
Adaptive Traffic Monitoring for
Software Dataplanes

Gioacchino Tangari, Marinos Charalambides, Daphne Tuncer, George Pavlou
Department of Electronic and Electrical Engineering, University College London, UK

Abstract—Network operators have recently been developing
multi-Gbps traffic monitoring tools that execute on commodity
hardware and are part of the packet-processing pipelines realizing
software dataplanes. These solutions allow sophisticated tasks to
be performed on a per-packet basis, without relying on sampling
or passive trace analysis, by leveraging the processing power
available on servers. Although advances in packet capture have
enabled intercepting packets from network cards at high rates,
bottlenecks can still arise in the monitoring process as a result
of concurrent access to shared processor resources, variations
of the traffic skew, and unbalanced packet-rate spikes. In this
paper we present an adaptive traffic monitoring approach that
copes with emerging bottlenecks by timely detecting changes in
the operational conditions and reconfiguring monitoring-related
operations for subsets of traffic flows. Our solution performs
responsive adaptations at the time scale of milliseconds and does
not require a significant amount of resources. To demonstrate
the capabilities of our approach we implemented it as part of a
generic packet-processing pipeline and show that lossless traffic
monitoring can be achieved for a wide range of conditions.

I. INTRODUCTION

Recent advances in network management allow for fre-
quent resource reconfigurations in response to a variety of
events concerning network utilization, security, and changing
user demand. This capability poses strict requirements on
traffic monitoring, which cannot be satified by existing tools.
Packet sampling, for example, has limitations in capturing
transient events [1], OpenFlow counters can only report flow-
aggregate information due to well-known scalability issues
[2][3], while SNMP provides restricted visibility given its
coarse report granularity and frequency.

To facilitate a detailed view of network-wide events, the
research community has been recently investigating solutions
where sophisticated measurement tasks are executed on a per-
packet basis within the packet-processing pipeline, without
relying on packet mirroring and passive trace analysis, thus
enabling timely reports of fine granularity [4]. The develop-
ment of such solutions on hardware switches, using sketch-
based measurements [5][6] and novel languages like P4 [7],
are promising but still at the proof-of-concept stage. At the
same time, network operators have embraced the deployment
of fine-grained traffic monitoring on commodity hardware,
incorporated in the software packet-processing pipelines, also
known as software dataplanes. This allows for enhanced
flexibility and low cost since traffic monitoring can exploit
the processing power of servers to execute complex per-packet
measurements.

Achieving lossless packet processing when performing
software-based traffic monitoring is a challenging task. On

one hand it needs to cope with increasing data rates supported
by network cards (10+ Gbps), which squeeze the admissible
packet processing times to a few tens of nanoseconds. On
the other hand it should satisfy the operator’s requirement of
assigning limited resources to the monitoring process (e.g.,
1 processor core per 10 Gbps [4]) while performing ad-
vanced measurement tasks on a per-packet basis. Although
recent packet capture engines [9][8] and technologies such as
Receive-Side Scaling (RSS) [10] cope well with packet capture
at wire-speed, short-lived bottlenecks can still arise in the
monitoring process. While packet rate spikes affecting one or
a subset of cores can impose unsustainable workload burdens,
dynamic changes in traffic skew and concurrent access to
shared server resources can inflate the per-packet latency.

A possible approach to limit the risk of packet loss is to
allocate more cores to traffic monitoring. An alternative is
to restrict the available measurement-related operations to a
minimal set such as byte and packet count. These solutions
however result to inefficient use of the resources. In this paper
we address these limitations by proposing a novel adaptive
traffic monitoring solution for software dataplanes, where mea-
surement operations are reconfigured in a responsive manner in
the face of emerging bottlenecks to reduce packet processing
times. Compared to state-of-the-art platforms that use multi-
core architectures [18] [19], our work takes a new step towards
lossless packet processing by investigating how the operations
of a monitoring process can be adapted at run time in order to
meet dynamic resource availability at individual cores. More
specifically, our solution relies on the frequent estimation of
the operating conditions coupled with extensive offline analysis
of the different per-packet latencies involved in the monitoring
process. To avoid the consumption of additional resources,
we designed the monitoring adaptations to operate together
with the packet-processing pipeline on the same core. This
is achieved using procedures that run to completion in short
times, so as to avoid starvation in the packet capture buffers,
and generate a small overhead in terms of CPU-time.

We investigate the benefits of the proposed adaptive mon-
itoring approach by implementing it based on a generic and
widely-used [4][11] traffic monitoring pipeline relying on a
hash table. The results of the experiments demonstrate that our
solution can significantly reduce the risk of packet loss under
various events such as multi-Gbps traffic rate spikes, increasing
processor concurrency and changes in traffic skew. Moreover,
we show that monitoring adaptations can be performed in
short time-scales (10 ms), while incurring a small CPU-time
overhead (≈1%).

The remainder of this paper is as follows. We provide
background information on software-based traffic monitoring

978-3-901882-98-2 c© 2017 IFIP

in Sec.II. We then describe the proposed approach in Sec.III-
V and evaluate its performance in Sec.VI. Related work
is discussed in Sec.VII and final remarks are presented in
Sec.VIII.

II. BACKGROUND

A number of research approaches have recently embraced
the use of commodity hardware to realize a wide range of
network functions, as this entails improved flexibility and
reduced costs. Traffic monitoring, in particular, is a good
candidate for such an implementation, as it can benefit from the
processing capability of powerful servers in order to perform
complex measurement tasks at the granularity of a single
packet, without the need to employ sampling techniques. As
such, network operators have started developing monitoring
solutions that are part of the software packet processing
pipeline, e.g., in a software switch.

Compared to monitoring operations in hardware switches,
where memory availability is the main shortage, traffic mea-
surements on commodity hardware is constrained by the
CPU-time and the working set, i.e., the data most frequently
accessed for the measurements [11]. This clearly reflects on
the design choices for such monitoring tools. Instead of using
more complex measurement techniques like heap-based [12]
solutions and sketches [6][13], which reduce the total memory
usage, traffic monitoring for software dataplanes can just rely
on simple hash tables for storing the traffic flow statistics, as
they guarantee the best performance in terms of CPU-time
and working set [11]. Hence, the monitoring process consists
in hashing the header of each packet, e.g., on the 5-tuple, and
storing a set of statistics in the hash table.

