
Scalability and Reliability Aware
SDN Controller Placement Strategies

Fetia Bannour, Sami Souihi and Abdelhamid Mellouk
LISSI/TincNetwork Research Team, University Paris-Est Créteil (UPEC), France

Abstract—The decoupling of control and data planes in
Software-Defined Networking (SDN) brings benefits in terms of
logically centralized control and application programming. But,
the single point of management in physically centralized SDN
architectures is a potential point of failure and a bottleneck
that compromises network reliability and performance. Such
centralized designs may also face scalability challenges especially
in networks with a large number of hosts (e.g. IoT-like networks).
To avoid such concerns, SDN control architectures are usually
designed as physically distributed systems. This raises practical
challenges about the best approach to decentralizing the control
plane while maintaining the logically centralized network view. In
particular, determining the number of controllers and locating
them in the network is a hard task that should be addressed
appropriately. This paper proposes two novel strategies that cover
different aspects of the controller placement problem with respect
to performance and reliability criteria. These strategies use two
types of heuristics that are compared and assessed on large-scale
topologies to provide operators with guidelines on how to find
their optimal controller placement that meets their specific needs.

I. INTRODUCTION

The rise in Virtualisation and Cloud Computing, the surge in
mobile traffic patterns along with the emergence of Big Data
and Internet of Things (IoT) trends revealed the difficulties
faced by legacy networks in meeting the stringent requirements
of modern users. These challenges are inherent to the inflexible
and static nature of the Internet’s traditional architecture which
makes it poorly-suited to today’s dynamic, interactive and
hyper-scale network environments. In traditional networks, the
control logic is purely distributed and most network functions
are implemented in dedicated appliances. This makes the clas-
sical approach to policy enforcement and network management
a hardware-centric and time-consuming task that relies on
error-prone manual configuration or device-specific scripting
across the heterogeneous bundle of proprietary devices.

In this context, SDN [1] emerged as a networking paradigm
that promises to make the traditional architecture evolve into a
scalable platform that is more responsive to changing require-
ments and more agile for advanced services. SDN proposes
to raise the level of abstraction by decoupling software (the
control plane) from hardware (the data plane) enabling their
independent evolution. By breaking the vertical integration of
closed devices which has been a barrier to open innovation,
SDN allows to program the control logic in a high-level
vendor-agnostic fashion. SDN eases the development of fine-
grained, automatic and adaptive control features. It aims for
network control centralization, offering improved visibility and
flexibility to manage the network and optimize its resources.

Beyond the hype, there have been concerns about the
widespread adoption of SDN. Studies [2], [3] on the feasibility
of SDN deployments on real topologies proved that the phys-
ical centralization of the network intelligence in one software

element, referred to as the SDN controller, increases the risk
of a Single Point of Failure (SPOF) compromising network
reliability and availability. With such resilience requirements
in mind and based on use cases, these works motivated the
physical decentralization of the control plane into controllers
in charge of handling the network while maintaining its
logically centralized view. From our perspective, in addition
to meeting the reliability requirements expressed in [1]–[4],
the SDN decentralization is required to achieve scalability
[5]. Indeed, centralized designs may face scaling issues while
struggling to match the stringent needs of IoT-like networks
that witness a drastic growth in the number of connected hosts.

While the need for a distributed SDN architecture was ac-
knowledged by the SDN community [1], [5], the best approach
to designing a scalable and reliable distributed control plane
is highly debatable given the challenges brought by such dis-
tributed systems. In particular, the SDN Controller Placement
Problem investigates the required number of controllers and
their appropriate locations according to specific criteria. Our
controller placement optimization scheme compares two types
of heuristics with low computation time. It explores their
potential to handle large-scale or dynamic IoT-like environ-
ments where fast reevaluations of placement configurations are
needed to adapt in real-time to frequently-changing conditions.

Outline: In this paper, we propose two context-based strate-
gies that cover different aspects of the controller placement
problem with respect to reliability and performance criteria.
In Section II, we give an overview of state-of-the-art works.
In Section III, we review the optimization problem and investi-
gate the involved metrics. In Section IV, we show our heuristic
approaches to tackling that problem. Section V displays and
discusses the results before elaborating on future perspectives.

