their users

access to an alternative Internet link. A different WiFi sharing

concept is BeWifi2, which aggregates spare capacity of close

access points for demanding users [8], [9], [10]. Freifunk2 is a

decentralized wireless community network, which uses mesh

technology to bring up ad hoc WiFi networks between private

WiFi routers, to support local private communication.

The spatial distribution of WiFi hotspots is measured with a

tracking method in [11]. The results show that highest density

of WiFi hotspots corresponds to residential areas. The distri-

bution of WiFi hotspots is naturally related to the population

density in the city, since WiFi hotspots are deployed in close to

every household, offices, shops or public places. A first model

of the population density with exponential decline from the

city center was developed in [12]. A survey on studies of

urban population density [13] provides an overview of refined

models considering, e.g., lower density in the center due to

lower residential land use, or polycentric cities [14].

The relation between the spatial structures of planned wire-

less networks and population densities has been investigated in

[15]. The authors find that base stations belonging to different

mobile operators often cluster according to population density.

In [16], different point process models are used to model

the density of cellular networks. A survey on the literature

related to stochastic geometry models for modelling cellular

networks is provided in [17]. In a recent work [18], the spatial

correlation in base station placements of different mobile

operators is investigated and analytical expressions for the

coverage probability are derived. However, the distribution of

WiFi hotspots differs from the distribution of base stations, as

the distribution of base stations is planned and engineered. The

models further lack of means to generate hotspot distribution

for cities of different shape, e.g., due to natural boarders of a

coastline. In contrast, we develop a simple model for the more

natural distribution of public WiFi hotspots within a city and

we investigate its applicability in different scenarios.

III. METHODOLOGY

To investigate the distribution of public WiFi hotspots in

cities, geographic information about the hotspot locations is

needed. We use the OpenWiFiSpots1 database to obtain the

addresses of public hotspots. The database is a directory

of free WiFi hotspots, which is continuously updated by a

growing community of users. Considering that the website

provides no API to request the data, the hotspots of ten

large cities (eight in the United States, two in Europe) were

searched manually on the website and the addresses were

parsed from the search results. To obtain more general results,

we selected cities with a large number of listed hotspots and

different layouts (e.g., grid-based cities, ring-based cities) and

characteristics. Table I presents some of these characteristics,

i.e., the number of gathered hotspots, the total investigated

area, and the population of each city. It can be seen that the

2http://www.btwifi.co.uk/, http://www.bewifi.es/, https://freifunk.net/en/

TABLE I
GENERAL INFORMATION ABOUT INVESTIGATED CITIES.

City Number of Total investigated Population
hotspots area (in km2) (in thousands)

Austin 220 220 843
Berlin 110 250 3502
Boston 193 173 637
Brooklyn (NYC) 454 419 2566
Houston 307 306 2161
Los Angeles 199 165 3858
London 668 367 8308
Portland 419 465 603
San Francisco 214 241 826
Seattle 296 202 635

cities widely differ, for example, in terms of population and

hotspot density. Note that the obtained hotspot locations are

only a sample of a possibly larger number of WiFi hotspots,

as some hotspots might not be listed in the database. As the

submission of hotspot locations to the database by the users are

independent random processes, we conclude that the obtained

sample is a random sample of WiFi hotspots, which will not

affect the modeled distributions.

To transform the addresses to geographic coordinates (lat-

itude ϕ, longitude λ), the MapQuest3 geocoding API was

used. Moreover, the city center (ϕc, λc) was computed via

a centroid calculation on the WiFi hotspot locations using

the k-means algorithm. The hotspot distribution can now

be analyzed relative to the city center, which allows more

general statements for each city. Mathematically, the geo-

graphic coordinates of the WiFi hotspots were transformed

into a polar coordinate system, which had the city center

as reference point and north as reference direction. Using

basic results from spherical trigonometry, coordinates (ϕ, λ)
of each WiFi hotspot can be expressed in terms of polar

coordinates (d, θ) with the spherical distance d from the city

center and angle θ towards the reference direction. In Eq. 2,

the spherical distance between the coordinates (ϕc, λc) and

(ϕ, λ) (in radians) is computed by using the haversine formula

(term a from Eq. 1) and the mean radius of the Earth rE . In

Eq. 3, the angle between (ϕ, λ) and the reference direction is

calculated. Both computations use the atan2 function4, a two

argument version of the arctangent function implemented by

many programming languages. Note that negative angles of

θ point counterclockwise from north, whereas positive angles

point clockwise from north.

a = sin2(
ϕ− ϕc

2
) + cosϕ · cosϕc · sin2(λ− λc

2
) (1)

d = 2 · rE · atan2(√a,
√
1− a) (2)

θ = atan2(sin(λ− λc) · cosϕ,
cosϕc · sinϕ− sinϕc · cosϕ · cos(λ− λc)) (3)

3http://developer.mapquest.com/
4http://www.mathworks.com/help/matlab/ref/atan2.html
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(b) Distance distribution of hotspot data.