To satisfy the operator’s requirements, traffic monitoring
on commodity hardware has to combine three main features:
handling high traffic rates at a limited cost (e.g., 1 core for 10
Gbps [4]), achieving zero packet loss and supporting diverse,
sophisticated forms of analysis. However, to collectively meet
these requirements is not a trivial task. In order to sustain
high throughputs (10+ Gbps), the monitoring process should
ensure total packet processing times in the order of few tens of
nanoseconds, e.g., no more than 70 ns for 10 Gbps of 64-byte
packets. Current state-of-the-art practices, such as RSS and
capture engines (frameworks like DPDK and Netmap) provide
essential support by ensuring packet capture at wire-speed.
While these techniques can get packets from the network card
to the monitoring process at a high rate, they only solve half
the challenge since monitoring bottlenecks can emerge after
packets have been captured. These are described below.

Traffic rate variations High-speed packet processing
servers use multiple cores and RSS to deal with multi-Gbps
traffic. However, these setups are still prone to performance
degradation. If the amount of resources devoted to monitoring
is limited (e.g., in small-scale deployments), a single core
can still face unsustainable workloads at high traffic rates. In
addition several events such as fast variation of user demand
[15], sub-second congestion [16], or DoS attacks [4] can result
to traffic rate spikes affecting one or more cores, even for
deployments with multi-queue packet capture (such as RSS).

Shared resource contention A monitoring process usually
coexists with other tasks on the same machine, often on the
same processor, including other monitoring processes running
on different cores. Resulting hardware resource contention [14]

�

��

���

���

���

���

� ��� ��� ��� ��� ���

��
��
��
���

�
��
��

������ ���� ������ �

Fig. 1: Packet processing time vs. traffic skew

involves caches, the memory controller and buses. Among
these, the L3 cache, shared by multiple cores in modern
platforms, accounts for most of the performance degradation
in traffic monitoring, since measurement tasks are particularly
aggressive in terms of L3 references per second. Assuming that
on a n core processor the monitoring process executes on core
1, variation in data access patterns of other processes running
on cores 2 to n can affect the monitoring time per packet due
to cache entry replacements, resulting to a higher miss ratio.

Change of traffic skew The skewness of the traffic
distribution plays a key role at run time as it defines the
monitoring working set. For traffic with lower skew a higher
fraction of packets cannot be served from the processor caches,
resulting in higher packet processing latencies. As an example,
we measure the packet completion time of a simple monitoring
process that updates packet and byte counts using packet traces
with different skewness.1 As shown in Fig.1, reductions of the
skew factor α can double the per-packet latency.

III. ADAPTIVE MONITORING

Bottlenecks in the monitoring process, resulting from the
aforementioned conditions, translate into longer queues in the
packet capture stack, which leads to higher chances of packet
loss. This is an important problem given also the reduced size
of RSS queues (no more than 4K packets) and packet I/O
rings [17], enough to absorb only less than one millisecond
of traffic at 10 Gbps. To ensure resilience to potential bot-
tlenecks and achieve lossless packet-processing, the operator
can only count on resource overprovisioning, or restrict the
measurement-related operations to a minimal set, e.g., packet
and byte counting only. However, the former approach violates
the requirement of allocating a limited amount of resources
for monitoring and the latter penalizes the granularity and
expressivity of monitoring reports.

To address these issues we propose a novel adaptive
monitoring approach, with which measurement operations are
reconfigured at run time to cope with emerging conditions.
Our solution is based on two main tasks: (i) timely detection
of changes in operating conditions and estimation of available
time for measurements, and (ii) swift response to emerging
bottlenecks by reconfiguring the set of monitoring operations
to obtain light-weight packet processing in cases where adverse
conditions reduce the available time. Compared to existing
approaches that use multi-core packet scheduling [18][19], our
solution tackles the challenge of lossless traffic analysis from
a different angle, by leveraging adaptations in the monitoring
process itself, i.e., at the level of a single core.

We illustrate the main concept of the approach through a
simple example. Consider a monitoring application for TCP
traffic supporting two monitoring setups. One (light) only

1We use a Zipf distribution and 105 flows

Flow
5-tuple

Monitoring
State

Statistics
Buffer

…
...

…
...

…
...

Online
Estimation

Offline
Profiling

Adaptation
Routine

Run time operating
conditions

New monitoring
configuration

Packets

Hashing

Monitoring
Pipeline

Monitoring
Adaptation

Fig. 2: Overview of the proposed approach

involves byte and packet counting for each traffic flow and
consumes a limited time, while the other (heavy) analyzes TCP
flows in depth, thus requiring many more CPU cycles for each
incoming packet. The second setup is initially selected for all
flows, which allows detailed measurements, without incurring
packet loss given the current conditions. At a certain point in
time, a bottleneck is created due to the conditions described in
Section II, and the time for monitoring now exceeds the current
availability. With existing systems this brings considerable
packet loss as soon as the input queue is saturated. Instead,
our solution re-estimates the amount of time available for
monitoring at run time, and subsequently shifts enough flows
from the heavy to the light setup to resolve the bottleneck.

Approach overview We model the traffic monitoring pro-
cess as a simple packet-processing pipeline based on a single
hash table, where incoming packets are hashed on their 5-
tuple to match a corresponding flow-entry. Flow-entries contain
an identifier called the Monitoring State, that indicates which
measurement operations should be performed for each packet
of a flow. Each operation entails a different cost in terms of
processing time. At run time, flow-entries can shift between
the available Monitoring States.