II. RELATED WORK

Heller et al. [2] motivated the SDN Controller Placement
Problem (CPP) and studied how many controllers are needed
and where in the network they should be placed. They argued
that in most topologies one controller is enough for meeting
latency requirements but insufficient for achieving resilience.
They treated the placement of k controllers as a variant of
the facility location problem. Their work was extended by
[3] to include resilience aspects. Hock et al. introduced the
resilient Pareto-based Optimal COntroller placement (POCO)
framework that generates Pareto-optimal CPP solutions with
various trade-offs between quality (latency) and resilience.

While the first version of POCO was intended for small to
medium sized networks, a subsequent version [4] comprised
a heuristic-based Multi-Objective Combinatorial Optimization
(MOCO) approach called Pareto Simulated Annealing (PSA)
for large-scale networks. When evaluating that approach on

978-3-901882-98-2 c© 2017 IFIP

real topologies from the Internet Topology Zoo where the
network size ranges from 5 to 50 nodes, the authors only stress
the diameter aspect of large-scale networks and do not assess
their scalability in terms of an increased number of nodes.

Yao et al. [6] studied another variant of the CPP that
includes the load on controllers in addition to latency consid-
erations (the capacitated k-center problem). The authors of [4]
explored in [7] the potential of specialized heuristics to solve
the capacitated problem in large-scale SDNs by developing the
Pareto-Capacitated k-Medoids (PCKM). Such a specialized
heuristic that optimizes case-specific metrics (i.e. the average
latency and the load imbalance) was compared to generic
heuristics destined for arbitrary optimization purposes.

Similarly, Ahmadi et al. [8] formulated the CPP in large-
scale networks as a MOCO problem and used a multi-objective
heuristic called the Non-dominated Sorting Genetic Algorithm
(NSGA-II) to find good and diverse approximate Pareto Op-
timal solutions with respect to competing criteria. Their work
provided an extensive analysis of the trade-offs between many
combinations of reliability and performance metrics.

III. THE CONTROLLER PLACEMENT PROBLEM

A. Problem Formulation
The Controller Placement Problem consists in finding the
required number and the appropriate locations of controllers
(among all nodes) that efficiently partition the network into
domains to achieve the best trade-off between multiple criteria.
We formulate it as a multiobjective optimization problem. The
network is represented by a graph G = (V,E) where the
nodes V are the controllers and switches while the edges E are
the links between nodes. Edge weights represent the shortest-
path latencies between each pair of nodes. This information
is stored in the Logical Topology Map (IV-A) where d(s, c) is
the latency from a switch s ∈ V to a controller c ∈ V .
B. Placement Metrics
Performance criteria: Optimizing for control plane perfor-
mance is of great importance in large-scale IoT-like networks
with stringent response-time requirements and where high
propagation delays lead to inconsistent and incorrect behaviors
of services. In particular, the average latency (Avg-s2c-Lat)
and maximum latency (Max-s2c-Lat) between controllers and
their assigned switches for a placement C of k controllers
among n = |V | nodes are two different latency-related
performance metrics introduced by [2]. Unlike the average
latency (1) that evaluates the overall quality of the network
performance from a controller-to-switch latency point of view
while hiding single cases of unacceptably high latencies, the
maximum latency (2) is useful in preventing the occurrence
of such high-latency cases in placement scenarios.

πAvg−s2c−Lat(C) = 1
n

∑
(s∈S) min

(c∈C)
d(s, c) (1)

πMax−s2c−Lat(C) = max
(s∈S)

min
(c∈C)

d(s, c) (2)

The controller capacity-awareness is another important per-
formance factor that can be considered in our problem to
avoid the chance of controller overload and prevent the related
performance issues (e.g. additional delays at the controller).

One possible load balancing scheme is to use the shortest-
path controller-to-switch assignment method but introduce a
load imbalance metric to be minimized through the controller
placement optimization (3). This metric is defined by [3] as
the difference between the maximum and the minimum no. of
nodes nc assigned to a controller c for a given placement C.