Fig. 1. Fitting of angular and distance distributions.

IV. CITY-TRUNCATED EXPONENTIAL MODEL

As described in [7], we investigate the hotspot distribution

in terms of the distance and angle of the polar coordinates with

respect to the city center in order to formulate a model. We

show that a decent approximation can be reached with a uni-

form distribution for the angle and an exponential distribution

for the distance of hotspots.

A. Angular Distribution

In Figure 1a, the cumulative distribution functions (CDF)

of the angular coordinates is compared for the hotspot data of

the cities of Berlin, London, and San Francisco. The angular

distribution of the hotspots (solid) shows a high similarity

to a uniform distribution F (x) = x+π
2π , x ∈ [−π, π) (black

dashed). We observed that the distribution is similar for each

of the ten cities and with minor deviations due to city-specific

geographic conditions like water areas or parks, which caused

hotspot-free spaces at the corresponding angles.

To quantify the goodness of fitting with a uniform dis-

tribution, we apply two standard methods for comparing

distributions, namely, the maximum absolute error, i.e., the

Kolmogorov-Smirnov statistic D, and the mean absolute error

(mae). These metrics indicate how far the model is from

reality at most (D) and on average (mae), respectively. In

Table II, it can be seen that all fittings have a rather high D,

which shows that the angular distributions are not perfectly

uniform due to particular geographic characteristics of the

different cities. For example, the shape of the city of Austin

contributed to a slightly elliptic hotspot distribution causing

the highest D value. However, the mae values show low

values, which indicate that the angular distribution of hotspots

in a city can nevertheless be well approximated by a uniform

distribution.

B. Distance Distribution

In Figure 1b, the cumulative distribution functions of

hotspots (solid) are shown, i.e., the relative frequency of

hotspots having a distance to the city center smaller than d.

In this case, a high similarity to an exponential distribution

can be observed. Estimating the mean μ of the exponential

distribution F (x, μ) = 1− exp(− x
μ ), x ≥ 0 (dashed) from the

hotspot data (cf. second column of Table III) with a maximum

likelihood estimator, a good approximation is visible.

TABLE II
MAXIMUM (D) AND MEAN (mae) ABSOLUTE ERROR FOR UNIFORM

FITTINGS OF ANGULAR DISTRIBUTION.

City D mae

Austin 0.1619 0.0677
Berlin 0.0841 0.0401
Boston 0.0809 0.0274
Brooklyn (NYC) 0.1142 0.0537
Houston 0.1023 0.0412
Los Angeles 0.0757 0.0288
London 0.0855 0.0308
Portland 0.0713 0.0244
San Francisco 0.1036 0.0370
Seattle 0.0887 0.0353

TABLE III
MEAN (μ), D, AND mae FOR EXPONENTIAL FITTINGS OF DISTANCE

DISTRIBUTION.

City μ D mae

Austin 3.2041 0.1262 0.0545
Berlin 5.0306 0.0661 0.0270
Boston 2.5224 0.1884 0.0476
Brooklyn (NYC) 5.5942 0.2057 0.0383
Houston 6.7299 0.1645 0.0335
Los Angeles 2.7116 0.1079 0.0542
London 5.7011 0.0488 0.0185
Portland 3.8773 0.1186 0.0339
San Francisco 2.5045 0.2732 0.0710
Seattle 2.9365 0.1136 0.0464

In Table III, the D values illustrate that the distributions are

not perfectly exponential. For example, the highest D value in

San Francisco is caused by the high hotspot density along the

northeast waterfront, which cannot be accurately reproduced

by an exponential distribution. Again for all cities, the gener-

ally low mae values indicate that yet a good approximation

can be reached. It is also noteworthy that the exponential fitting

works well for cities of different sizes, although small cities are

more prone to inaccuracies due to geographical peculiarities.