Monitoring adaptation operates together with the pipeline
as part of the same process to avoid usage of additional
resources (i.e., more cores) as well as synchronization over-
heads. As shown in Fig.2, our solution relies on a three-
phase procedure. The first one, Offline Profiling, runs at the
initialization of the monitoring pipeline, before the start of
an incoming packet stream. Its role is to profile the various
processing times involved in the monitoring pipeline. The
other two, namely Online Estimation and Adaptation Routine,
execute at run time on a small time-window basis.

In each time-window, the Online Estimation procedure ex-
tracts the current run time conditions of the monitoring pipeline
using limited additional measurements and a few key results
from the Offline Profiling phase. At the end of each time-
window, based on the extracted knowledge an estimate of the
available monitoring time per-packet is generated, which is set
as the target for the next epoch. The Adaptation Routine takes
this value as input and, if the actual monitoring configuration
exceeds the target time, it produces a new configuration of flow
Monitoring States that achieves an adequate time reduction.

Challenges Three main challenges are addressed for the
design of this solution. Achieving a reasonable overhead at
run time is the first challenge. The Online Estimation and the
Adaptation Routine time-share the CPU with packet processing
since they operate on the same core. As such, their consump-
tion of time can directly affect the monitoring pipeline by
decreasing the sustainable packet-rate and incurring additional
loss. For this reason, we design all operations involved in the

monitoring adaptation so that (i) they generate limited CPU-
time overhead, and (ii) they all run to completion in short times
(no more than 10µs) to avoid starvation in the packet capture
queue. The second challenge is how to accurately estimate the
operational conditions, which we address by using tools that
provide high level of precision and are light-weight enough to
be deployed at run time. The last challenge is about achieving
reactive adaptations, for which we design each component of
our solution to work with time-windows as small as 10ms,
still with a reasonable overhead.

IV. OFFLINE AND ONLINE TIME ESTIMATIONS

To enable monitoring reconfigurations, the proposed ap-
proach is first responsible for detecting on a short time-window
basis changes in the operating conditions and estimating the
amount of time available to perform monitoring operations for
each packet. Based on this estimation it then adjusts the set of
monitoring operations for subsets of the flow-table entries to
ensure that all packets can be processed on time.

A. Expected Time per Packet

The total expected time associated with each packet in the
monitoring pipeline depends on whether the packet belongs to
a new flow, for which no entries exist in the flow-table, or
to an existing flow. In the first case, this represents the total
processing time for a new-flow packet (including the new flow-
entry insertion), denoted here as Ti. In the second case, the
time can be decomposed in two main components: the retrieval
time Tr, i.e., the time for retrieving the measurement data for
the packet, including hashing and accessing the matching flow-
table entry, and the processing time Tp, i.e., the time needed
to perform, after the necessary data has been retrieved, the
operations in the current Monitoring State of the matching
flow-entry. The total expected packet time Tpkt can then be
estimated based on the following equation:

Tpkt = (1− λf)(Tr + Tp) + λfTi (1)

where λf represents the ratio of packets belonging to new
flows over the total number of packets processed in the current
time-window. Based on the findings reported in [14][11],
which show that the probability of retrieving data from L3
processor cache is by far the dominant factor affecting the
retrieval time, Tr can be further decomposed as:

Tr = TH
r · P + TM

r · (1− P) (2)

where TH
r and TM

r represent the retrieval time in case the
data is accessed from the processor cache and from memory,
respectively, P is the probability of cache hit (i.e., the matching
flow-table entry is retrieved from the cache), and (1−P) is the
probability of cache miss (i.e., access to memory). Combining
equations (1) and (2), the time per packet Tpkt is given by:

Tpkt = (1−λf)[TH
r ·P +TM

r · (1−P)+Tp]+λfTi (3)

As observed from equation (3), Tpkt can be obtained based
on the estimation of six variable values. To keep the run
time adaptation cost as low as possible, the best approach to
determine these values is to perform the estimation offline, for
example based on benchmarking. While this works well for
Tp, TH

r , TM
r and Ti, it cannot apply to P and λf given that

both variables strongly depend on the run time conditions. In
this case, an online procedure is required.

Operation 5th Quantile
Time (ns)

95th Quantile
Time (ns) Std dev.

Timing 19 28 2.73
Tp: Pkt & Byte counting 22 31 2.78
Tp: Tcp diagnosis 83 98 4.01
TH
r 80 128 8.87

TM
r 149 272 39.20

TABLE I: Statistics for Tr and Tp datasets

B. Offline Profiling

The objective of the Offline Profiling phase is to character-
ize the resource utilization of traffic monitoring by analyzing
the execution times Tp, TH

r , TM
r and Ti through a set

of benchmarks. While resource consumption can be easily
derived online in the case of adaptive monitoring solutions
dedicated to hardware switches (each monitored flow strictly
maps to a single flow-entry in TCAM), it is a much harder
task to achieve in software deployments, where the focus is on
the CPU time rather than the total memory usage. Not only
do the processing times depend on the server hardware (e.g.,
clock rate), they also vary based on what monitoring operation
must be performed on a packet. Offline Profiling overcomes
this limitation by building the knowledge with which resource
utilization can be tracked at run time with a limited cost.

Estimating the processing and retrieval times To de-
termine the value of the processing and retrieval times, we
leverage the observation that in practice the processing time Tp
is much more predictable than the retrieval times TH

r and TM
r

2. Intuitively, the processing time for each Monitoring State
is proportional to the number of boolean/arithmetic operations
executed in that state. In contrast, TH

r and TM
r , which are

dominated by the flow-entry retrieval time, can be affected
by possible hash collisions, the use of different processor
caches in the available hierarchy, or unwanted episodes regard-
ing memory allocation, such as TLB (Translation Lookaside
Buffer) misses, whose impact also depends on the server
hardware and kernel configuration (e.g., memory page size).

To illustrate these effects, Table I shows the statistics of
the distribution of the execution times for data retrieval (Tr)
as well as various monitoring operations (Tp).3 A timing
operation is also included, which measures the duration of the
different operations using a high definition timer. As observed,
while TH

r and TM
r exhibit high statistical dispersion, the

values of Tp for the two considered Monitoring States are
characterized by low standard deviation that can partly be
attributed to the bias introduced by the timer. Based on these
results, we develop two different strategies to estimate the
values of Tp and TH

r /TM
r , respectively.