πLoad−Imbalance(C) = max(c∈C) nc −min(c∈C) nc (3)
Reliability criteria: The SDN control-to-data plane separa-
tion feature brings new concerns about network reliability,
a crucial requirement for operational SDNs. Notably, a key
consideration should be given to improving the reliability of
the SDN control plane when designing distributed platforms.
That aspect of SDN reliability can be ensured by placing con-
trollers in a reliability-aware manner that mitigates the impact
of controller failures. A common mechanism for recovering
from the primary controller failure is to assign the concerned
orphan switches to the closest working controllers. In doing
so, response-time requirements should be met to guarantee
controller fault-tolerance. Indeed, the propagation latencies
of orphan switches with respect to their new controllers
should remain acceptable. As an indicator of reliability against
controller failures, we use the maximum latency metric (to be
minimized) that is computed based on the latencies between
the switches and all subsets of working controllers C1 for
a placement C according to the considered controller failure
scenarios F as below:

πMax−s2c−Latency
F (C) = max

(s∈S)
max

(C1⊆C)
min

(c∈C1)
d(s, c) (4)

Among these controller failure scenarios, the worst-case sce-
nario for a network switch would be the simultaneous failure
of the (k−1) closest SDN controllers. Mitigating that control
plane failure scenario implies minimizing the maximum of the
latencies between the switches s and their respective furthest
functional controllers CFu(s) as follows:

πMax−s2c−Latency
F (k−1) (C) = max

(s∈S,c∈CFu(s))
d(s, c) (5)

In practice, it is more common for primary controller failures
to occur one at a time. Thus, reducing the impact of that con-
troller failure scenario entails minimizing the maximum of the
latencies between the switches s and their respective second
closest controllers CCl(s) as expressed in the following:

πMax−s2c−Latency
F (1) (C) = max

(s∈S,c∈CCl(s))
d(s, c) (6)

IV. THE PROPOSED METHOD

A. The Adopted Approach

We follow a two-phase approach to modeling the placement
problem using a decentralized simulation framework. In the
first stage, we deploy mechanisms to gather and transmit
information about the network topology. This information is
used by the placement algorithms we implemented in the
second stage. After running a leader election scheme, followers
send their neighborhood information (latency) to their leaders.
Then, leaders synchronize such cluster information and build
the Global Physical Topology Map. One leader is nominated
as the Hyper Leader that will be in charge of running the
Dijikstra shortest-path algorithm and building the Global Log-

(a) (b)
Fig. 1: Strategy 1: Latency-based Performance Metrics

(a) (b)
Fig. 2: Strategy 1: Load Imbalance

ical Topology Map. At the Hyper level, controller placement
optimization algorithms are run based on that global view and
given a number of controllers k. Placement solutions are then
analyzed to find the best trade-off between the objectives.
B. Multi-criteria Placement Algorithms
To optimize the placement of k controllers, we use different
algorithms: a clustering algorithm we developed based on
PAM (PAM-B) and a genetic algorithm (NSGA-II). PAM
(Partitioning Around Medoids) [9] is a k-Medoid method that
partitions the data set of N objects (nodes) into k clusters
represented by k medoids (controllers). The idea of PAM is to
find the set of medoids that improve the overall quality of clus-
tering which is measured based on the average dissimilarity of
all objects to their nearest medoid. In our case, our metrics M
are of equal importance making the dissimilarity function D
for a given placement C ∈ CP (the placement configurations)
computed as the normalized sum of all weighted objectives O
with the associated weights equal to 1

M :
DPAM−B(C) =

∑
i∈M (1

M)×N(Oi) (7)

where : N(Oi) =
Oi(C)−min

(C∈CP)
Oi(C)

max
(C∈CP)

Oi(C)−min
(C∈CP)

Oi(C)

NSGA-II used in [8] for addressing the same problem, is a
popular fast and elitist genetic algorithm for multi-objective
optimization. In addition to the classical genetic operators
(crossover and mutation), NSGA-II uses other ranking mech-
anisms (non-dominated sorting and the crowding distance) for
creating the next generation population of candidate solutions.
The main idea of NSGA-II is to make that population evolve
towards a set of non-dominated solutions (the Pareto front)
offering the best trade-offs between the considered objectives.
C. Our Strategies
Strategy 1: Performance-based metrics
Strategy 1 solves the SDN controller placement problem based
on the latency-related performance metrics shown in (1) and
(2) while following the usual shortest-path controller-to-switch
assignment method. We also adopt a load balancing scheme
using the load imbalance metric (3) proposed by [3] and we
evaluate the controller overload risk. Accordingly, the multi-
objective NSGA-II is launched with these three objectives to
be minimized while PAM-B minimizes the following dissim-
ilarity function as a normalized equally-weighted sum of the
three considered objectives in accordance with (7):