C. Generation of a Hotspot Distribution for a Generic City

To create hotspot distributions with these characteristics, the

coordinates of the city center (ϕc, λc) (latitude/longitude) have

to be determined first. Then, random hotspot locations will

be computed in polar coordinates by generating angle θ and

distance d. As observed above, μ controls the expansion of

the area covered with hotspots. Note that the radius of a circle

around the city center including p% of the hotspot locations,

can be computed as
log(1− p

100 )

−μ (pth percentile).

In order to create a hotspot distribution with the characteris-

tics observed in the section above, inverse transform sampling

can be used. Therefore, for each hotspot location (d, θ), two

random numbers u, v have to be drawn uniformly from the unit

interval [0,1). Then, the hotspot distance d to the city center

can be obtained by d = − log(1−u)
μ . The corresponding hotspot

angle θ can be computed from the second random number v
as θ = 2π · v − π.

Eq. 4 and 5 use the trigonometrical functions to transform

the polar coordinates (d, θ) back to latitude/longitude coordi-

nates (ϕ, λ) (in radians) taking into account the city center



(ϕc, λc) and the spherical Earth with radius rE :

ϕ = arcsin(sinϕc · cos d

rE
+ cosϕc · sin d

rE
· cos θ) (4)

λ = λc + atan2(sin θ · sin d

rE
· cosϕc, cos

d

rE
− sinϕc · sinϕ)

(5)

The limitation of this naive approach is that a circular and

possibly unlimited area will be covered with hotspots. Thus,

additionally an accept-reject method will be applied, accepting

only hotspot locations within the city limits. This can be used

to create a hotspot distribution for a city with a given shape

(or any arbitrary area), however, the rejection sampling leads

to a truncated distribution with different characteristics than

the modeled distribution. To approximate the city limits, the

convex hull of hotspot locations will be used in this work.

We illustrate this effect for the city of San Francisco in

Figure 2. The hotspot distributions have the same number

of hotspot locations and were generated using the fittings

presented in Table III, both with the naive approach, and with a

rejection of hotspots outside the convex hull of the real hotspot

locations (black). It can be seen that the naive approach would

place many hotspots outside the city limits (red locations),

which are rejected. In the following section, we will investigate

the characteristics of the model and the real hotpots in detail.

V. COMPARISON OF MODEL AND HOTSPOT

CHARACTERISTICS

In the model presented above, simple fittings are used to

approximate the real distributions. Additionally, the truncation

introduced by the rejection process has a potential impact

on the characteristics of the generated distribution. Thus, this

section investigates if the spatial characteristics of the real

hotspot locations can be well replicated by the model.

Figure 3a shows the CDF of the distance of the hotspots

to the center for the examples of Berlin (black), London

(brown), and San Francisco (orange). The actual distance

distributions are depicted as solid lines, the dashed lines show

the distributions for the city-truncated exponential model. It

can be seen that the rejection results in a truncated distribution

(cf. Figure 1b), which manifests in smaller distances.

San Francisco hotspots

Exponential

Truncated exponential

Fig. 2. Impact of truncation on generated hotspot distributions.
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Fig. 3. Comparison of hotspot distances for original data and model.

(a) Original hotspot locations. (b) Generated hotspot locations.

Fig. 4. Comparison of density of hotspots (in terms of number of hotspots
in range) for original data and model.

From a practical point of view, the distance from any

point to the closest hotspot is important, as it determines the

coverage, interference, signal strength, etc. Figure 3b shows

the CDF of the distance from a random point within the

city to the closest hotspot for the original distributions (solid)

and mean distance over 100 generated distributions using the

city-truncated exponential model (dashed) for Berlin (black),

London (brown), and San Francisco (orange). A high similarity

of the generated distributions to the real hotspot distributions is

visible, meaning that this characteristics can be well replicated

by the model. Later, we will see that this result will propagate

to the results for coverage.

In the simple model presented above, the independence

of the two dimensions of the polar coordinates is implicitly

included, which might not hold for the real data. Therefore, we

spatially investigate the hotspot density both for the original

hotspot locations in Figure 4a and for a distribution generated

by the model in Figure 4b. Both plots show a grid of San

Francisco, and the colors indicate the numbers of covering

hotspot assuming a WiFi range of 50m 5. The colors represent

the number of hotspots, which can be 0 (blue), 1 (green), or

more than 1 (yellow). It can be observed that there are several

isolated and scattered hotspots (green), but there are also many

hotspots collocated (yellow) in different areas of the cities.