Processing time estimation. Given the predictability of Tp,
the processing time required for each Monitoring State si (T si

p)
can be estimated by collecting samples of T si

p over a large
packet trace and setting the value of T si

p to the sample mean.

Retrieval time estimation. Due to the sensitivity of the
retrieval times, we propose a different approach based on
statistical model fitting to estimate the value of TH

r and TM
r .

The proposed approach works in two steps as described below.
The objective of the first step is to collect two datasets of

time samples, one for TH
r and one for TM

r . When collecting
the relevant datasets, it is essential to ensure that flow entries

2Extensive analysis performed during this study confirmed this behavior.
3We used a 2.7 GHz CPU with 3MB L3 cache

Normal
(baseline)

Weibull
(BIC to baseline)

Gumbel
(BIC to baseline)

TH
r 0% +1.86% -3%

TM
r 0% +8.1% -7%

TABLE II: Model selection for TH
r and TM

r

reside in either the fast processor caches (for TH
r) or in

memory (for TM
r). This can be achieved by modulating the

size of the monitoring working set used by the input packet
stream (i.e., number of unique flows in each trace). Given the
L3 processor cache size S, with NH and NM denoting the
number of different flows in each trace (i.e., for TH

r and TM
r ,

repectively), and the size of the flow-table entry F , the size
of the monitoring working set should be so that the following
conditions are satisfied: NH .S < L3 (for TH

r to force cache
hit) and NM .S � L3 (for TM

r to ensure cache miss).
The second step consists in selecting, using a standard

fitting strategy, the most appropriate statistical model to rep-
resent the distribution of each variable. Although different
distributions can be taken into account, we simplify the process
and restrict our choice to three representative cases capturing
well various degrees of sample asymmetry. In particular, we
select the Normal distribution as the baseline, as well as
two distributions characterized by a heavy tail, namely the
Weibull and the Gumbel distributions. We use the Bayesian
Information Criterion (BIC) for the model selection criterion
as it shows more consistent results compared to the maximum
likelihood estimation for very large sample sizes. It is based
on −2 log(likelihood), so the lower its value the better the fit.

Table II shows the results of the model fitting strategy based
on the considered distributions for the setup of Table I. As
observed, the best fit is obtained with the Gumbel model for
both TH

r and TM
r .

Estimating the flow-insertion time The objective of this
procedure is to extract the total execution time for packets of
new flows Ti. The estimate of Ti is taken as the average of all
Ti values collected from a large packet trace, (e.g., approxi-
mately 210ns for the setup in Table I) under the assumption
that new-flow packets form a small subset of the total traffic
(e.g., no more than 10%). In cases like SYN attacks, where
Ti becomes dominant, existing resilience mechanisms [4], that
are out of the scope of this paper, could be used in conjunction
with our solution.

C. Online Estimation

The objective of the Online Estimation phase is to deter-
mine at each time-window the value of λf and P , as well as
the packet arrival rate at the capture engine queue λpkt. The
result is an estimate of the available per-packet time for the
next time-window, which is based on the run time conditions
of traffic monitoring and the value of Tp, Tr and Ti computed
during the Offline Profiling phase.

To estimate the value of λf , we use a simple strategy in-
curring negligible overhead that consists in counting the flow-
table insertions and dividing this value by the total number
of processed packets during each time window. To derive the
packet capture rate λpkt, we periodically update the count of
packets that have been written in the queue, e.g., each time a
new packet burst is loaded by the packet acquisition library.
In DPDK, for instance, this information can be retrieved using
the counts in the rte eth stats and rte ring API.

�

���

�

���

�

��� ��� ���

��
���

��
��
�
��
��
��
�
�

��� ������� ��� ����������� ���

���� �����
���� �����

Fig. 3: Precision of P estimation

Several methods can be considered for estimating the value
of the variable P . One method is to use an analytical model to
predict the cache miss rate as proposed in [20]. However, this
method does not apply well to our solution as (i) it requires
that the temporal behavior of the application, in terms of reuse
of addresses, has a single profile, which does not apply in
our case; and (ii) it does not consider the effect of co-runner
processes on the cache hit ratio. Other approaches involving
online Miss Rate Curve generation generally incur substantial
overheads (e.g., an additional 230 ms is reported in [21]), while
faster techniques [22] rely on cache-related hardware counters
that are restricted in current hardware [23].

In this paper, we propose a simpler approach which is based
on Tr sampling and uses the models of TH

r and TM
r obtained

from the Offline Profiling phase. In each time-window, the
proposed approach periodically samples the flow retrieval time
with a high precision timer. Denoting K as the number of
samples to collect, the sample period can be approximated
by λpkt/K. For each sample tir, the approach first computes
Prob(Tr > tir|hit), i.e., the probability for the retrieval time
to be greater than tir assuming that the retrieval was from
a hit, and Prob(Tr ≤ tir|miss), i.e., the probability for the
retrieval time to be lower than tir under a miss. Given the
model of TH

r and TM
r computed through profiling, the value

of Prob(Tr > tir|hit) is obtained by 1 − CDFTH
r
(tir) and

Prob(Tr ≤ tir|miss) is obtained by CDFTM
r
(tir). Let denote

as c the vector of results so that all elements c(i) are equal to:

c(i) =

{
1 1− CDFTH

r
(tir) ≥ CDFTM

r
(tir)

0 otherwise

The value of P is approximated as the percentage of non-zero
values in the vector c.

To illustrate the performance of the proposed approach
in terms of estimation accuracy, we use it to classify 103

different ground-truth traces (for which P is known - Ptruth)
that we obtained by modulating the traffic skew as explained
in Sec.II.3 The estimation error is measured as the difference
in percentage between the value of Ptruth and the value of P
computed by the algorithm. As depicted in Fig.3, our method
achieves very high accuracy on average. We also compare its
performance to the one obtained using a naive classification
where each c(i) is set to 1 or 0 by simply using the distance
of each tir from the sample mean of TM

r and TH
r . In this case,

for K = 103 the error is around 5%, whereas with our method
it is below 1%.

