A Model-based Application Autonomic Manager
with Fine Granular Bandwidth Control

Nasim Beigi-Mohammadi, Mark Shtern, and Marin Litoiu
Department of Computer Science, York University, Canada
Email: {nbm, mark, marin}@yorku.ca

In this paper, we propose and implement a machine learning
based application autonomic management system that controls
the bandwidth rates allocated to each scenario of a web
application to postpone scaling out for as long as possible.
Through experiments on Amazon AWS cloud, we demonstrate
that the autonomic manager is able to quickly meet Service
level Agreement (SLA) and reduce the SLA violations by 56%

compared to a previous heuristic-based approach.
Index Terms—Auto scaling, machine learning, SDN, SLA,
bandwidth management.

I. INTRODUCTION

In previous work [1], we proposed to dynamically adapt
bandwidth of application flows to postpone scaling out the
application for as long as possible. Using experiments on
real cloud, we showed how our approach successfully helps
applications to maintain response time SLAs of all scenarios
without provisioning extra resources for a long time. However,
in [1], we used a hill-climbing heuristic at run-time to find
the appropriate bandwidth rates for different scenarios. Due
to the exploratory nature of the hill-climbing algorithm, it
would take time to find the bandwidth rates that satisfy the
SLAs. Since all happen at run-time, we need to speed up the
run-time reactions and hence overcome the limitation of [1].
Therefore, in this paper, we develop a machine learning model
that the application autonomic manger uses to quickly predict
the appropriate bandwidth rates of all application scenarios
at once. We show that the use of model accelerates run-
time reactions in meeting service level objectives. Thus our
contributions in this paper are summarized as below:

« we propose a model-driven application autonomic man-
ager for managing SLAs of cloud applications through
smart and fine granular bandwidth management. We show
that the model accurately predicts the appropriate band-
width for the application scenarios given the application
metrics;

o we implement and verify our solution through experi-
ments on AWS. We compare our model-driven approach
with previous work which is a heuristic-based bandwidth
management and demonstrate that the new approach
reduces SLA violations by 56%.

The rest of the paper is presented as follows: in Section II, we
describe the methodology. Section III presents the experiments
and results. In section IV, we overview related work. And
finally, Section V concludes the paper.

II. METHODOLOGY

In our approach, application autonomic manager defines
policies to be executed at the network layer. When autonomic
manager detects the application is overloaded, it dynamically
changes the bandwidth to resolve the performance bottle-
neck on the application. We make following assumptions:(a)
there is dependency between scenarios due to using shared
resources;(b) we consider a three tier application where the
application tier is scaled in/out on demand and use nodes
with high capacity in other tiers to prevent saturation in other
tiers;(c) we use homogeneous nodes in the application tier
and the requests in the application tier are equally distributed
between workers.

Algorithm 1 illustrates the adaptation process of autonomic
manager. Autonomic manager uses two criteria to adapt the
bandwidth rates which are: (a) the response time of at least
one of the scenarios should be below certain threshold with
respect to its response time SLA, which we call candidacy
threshold (CT); (b) there exists at least one scenario whose
response time SLA has not been breached for the past x time
units. We call this Time From Last Violation (TFLV). If there
exists at least one scenario that meet such criteria, autonomic
manger performs bandwidth adaptation (line 3 in Algorithm
1), otherwise, it will scale out the application. To prevent
oscillation, autonomic manager uses a heat mechanism before
acting on a violation or when scaling in the application (lines
2 and 15 respectively).