Looking in more detail at the collocated hotspots, it can be

seen that there are clusters of up to 100 collocated hotspots,

for example, in the Marina District in the north. In contrast, the

model generates hotspot locations, which are rather regularly

concentrated around the center. Also the collocated hotspots

can be found near the center implying that the model generates

a regular but unrealistic spatial pattern.

5Please note that the WiFi range is not of importance, as we are mainly
interested in the spatial characteristics in terms of clustering.
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Fig. 5. Clustering with density-based clustering algorithm DBSCAN.

In Figure 5, we take a closer look at the clustering of the

hotspots by applying the density-based clustering algorithm

DBSCAN [19]. Two density values ε = 0.003 and ε = 0.005
are used (a larger ε allowing larger distances between hotspots

within a cluster), and the minimum number of hotspots of a

cluster is set to 10. In Figure 5a, five clusters can be found in

the original hotspot locations. There is a large green cluster

and four small, highly dense, and spatially separated clusters.

When looking at the corresponding plot for the generated

distribution (Figure 5b), also five clusters are visible. Again

there is one large and four small clusters, however, they are

concentrated around the center and are not as dense as the clus-

ters in the original data. If the larger ε is used, the differences

are more striking. The original data has four irregularly shaped

and distributed clusters, whereas the generated distribution has

a large circular cluster around the center, and thus, does not

mimic the clustering of the original hotspot locations.

To quantify the impact of the different clustering, we in-

vestigate the spatial autocorrelation of the number of hotspots

in range in terms of Moran’s I and Geary’s C. Moran’s I
is a measure for global spatial autocorrelation ranging from

−1 (regular dispersion) to 0 (random pattern) to 1 (high

clustering). Geary’s C is more sensitive to local spatial auto-

correlation and ranges from 0 (high clustering) to 1 (random

pattern) to 2 (regular dispersion). Figure 6 shows Moran’s I for

different WiFi ranges in the city of San Francisco. Intuitively,

as the WiFi range increases, the coverage areas become larger

and hotspots are more clustered, and Moran’s I approaches 1.

It can be seen that for all ranges, the I values of the model are

very similar to the original data. Table IV presents results for

Moran’s I and Geary’s C for all cities assuming a WiFi range

of 50m. It can be seen that the spatial autocorrelations of the

generated distributions resemble the original distributions even

better for the other cities.
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TABLE IV
SPATIAL AUTOCORRELATION OF HOTSPOT COVERAGE FOR WIFI RANGE

OF 50M.

City I (orig.) I (model) C (orig.) C (model)

Austin 0.0730 0.0783 0.9295 0.9368
Berlin 0.0201 -0.0012 0.9317 1.0164
Boston 0.0918 0.1432 0.9080 0.8718
Brooklyn (NYC) 0.0333 0.0762 0.9732 0.9389
Houston 0.0042 0.0386 1.0110 0.9766
Los Angeles 0.0180 0.0138 0.9680 1.0013
London 0.1420 0.0511 0.8731 0.9640
Portland 0.0720 0.1574 0.9345 0.8577
San Francisco 0.2073 0.3344 0.8066 0.6804
Seattle 0.1301 0.1741 0.8721 0.8409

To sum up, it is obvious that the spatial patterns of the

original hotspot distribution cannot be recreated in all details

by our simple model. Especially, the clustering of the gener-

ated hotspots differs from the original distributions. However,

some characteristics can be well approximated by the model.

These include the distance to the next hotspot and the spatial

autocorrelation of the hotspot coverage.

VI. APPLICABILITY OF THE MODEL

In this section, three basic scenarios for the applicability

of a WiFi hotspot model are discussed. First, we look at the

area of WiFi coverage within the city. Second, the number of

hotpots in range is investigated. Third, the applicability of the

model to investigate WiFi mesh networks is checked.

A. Coverage Area

The basic scenario for a WiFi hotspot model is to replicate

the WiFi coverage, which lays the foundations for evaluations

of offloading potential, signal strength, and corresponding

applications. The coverage can be computed from the distance

to the closest hotspot, cf. Figure 3b. Therefore, for every point

it has to be checked if it is in range, i.e., if it has a smaller

distance to a hotspot than the WiFi range. Figure 7 depicts

the coverage of the example cities Berlin, London, and San

Francisco depending on the WiFi hotspot radius, i.e., the WiFi

range of each hotspot. Therefore, we generated ten hotspot

distributions each and compared the mean coverage percentage

and 95% confidence intervals to the original coverage. For all

depicted WiFi ranges up to 200m, a high similarity between

the real hotspot distribution and the model is visible, which is

a consequence of the high similarity in Figure 3b (distance of

arbitrary point to closest hotspot). Also increasing WiFi ranges

to unrealistic ones up to 1000m would not cause the model to
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Fig. 8. Comparison of number of hotspots in range.

diverge more from the real data. These results also hold for

the other investigated cities. Thus, accurate coverage data can

be obtained although the simple model is used. This can be

used to investigate the coverage of future cities, for example,

to investigate how well WiFi offloading solutions will perform.