Available processing time Given the values of λf , λpkt
and P , and the variables Tp, TH

r , TM
r and Ti, the Online

Estimation procedure finally extracts the average processing
time for the next time-window T target

p by setting:

(1−λf)[TH
r P +TM

r (1−P)+T target
p]+λfTi = 1/λpkt (4)

V. ADAPTATION ROUTINE

If the current monitoring configuration exceeds the target
time T target

p from equation (4), the task of the Adaptation
Routine is to decide which monitoring operations should be
avoided next, and for which flows.

There are various ways in which this functionality can
be realized. A straw-man approach would solve a convex
optimization that re-assigns an amount of CPU-time to each
monitoring task, i.e., to each flow-entry, so that a specific
accuracy objective is maximized. This approach is not viable
for two reasons. First, it would require a well defined resource-
accuracy relation, which cannot be easily characterized as
it jointly involves the monitoring process logic (transitions
between Monitoring States) and the traffic characteristics.
Second, the execution time of the optimization would likely
incur additional packet loss as the monitoring pipeline needs to
stop until a new configuration is generated. Another approach
would be to take many smaller scale decisions, at the arrival of
each new flow or packet, based on the current resource head-
room from the initial T target

p . However, this can introduce
excessive run time overhead and can also result to unfairness
between the first and last flows/packets within a window.

To overcome these limitations, instead of working with in-
dividual 5-tuples or packets, the proposed Adaptation Routine
operates at the granularity of Monitoring States, as each one
maps to a different subset of the flow-table. Once invoked at
the end of a time-window, the developed algorithm retrieves
the count of packets processed at each Monitoring State si in
the last time-window. This provides an indication of the current
share of each si. Portions of the flow-table are subsequently
re-allocated to more light-weight states such that T target

p is
achieved. This adaptation can be performed with two different
methods, based on how transitions between Monitoring States
take place in the monitoring pipeline.

Method 1: Stateful dataplane We initially consider a
scenario where transitions are decided within the packet-
processing pipeline [24]. Each Monitoring State incorporates
the necessary logic in its code for transitions to other states
once specific conditions on flow-entry statistics are met. An
example is depicted in Fig.4, where for each new packet a
flow-entry can progress to a more advanced state involving
more operations, stay in the current state, or roll-back to the
previous one, which is more light-weight. Such a scheme
is representative of complex monitoring applications where
different events, such as network congestion and security
threats, trigger ad-hoc monitoring configurations.

In this method the adaptation operates using an iterative
procedure. First, it calculates the current average processing
time T 0 = (

∑k
i=1 niT

si
p)/

∑k
i=1 ni, where ni is the number

of packets in state si during the last time-window. Then, the
adaptation starts re-allocating flow-entries to more light-weight
Monitoring States, for which two strategies can be adopted.

The first strategy (Greedy) computes at each iteration j
the expected average time if all flows were forced to their
previous Monitoring State. If this value, T j , exceeds T target

p ,
a new iteration is executed except if all states are empty apart
from the initial one (s1 in Fig.4). If not, the procedure takes
the monitoring configuration for T j−1 and forces a portion x
of the flow-table to an additional step-back in the Monitoring

s1

s2

s3 ...

Increasing processing
time Tp

s

Fig. 4: Monitoring states in a stateful dataplane

State set, where x = (T j−1−T target
p)/(T j−1−T j). When the

monitoring pipeline restarts, the new configuration is applied
using the hash of the first new packet for each flow-entry. By
comparing the hash with x (for example, a modulo operation
can be used), it decides to update the flow Monitoring State
to j or j − 1 steps back.

The second strategy (Low-States-First – LSF) operates in
a more selective fashion. Given the initial monitoring config-
uration, it considers the flow-entries in the most light-weight
Monitoring State excluding the initial/default one (s2 in Fig.4)
and it moves them by a step-back (to s1). It then updates the
average processing time. If the new time estimation is below
T target
p it terminates, otherwise in the next iteration the same

is applied to the flow-entries in the following Monitoring State,
i.e. flow-entries in s3 are moved to s2, and so on. After the
same action has been taken for all flow-entries, the following
iterations move flow-entries by an additional step-back, starting
again from the ones in the most light-weight Monitoring States.
For instance, assume that the procedure terminates at iteration
j and that the last processed flow-entries have been the ones
in Monitoring State h. Then, the last operation is to force
a portion x = (T j−1 − T target

p)/(T j−1 − T j) of the flow-
entries in Monitoring State h to an additional step-back in the
Monitoring States set.

As in the case of the Greedy strategy, the final configuration
is applied using the first new packet of each flow-entry. The
only difference is that, before comparing the packet hash
with x, a preliminary check of the current Monitoring State
is needed. Compared to Greedy, this strategy introduces a
bias towards the more advanced Monitoring States, as for
these states more detailed information on emerging episodes
is collected, e.g., for root cause analysis.

Method 2: Control-plane based monitoring We con-
sider now a scenario where transitions between Monitoring
States are explicitly driven by an external controller, which
is representative of proposals such as [4]. The controller
periodically issues monitoring queries, each triggering small
sets of monitoring operations for a specific subset of flows, for
example a specific IP source subnet. Therefore, at each time
it is the set of queries affecting a flow-entry that determines
its Monitoring State.

Compared to the previous scenario, this case poses two new
requirements. First, in this case the controller can explicitly
indicate the priority of monitoring tasks by providing a ranking
of queries, which should be respected by the adaptation. In
addition, the adaptation has to preserve query integrity, i.e., it
should reconfigure the flow Monitoring States such that each
query is either discarded or satisfied with all required flows’
statistics. Violating this constraint can lead to inconsistency of
information at the controller.

As in Method 1, the adaptation operates iteratively by
forcing flows to less advanced Monitoring States until the
target processing time is met. However, given the additional

requirements, this is achieved by deactivating the current
controller queries, starting from the lowest ones in the ranking.
At run time the new monitoring configuration is applied, again,
using the first new packets matching each flow-entry, but this
time a check of what query is still active or not is needed.