To capture the non-linear relationship between the response
times, workload, and the bandwidth rates, we use a machine
learning model formally shown in Equation 1. The inputs of
the model are the workload vector (W) which includes the
number of users per scenario and the vector of scenarios’
response times (R). The output of the model is a vector of
bandwidth rates of scenarios (BW); that is given W, if BW
is applied to the scenarios, the response times of scenarios
will be R. We define the effective workload (W,yr) according
to Equation 2 where n is the number of nodes (i.e., virtual
machines (VMs)) in the application tier. Therefore, in order
to use the model for when we have only one node in the
application tier, we use Equation 3. Now BW' is applicable
to Wesr workload; in order to find BW for W, we use a linear
model presented in Equation 4. We adopt this formula from
our assumptions where we only scale out the application tier
with homogeneous VMs and our load balancer uses round-



Algorithm 1: Adaptation Algorithm:

input : S—vector of Scenarios.

input : R—vector of response times of scenarios.

input : SLA—vector of response time SLAs of scenarios.

input : WW—uvector of workload.

input : n—number of application servers.

input : C'PU—average CPU utilization of application servers.

input : heat,, heat,—number of consecutive SLA breaches
(overload) and underloaded situations respectively.

output : BW —vector of bandwidth rates that satisfies R.

output : S’— a subset of S that meet the bandwidth adaptation

criteria .

1 foreach Scenario s € S do

2 if Rs > SLAs for heato(s) times then

3 S’ « checkBW Criteria({S — {s}});
4 if S’ # ( then

5 W« W/n;

6 BW «+ F(W,R) X n;

7 Apply BW to S;

8 heato(s) « 0;

9 return;

10 else
/ bandwidth adaptation cannot fix
violations
Scale out application tier;
12 n+<n+1;
13 heato(s) + 0;
14 return;

15 if CPU < CPU for heat,, times then
application tier underloaded
16 Remove VM;

heat, < 0;

18 n<+<n-—1;

19 return;

robin policy to equally distribute the workload between the
application servers. Therefore, using our method, we only
need to collect data for one application setting (i.e., having
specific number of nodes in the application tier) and use
equations 1-4 to use the model for varying number of nodes
in the application tier. As part of application performance
testing that is done before operation, we tried various values
of workload and bandwidth rates. To prevent combinatorial
explosion problem, we used the knowledge from application
behavior. We use a multiple output decision tree regression as
our model.

BW = F(W,R) (1)
W =W/n )
BW' = F(W.y, R) 3)
BW = BW xn (4)

III. EXPERIMENT

To implement the autonomic manager, we extended Hogna
[2] such that it dynamically establishes an overlay network

and perform bandwidth adaptation as well. We equip our auto-
nomic manager with a multiple output decision tree regression
mode that we developed in Python3 using scikit-learn [3].
The hyper-parameters set for the model include criterion=mse,
splitter=best, max_depth=>5, and random_state=0, which attain
score function of 0.974. We performed two sets of experiments

Amazon AWS

App Tier

Load Balancer % Data Tier
Virtual Switch i
/ o
B e
% OverlayNetwofk
SDN controller (| Autonomic Manager

Figure 1: Experiment setup on Amazon AWS.

on AWS using the setup shown in Figure 1; the first one pre-
sented in Section III-A serves as the baseline that illustrates the
hill-climbing heuristic previously proposed in [1]; the second
one in Section III-B demonstrates our model-based approach
and shows how it successfully overcomes the limitations of
the heuristic one.

For the application, we used a three tier ebookstore ap-
plication previously reported in [2]. Users send requests and
wait for the reply and then think for some time (i.e., think-
time) and send the next request. Application scenarios in-
clude: adding to shopping cart, payment, and browse. Each
application scenarios has its own response time SLA. We
adapt the bandwidth rates of responses from the load balancer
node toward the clients. We performed the experiments using
two scenarios Scenario 1 being adding to shopping cart and
Scenario 2 browse the catalog as we trained our model using
these two scenarios. Table I illustrates the parameters set for
the scenarios in the experiments.