DPAM−B
1 (C) = Avg(N(πAvg−Latency(C)),

N(πMax−Latency(C)), N(πLoad−Imbalance(C)))
(8)

Strategy 2: Strategy 1 with reliability metrics
Strategy 2 provides a placement framework that includes
reliability metrics along with performance metrics. As for

reliability metrics (4), users of the framework have the option
of adding a reliability metric variant that tackles the worst-
case controller failure scenario (5) or a variant that addresses
a more common controller failure scenario (6) besides the per-
formance metrics (1), (2) and (3). The dissimilarity functions
of PAM-B for both variants are computed in accordance with:

D
PAM−B(k−1)
2 (C) = Avg(N(πAvg−Latency(C)), N(πMax−Latency(C)),

N(πLoad−Imbalance(C)), N(πMax−Latency
F (k−1) (C)))

(9)

D
PAM−B(1)
2 (C) = Avg(N(πAvg−Latency(C)), N(πMax−Latency(C)),

N(πLoad−Imbalance(C)), N(πMax−Latency
F (1) (C)))

(10)

V. PERFORMANCE EVALUATION

A. Simulation Settings
We use the JAVA-based framework Sinalgo (Simulator for
Network Algorithms) for implementing our two-phase ap-
proach (IV-A) and assessing our multi-criteria placement al-
gorithms (IV-B) based on our strategies (IV-C) and according
to different simulation scenarios. In NSGA-II, the maximum
number of objective function evaluations simulation parameter
(MaxEvaluations) is used as a stopping criterion. The values of
that parameter (from 20000 to 140000) depend on the number
of the objectives involved in each strategy (3 to 4) and the
size of the network (from 20 to 1000 nodes) in each scenario.
B. Simulation Results
For each strategy, given a topology, we assess the placement
solutions of each algorithm. PAM-B generates a clustering
solution based on the equally-weighted dissimilarity measure
(7). Likewise, in NSGA-II, we consider the fairest placement
solution with respect to our criteria among the generated non-
dominated Pareto Optimal solutions representing the possible
trade-offs between the objectives. This is achieved by selecting
the Pareto solution S that best reduces the total gap between its
objective values M and their respective optimal values across
the set of Pareto optimal solutions P . This corresponds to the
Pareto solution with the minimum value of the measure below:

a(S) =
∑

i∈M (1
M)×

Oi(S)−min
(S∈P)

Oi(S)

max
(S∈P)

Oi(S)−min
(S∈P)

Oi(S) (11)

Several simulation scenarios are performed following the
considered strategies and using various types of topologies
of different size; from 20 up to 1000 nodes. That allowed us
to compare our placement strategies, analyze the performance
of our optimization algorithms and study the scalability of our
approach that is mainly intended for large-scale deployments.

As shown in Figure 1, PAM-B is better than NSGA-II at
minimizing the Average Latency (6,68 % better on average)
and the Maximum Latency (10,53 % better on average) over
all scenarios. Besides targeting a certain level of latency per-
formance, Strategy 1 considers load balancing as another ma-

(a) (b) (c)
Fig. 3: Strategy 2: Performance Metrics Fig. 4: Computation Time

jor performance factor. But, minimizing the Load Imbalance
metric (2(a)) does not eradicate the risk of controller overload
as illustrated by Figure 2(b) that depicts the % of overloaded
controllers over all scenarios. For example, when the network
size is equal to 800 (2(b)) and the no. of controllers is equal to
80, both PAM-B and NSGA-II produced configurations where
21 (26,25%) of these controllers are overloaded. Strategy 2
involves reliability metrics in addition to the performance
metrics of Strategy 1 (IV-C). Figure 5 compares, for each
variant of Strategy 2 according to all placement solutions,
the values of the Maximum Latency in the failure free case
with that of the Maximum Latency in the considered failure
case. It shows that PAM-B and NSGA-II perform in a quite
similar fashion when optimizing these metrics. Figure 3 studies