VI. EVALUATION

We implemented our solution using the C programming
language as part of a generic monitoring pipeline based on a
single flow-table. A hash table was used to realize the flow-
table where collisions are handled by chaining – a table size
of 220 entries was chosen to limit the risk of hash collisions.
We also set the flow-entry size to 64 bytes such that it can fit
within a single cache line. To generate the input packet streams
to the monitoring pipeline, we take the following approach.
Since the focus is on the bottlenecks arising in the monitoring
process, for each experiment we build a packet trace and pre-
load it in memory (at initialization), and then fetch packets
with small bursts at run time so as to isolate the monitoring
pipeline from the packet capture stack. For each experiment we
pre-load 1 second of traffic, which approximately translates to
1GB allocated memory for 10Gbps of traffic. The packet trace
we use only includes TCP flows and is derived from recently
published results on flow statistics in data centers [25].

We conducted the evaluation in two main steps. First, we
analyze the performance of adaptive traffic monitoring in terms
of packet loss risk and adaptation responsiveness. Then, we
extensively evaluate the performance of monitoring adaptations
focusing on their completion time and the associated run time
overhead. The experiments have been conducted on an Intel
i7-4790 CPU with 4 physical cores at 3.6 GHz and shared L3
cache of 8 MB.

A. Lossless Traffic Monitoring

We compare our approach (Adapt) with a more traditional
setup where monitoring operations are not dynamically recon-
figured (No-Adapt). We focus on two metrics that represent the
risk of packet loss as a result of bottlenecks in the monitoring
process. The first is packet balance, which indicates whether
the system can process the number of packets in the trace
during each time-window – a negative value signifies that the
system cannot cope with the packet rate. The second metric is
the expected packet loss, which quantifies the loss given the
size of the input buffer. We compute this using a queue model
for two buffer sizes: 4096 packets (saturation of a RSS queue)
and 1 MB (maximum size range for circular buffers in packet
acquisition libraries like DPDK and Netmap) [17].

We define 3 possible Monitoring States: the first (T s1
p ≈

1ns) only updates the packet count for the flow-entry, the
second (T s2

p ≈ 30ns) computes the flow rate and checks if a
packet is part of a burst, and the third (T s3

p ≈ 60ns) diagnoses
TCP flows in depth. In the initial configuration 1/3 of the
flows is assigned to each of the Monitoring States at each
time-window. Also, the monitoring adaptation time-window
is set to 10ms. To study the performance of our solution
under the occurrence of bottlenecks we perform three types
of experiments, which reproduce the three main conditions
described in Sec.II.

������
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��
��
��
�

������ �� ������

�����
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ������

����������
�����������

�� ����������
�� �����������

(a)

������
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��
��
��
�

������ �� ������

�����
�����
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ������

����������
�����������

�� ����������
�� �����������

(b)

������
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��
��
��
�

������ �� ������

�����
�����
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ������

����������
�����������

�� ����������
�� �����������

(c)

������
������
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��
��
��
� ������ �� ������

�����
�����
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ������

����������
�����������

�� ����������
�� �����������

(d)

������
������
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��
��
��
� ������ �� ������

�����
�����
�����
�����
�����
�����

� ��� ��� ��� ��� ��� ��� ��� ��� ��� �

��
��
��
��

��
��

���� ������

����������
�����������

�� ����������
�� �����������

(e)

Fig. 5: Packet balance and expected packet loss

Traffic rate variations In these experiments we test our
solution against multi-Mpps variations of the input rate, which
are realized by tuning the rate of exponential packet inter-
arrivals in the trace. We increase the rate linearly from 0 to 14.8
Mpps (10 Gbps of small packets) during a 1 second interval.
As shown in Fig.5a, our solution achieves a significantly higher
packet-rate compared to the non-adaptive approach (by 2
Gbps). In the No-Adapt case losses are observed after t ≈ 0.8s,
as soon as the rate becomes unsustainable, and a larger buffer
(1MB) can only postpone losses by a few tens of milliseconds.
To avoid the loss a second core would need to be allocated
for monitoring the same input packet stream. In contrast, the
two adaptations performed by our approach at t ≈ 0.8s and
t ≈ 0.95s allow to sustain a maximum rate of 14.8 Mpps on
a single core without any packet loss.

In addition, we evaluate the responsiveness of monitoring
adaptations in the case of short rate spikes. To emulate the
spikes, we generate packet-rate oscillation between 0 and
14.8 Mpps based on the function sin(t/T), where T is the
oscillation period. Two representative cases, T = 250ms and
T = 100ms are depicted in Fig.5b and 5c, respectively. For
T = 250ms, monitoring adaptations always provide a response
to arising bottlenecks in time, before packet loss occurs. In
the case of T = 100ms, huge packet rate variations, up to
the equivalent of 3Gbps for 64-byte packets, are generated in
the time-span of a single monitoring adaptation time-window
(10ms). As such, some losses can occur before the new moni-
toring configuration is applied, i.e., in the 10ms time-window
preceding the adaptation. However, even for such intense and
short-lived spikes our approach significantly outperforms No-
Adapt in terms of loss, with a reduction of more than 50% for
both buffer sizes.

Shared resource contention The objective of the next
experiments is to assess how monitoring adaptations handle
variations of the operating conditions in terms of concurrent

access to shared resources. To emulate concurrency we use the
approach in [14]: we run our solution on core 1, and co-run
other processes on cores 2, 3 and 4. Each co-runner is defined
as a special monitoring process that only retrieves flow-entries,
so as to maximize the L3 cache references per second. As
depicted in Fig.5d, we split the 1-second experiment into three
intervals of length 1/3s each. In the first interval we execute 1
co-runner (on core 2), in the second interval we execute 2 co-
runners (on cores 2 and 3), and in the last interval we execute
3 co-runners (on cores 2, 3 and 4).