B. Hotspots in Range

The next application of the model is to investigate how

many hotspots are in range. This number is the basis for

investigations of handovers, interference, bandwidth resource

sharing, and corresponding applications. We can compute the

number of hotspots in range for a given WiFi radius, cf. the

results presented in Figure 4 for a range of 50m. Figure 8a

shows the average number of hotspots in range and 95%

confidence intervals over 10 runs in the three example cities for

different WiFi radii ranging up to 200m. A very high accuracy

for the average number can be observed between the model

and the real data. However, when investigating the standard

deviation of the number of hotspots in range in Figure 8b,

large differences can be observed for San Francisco. The

mean standard deviation of the model is much smaller than

than the standard deviation of the original data. This does not

come as a surprise, because the differences in the clustering

of the hotspots were already visible in Figure 5. Thus, for

modeling the number of hotspots in range, the consequences

are apparent. It can be seen that this application of the model

suffers from its incapability to replicate the spatial structure

of hotspots in terms of clustering.

C. WiFi Mesh Networks

The last application that is considered in this work are

WiFi mesh networks. They can rely on direct communication

among the WiFi hotspots for privacy reasons (e.g., Freifunk)

or to save or aggregate backhaul traffic volume (e.g., BeWiFi).

Therefore, we represent the mesh as a graph, in which each

hotspot is a node, and two hotspots are connected by an edge

if they can communicate, i.e., if they are in WiFi range. The

resulting graph representation can then be analyzed by graph

metrics. Figure 9a shows a bar plot of the number of connected

components in the graphs of the original hotspot locations

of San Francisco (blue) and the model (yellow) for different

WiFi ranges. Obviously, the number of connected components

decreases when the WiFi range is increased. Additionally, it

can be seen that the model accounts for higher numbers of
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Fig. 9. Metrics for WiFi mesh network graph representation of San Francisco.

connected components for small WiFi ranges. In Figure 9b, we

show the CDF of the betweenness centrality in San Francisco

assuming a WiFi range of 50m. A high betweenness centrality

indicates a high importance of the hotspot for the mesh

network as many connections would be routed through this

node. It can be seen that both for the original data and the

model, many nodes have a betweenness centrality of 0 as they

are isolated. However, this number is much higher in the model

than in the real distribution. Moreover, it can be seen that

the CDF of the model only slowly increases compared to the

original data. These are also effects of the different clustering

of the original data and the model. The highly centralized

hotspot distribution of the model (cf. Figure 5) results in a few

highly important nodes. In contrast, the original data is more

locally centralized, which causes less isolated nodes and more

(locally) important nodes with a high betweenness centrality.

VII. CONCLUSION

This work investigated the characteristics of the distribution

of WiFi hotspot locations in cities. A simple model could be

derived, which can be used to create spatial distributions of

WiFi hotspots in arbitrary cities. We investigated the character-

istics of the generated hotspot locations in detail and compared

them to the original data.

It became evident that the spatial patterns of the real

hotspot locations cannot be recreated in all details, which

leads to inaccuracies with respect to applications considering

the collocation or clustering of hotspots, such as handovers,

interference, bandwidth sharing, or mesh networks. Also a

higher accuracy of fitting, e.g., with Gamma distribution [7],

cannot overcome this issue due to the simple assumption that

distance and angle of the hotspots are independent.

Nevertheless, we found that for applications that do not

require an accurate spatial collocation of the hotspots, but

use other characteristics like distance to the closest hotspot,

a high accuracy can be achieved by the simple model. For

example, offloading potential, coverage, or signal strength in

a city could be accurately replicated by the model. Thus,

for such applications, the model can be used to generate

hotspot distributions to evaluate existing, hypothetical, or

future scenarios, for which a real distribution is not available.

This can help to design scalable mechanisms, which rely on

WiFi infrastructure, and to evaluate their performance for a

multitude of different scenarios.
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