(a) (b)
Fig. 5: Strategy 2: Reliability Metrics: (Maximum Latencies in

Failure free & Failure case scenarios)
the performance cost of involving reliability criteria in the
controller placement. Surprisingly, optimizing for reliability
metrics did not severely impact performance metrics like the
Maximum Latency (in the failure free case) (3(a)) whose
values remained acceptable and comparable to that in Strategy
1 except for a few placement scenarios that were in most cases
produced by NSGA-II. Likewise, similar trends are observed
across Strategy 1 and 2 for each of the Load Imbalance (3(b))
and the Average Latency (3(c)) performance metrics of the
obtained placement configurations. When the network size is
equal to 1000 (3(c)), PAM-B(k-1) (respectively PAM-B(1)) ac-
cording to Strategy 2 produced a configuration where the value
of the Average Latency metric is equal to 25,3ms (respectively
23,5ms) compared to 24ms for PAM-B according to Strategy
1. In the same scenario, NSGA-II(k-1) (respectively NSGA-
II(1)) according to Strategy2 generated a configuration with an
Average Latency value equal to 27,6ms (respectively 26,8ms)
against 27,3ms for NSGA-II with respect to Strategy1.
C. Discussion
Assessing PAM-B and NSGA-II over our strategies revealed
that in most scenarios PAM-B outperforms NSGA-II in terms
of the quality of final solutions. PAM-B gives a balanced trade-
off between performance and reliability metrics and also stable
results over both strategies whereas the performance of NSGA-

II with respect to these metrics is sometimes unpredictable and
dependent on the strategy. The runtime comparison between
PAM-B and NSGA-II (Figure 4) showed similar trends over
the scenarios. Their computational complexities are indeed
close and respectively equal to O(k(n − k)2) (k is the no.
of medoid clusters (controllers) and n is the no. of objects
(the network size)) and O(MN 2) (M is the no. of objectives
and N is the population size). It is worth noting that the
computation time of PAM can be improved. CLARA [9], a
sampling-based variant of PAM, is recommended for large data
sets. Its complexity is O(ks2 + k(n− k)), where k is the no.
of controllers, n is the network size and s is the sample size.

VI. CONCLUSION

We studied the controller placement optimization problem
in large-scale IoT-like SDNs. Multiple performance and re-
liability metrics were considered based on the context. In
these strategies, two heuristics were put forward to find high-
quality approximate solutions in a reasonable computation
time: A Clustering approach and a Genetic approach. Our
results showed the potential of clustering methods in delivering
proper solutions that achieve balanced trade-offs among the
competing performance and reliability criteria. The challenge
of determining the number and locations of controllers is
one particular aspect of the distributed SDN control problem.
The second key aspect calling for further investigation is the
knowledge sharing challenge facing these logically-centralized
platforms. Given the correlation between placing controllers
and modeling the traffic among them, it becomes essential to
reassess the placement parameters after studying the consis-
tency models used for SDN inter-controller communication.

REFERENCES

[1] F. J. Ros and P. M. Ruiz, “On reliable controller placements in software-
defined networks,” Comput. Commun., vol. 77, pp. 41–51, Mar. 2016.

[2] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proc. 1st Workshop HotSDN. ACM, 2012, pp. 7–12.

[3] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-optimal resilient controller placement in sdn-based core
networks,” in ITC, 9 2013.

[4] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and
M. Hoffmann, “Heuristic approaches to the controller placement problem
in large scale sdn networks.” IEEE TNSM, vol. 12, no. 1, pp. 4–17, 2015.

[5] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-scale
dynamic controller placement,” IEEE TNSM, pp. 63–76, March 2017.

[6] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller placement
problem in software defined networks,” in IEEE Commun. Lett., 2014.

[7] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and
P. Tran-Gia, “Specialized heuristics for the controller placement problem
in large scale sdn networks,” in Proc. ITC, Sept 2015, pp. 210–218.

[8] V.Ahmadi, A.Jalili, S.M.Khor, and M.Keshtgari, “A hybrid nsga-ii for
solving multiobjective controller placement in sdn,” in KBEI, 2015.

[9] K. Shraddha and M. Emmanuel, “Review and comparative study of
clustering techniques,” IJCSIT, pp. 805–812, 2014.