As shown in Fig.5d, increasing levels of concurrency lead
to performance degradation in terms of packets processed per
time-window, and considerable loss for the No-Adapt setup
with 3 active co-runners, regardless of the input buffer size.
This is due to the inflation of retrieval times Tr as a result of
increasing L3 cache misses. In contrast, our solution achieves
minimal loss since concurrency variations are detected at run
time through P estimation (Sec.IV-C) and a new monitoring
configuration is provided within 10ms.

Change of traffic skew We finally evaluate the perfor-
mance of our solution under variations of traffic skew. To
reproduce these variations we split the input packet trace into
smaller intervals of 20ms and for each interval we assign
packets to flows (5-tuples) based on a Zipf distribution with
parameter α (flow population size of 2.5 · 105). We start with
α = 1.5 (high skew) at t = 0s and we gradually decrease
the skew factor until α = 1 at t = 1s to obtain more uniform
traffic. The packet rate has been fixed at 10 Mpps. As expected,
smaller values of α lead to a significant performance drop since
less packets are served with flow-entries from the L3 cache. As
shown in Fig.5e, our solution can sustain 10 Mpps on a single
core under considerable skew variations, and prevents losses
at much lower skew factors, α ≈ 1.1 (t = 0.9), compared to
the No-Adapt case, which starts starving packets in the input
buffers for α ≈ 1.25.

Fig. 6: Adaptation routine completion time

Monitoring states Overhead # Controller queries Overhead
16 0.5% 256 0.7%
32 0.55% 1024 1.3%
64 0.57% 4096 1.5%

TABLE III: Run time overhead

B. Monitoring Adaptation Overhead

We evaluate the cost of monitoring adaptations with respect
to (i) the execution time of the Adaptation Routine and (ii) the
run time overhead in terms of percentage of CPU time. While
the former translates to packets waiting at the input buffers,
the latter implies a reduction in the sustainable packet-rate.

Adaptation routine time Results on the completion time
of the proposed adaptation routines are shown in Fig.6. Both
strategies in Method 1, Greedy and LFS, have a worst-case
(adaptation minimizes per-packet processing time) execution
time in O(k2), with k being the number of Monitoring States.
However, even for a large value of k, e.g. k = 64, the routine
can still run to completion within a short period, in the range
of 10µs, resulting in only 100/200 packets temporary stopped
at the input queue for 10 Gbps (by far below the packet capture
buffer size). In the case of more light-weight adaptations,
which reduce the processing time by 25%, a gap between the
two strategies arises, as LSF operates in a more selective way.
For Method 2, the worst-case time increases linearly with the
number of controller queries, and a completion time as small
as 10µs is achieved for 1024 queries.

Run time overhead The overhead is dominated by the time
for counting the number of packets that have been processed,
by the Monitoring States in the case of Method 1, or for
controller queries in Method 2. Results are shown in Table III,
where the consumed CPU time is expressed as a percentage of
the 10ms time-window, for the worst case of 10 Gbps small-
packet traffic. While an increasing trend can be observed in
the results, the overhead is generally low, even for Method 2
where this is in the range of 1% for the maximum number
of queries (4096). The run time estimation of P also incurs
some overhead, which is proportional to parameter K, i.e.,
the number of Tr samples per time-window. This overhead
is equivalent to 1% of a 10 ms time-window for K = 103.
However, this cost can be drastically reduced by precomputing
offline all necessary values of the CDF for the estimation
of P . With this improvement, we obtain no more than 0.2%
additional overhead for K = 103.

VII. RELATED WORK

Generating accurate and fine-grained monitoring informa-
tion at a reduced cost is a critical task in today’s networks,
especially in resource constrained environments. A number of
recent proposals [27][26][5] have focused on the development

of adaptive monitoring frameworks with the objective of
supporting measurements under dynamic traffic patterns and
resource availability. A novel adaptive flow counting approach
was introduced in [27] to enable anomaly detection with low
overhead. Dynamic resource allocation solutions for traffic
monitoring have been proposed in [26] and [5] based on Open-
Flow counters and sketch-based measurements, respectively.
Our approach also reconfigures monitoring parameters at run
time to achieve efficient resource usage, but in contrast to the
aforementioned solutions it focuses on software deployments.

With the advent of packet processing on commodity hard-
ware, previous efforts such as [18][19] investigated how to
take advantage of multi-core architectures to minimize the
packet processing times for sophisticated monitoring tasks.
While [18] relies on RSS and parallel threads to analyze
multi-Gbps traffic, [19] uses multiple cores with the support
of GPUs to perform complex intrusion detection operations.
In addition, the recent packet-rate increase at the NIC raises
new challenges, especially with respect to zero-loss guarantees
under jitter in packet processing and unbalanced or unexpected
traffic bursts. In contrast to our solution, existing approaches
mainly address these challenges by enhancing either the packet
capture or the packet scheduling. In [17], the authors pro-
pose to temporary store traffic in large buffers (1GB), which
improves resilience at the cost of additional resource usage.
The approach in [14] uses adaptive scheduling to mitigate
performance drops due to resource contention.

In a similar fashion to our solution, the methods presented
in [11] and [4] also perform reconfigurations directly on the
monitoring pipeline. In [11] the authors propose to adjust the
size of the monitoring data-structure according to changes in
the traffic properties. This can, however, incur significant time
overhead for large flow-tables (structure size). The adaptive
approach in [4] monitors only flows whose size exceeds a
dynamic threshold, so as to handle DoS attacks. While in
[4] adaptations affect only new flows, reconfigurations in our
work are applied to all operations in the monitoring process,
responding thus to a wider range of emerging conditions.

VIII. CONCLUSION

Traffic monitoring on commodity hardware can starve
packets at the packet capture buffers and thus leads to packet
loss when changes in the operating conditions create bottle-
necks. In this paper we proposed an adaptive approach with
which the operations of the monitoring process are timely
reconfigured under such conditions, so as to ensure lossless
packet processing. We showed that considerable benefits in
terms of packet loss reductions can be achieved under various
conditions such as packet rate spikes, concurrency-induced per-
formance degradation, and changes in traffic skew. Moreover,
we showed that our solution can compute new monitoring con-
figurations every 10 ms, without requiring additional processor
cores and with minimal CPU-time overhead (≈ 1%), even for
10 Gbps traffic of small packets. In the future, we plan to
address the more complex case of monitoring operating in
a chain of network functions on the same core. This would
impose new requirements on the available resource estimation
since the CPU-time is shared between multiple tasks. We will
also enhance our solution to cope with sub-millisecond packet
bursts that can arise at different layers of the server’s network
stack.

ACKNOWLEDGMENT

This research was funded by the UK EPSRC KCN project
(EP/L026120/1), web: https://www.ee.ucl.ac.uk/kcn-project/.

REFERENCES

[1] V. Sekar, M. K Reiter, and Hui Zhang. Revisiting the case for a
minimalist approach for network flow monitoring. In Proc. ACM IMC,
Melbourne, Australia, Nov. 2010, pp 328-341.

[2] L. Hendriks, R. Schmidt, R. Sadre, J. Bezerra and A. Pras. Assessing the
quality of flow measurements from OpenFlow devices. In Proc. TMA,
Louvain La Neuve, Belgium, Apr. 2016.

[3] J. C. Mogul et al. Devoflow: cost-effective flow management for high
performance enterprise networks. In Proc. ACM Hotnets, Monterey, CA,
USA, Oct. 2010.

[4] M. Moshref, M. Yu, R. Govindan, A. Vahdat. Trumpet: timely and precise
triggers in data centers. In Proc. ACM SIGCOMM, Florianopolis, Brasil,
Aug. 2016, pp 129-143.

[5] M. Moshref, M. Yu, R. Govindan, A. Vahdat. SCREAM: sketch resource
allocation for software-defined measurement. Proc. ACM CoNEXT, Hei-
delberg, Germany, Dec. 2015.

[6] Z. Liu et al. One sketch to rule them all: rethinking network flow
monitoring with UnivMon. In Proc. ACM SIGCOMM, Florianopolis,
Brasil, Aug. 2016, pp 101-114.

[7] M. Ghasemi, T. Benson, J. Rexford. Dapper: data plane performance
diagnosis of TCP. In Proc. ACM SOSR, Santa Clara, CA, USA, Apr.
2017, pp. 61-74.

[8] L. Rizzo. NETMAP: A novel framework for fast packet I/O. in Proc.
Usenix ATC, Boston, MA, USA, Jun. 2012, pp. 1?9.

[9] DPDK. Available: http://dpdk.org/.
[10] Receive Side Scaling, Microsoft, Redmond, WA, USA, Feb. 15,

2015. Available: http://msdn.microsoft.com/en-us/library/windows/ hard-
ware/ff567236(v=vs.85).aspx

[11] O. Alipourfard, M. Moshredf, M. Yu. Re-evaluating measurement
algorithms in software. In Proc. ACM Hotnets, Philadelphia, PA, USA,
Nov. 2015.

[12] A. Metwally, D. Agrawal, A. El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proc. ICDT, Edinburgh,
UK, Jan. 2005.

[13] M. Yu et al. software defined traffic seasurement with OpenSketch. In
Proc. USENIX NSDI, Lombard, IL, USA, pp. 29-42, Apr. 2013.

[14] M. Dobrescu, K. Argyraki, S. Ratnasamy. Toward predictable perfor-
mance in software packet-processing platforms. In Proc. USENIX NSDI,
San Jose, CA, USA, Apr. 2012, pp 11-24.

[15] B. Atikoglu et al. Workload analysis of a large-scale key-value store.
In Proc. ACM Sigmetrics, London, UK, Jun. 2012, pp. 53-64.

[16] Y. Chen, R. Griffith, J. Liu, R. H. Katz, A. D. Joseph. Understanding
TCP Incast throughput collapse in datacenter. In Proc. ACM WREN,
Barcelona, Spain, Aug. 2009, pp. 73-82.

[17] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, D. Rossi. Traffic
analysis with off-the-shelf hardware: challenges and lessons learned. In
IEEE Communications Magazine, Vol 55, Mar 2017, pp. 163-169.

[18] F. Fusco, L. Neri. High speed network traffic analysis with commodity
multi-core systems. In Proc. ACM IMC, Melbourne, Australia, Nov.
2010, pp.218-24.

[19] M Jamshed et al. Kargus: a highly-scalable software-based intrusion
detection system. In Proc. ACM CCS, Raleigh, NC, USA, Oct. 2012,
pp. 317-328.

[20] F. Guo, Y. Solihin. An Analytical Model for Cache Replacement Policy
Performance. In Proc. ACM Sigmetrics, Saint Malo, France, June 2006,
pp. 228-239.

[21] D. Tam, R. Azimi, L. Soares, M. Stumm. RapidMRC: approximating
L2 miss rate curves on commodity systems for online optimizations. In
Proc. APLOPS, Washington DC, USA, Mar 2009, pp. 121-132.

[22] R. West, P. Zaroo, C. Waldspurger, X. Zhang. Online cache modeling
for commodity multicore processors. In Proc. ACM SIGOPS Operating
System Review, vol 44, Dec. 2010, pp.19-29.

[23] L. Zhao et al. Cachescouts: Fine-grain monitoring of shared caches in
cmp platforms. In Proceedings of the conference on Parallel architectures
and compilation techniques (PACT), 2007.

[24] G. Bianchi et al. Open Packet Processor: a programmable architec-
ture for wire speed platform-indipendent stateful in-network processing.
Available: https://arxiv.org/pdf/1605.01977.pdf, 2016

[25] A. Roy et al. Inside the social network’s (datacenter) network. In Proc.
ACM SIGCOMM, London, UK, Aug 2015, pp. 123-137.

[26] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Dream: dynamic
resource allocation for software-defined measurement. In Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 419-430.

[27] T. Zhang. An adaptive flow counting method for anomaly detection in
SDN. In Proc. ACM CoNEXT, Santa Barbara, CA, USA, Dec. 2013, pp.
25-30.