Table I: Parameters set for the scenarios in all experiments. The
autonomic manger is to maintain the 95t percentile response time
SLAs.

| Scenario | 95" SLA | CT TFLV | heat, | heaty, |
*
Add to.cart 40 ms 0.9 * 40 ms 1 min 2
(Scenario 1) 0
*
Browse 700 ms 0.9 * 700 ms 1 min 2

(Scenario 2)

A. Experiment 1: Hill-climbing Heuristic

Figure 2.a presents the CPU utilization of the load balancer,
application servers and database server that can be read from
the left vertical axis. The horizontal axis shows the experiment
iteration number (or the monitoring time) in all graphs. The
autonomic manager monitors the application every 20 seconds.
The number of application servers are shown at the right verti-
cal axis. Figure 2.b shows the workload which corresponds to
the number of users in each scenario and Figure 2.c illustrates



the bandwidth rates of the scenarios. Note that we only show
the scenarios whose bandwidth have been adapted during the
experiment. Unless mentioned otherwise, the bandwidth rates
are the default values, which is set to 220Mbps. Figure 3.a
shows the response time and arrival rate of Scenario 1 and
Figure 3.b displays those of Scenario 2 where the response
times can be read from the left vertical axis and the arrival
rates from the right. The Red dashed lines in both of these
graphs depict the 95" percentile response time SLAs. The
pink shaded background shows a bandwidth adaptation event
and the gray shaded background illustrates an auto-scaling
event. At around iteration 74 in Figure 2.b, the number of
users of Scenario 1 increased from 59 to 69 which violates the
SLA of scenario 1. Since the response time stays above the
threshold for two consecutive iterations, autonomic manager
starts off by reducing a proportional amount from the current
bandwidth. We found that 15% of current bandwidth would be
a good value w.r.t sizes of scenarios. The autonomic manger
reduces the bandwidth rate of scenario 2 in Figure 2.c multiple
times which finally fixes the response time of Scenario 1 at
around iteration 86 in Figure 3.a.

100 4

80 |-
60 |-

40 |

CPU Utilization (%)
1
~
Web Workers

20 | 17

0 1 1 1 I 1 ! ! ! 1 I 1 ! 0

0 25 50 75 100 125 150 175 200 225 250 275 300

CPU Util (balancer)
CPU Util (app server)

CPU Uil (data)
no-Workers

# of users
#of users

100 125 150 175 200 225 250 275 300

(b) Scenario 1

Scenario 2
300 300

‘ - 200 o

0 ! I ! I I ! ! ! 1 I 1 ! 0

200

100 -

Bandwidth Rate (Mbps)

1
=]
B
Bandwidth Rate (Mbps)

0 25 50 75 100 125 150 175 200 225 250 275 300

(©) Scenario 2

Figure 2: Using the hill-climbing heuristic, bandwidth of Scenario
2 is adapted.

Other adaptations happen after around iterations 111, 162,
and 168 in Figure 2.c which successfully fix the violations.
Then at around iteration 169, due to hight number of users, re-
sponse times of both scenarios go above their SLA thresholds
which triggers the auto-scaling policy. A new VM is added to
the application tier increasing the number of servers from 1
to 2 at around iteration 172 in Figure 2.a. After a new VM
is added, the bandwidth rates are reset. Even though a new
VM is added to the application, the response time of Scenario
1 still tends to stay high which then triggers the bandwidth
adaptation. We can see from Figure 2.c that the bandwidth

Response time (ms)
Request/s

75 100 125 150 175 200

225 250 275 300

@ RespTi 1 — IR Jp— SLA ===

1200 200

- 150
800 |-

g

8

T

L

g
Request/s

Response time (ms)
N &
g8 8
T T
L E
g

75 100 125 150 175 200 225 250 275 300

IR: 2 — SLA =--n

2 —

Figure 3: Response time of scenarios in Hill-climbing heuristic.

rate of scenario 2 is adapted three times until the response
time of scenario 1 is fixed at around iteration 184. Due to
large volume of requests, the autonomic manger adds another
VM to the application tier to fix the response times at around
iteration 240. Then at around iteration 258, the response time
of scenario 1 goes over its SLA. We can see in Figure 2.c,
the bandwidth of scenario 2 is adapted multiple times which
finally fixes the response time of scenario 1 at around iteration
272.

B. Experiment 2: Model-based Adaptation

We keep the experiment setting including the workload and
the application configuration exactly the same as previous
experiment. In Figure 4.b, we can see that as time goes by,
the number of users in both scenarios are increasing which
increases the response times of both scenarios. Up to around
iteration 62 in Figure 5.a, the response time of scenario 1 goes
a few times above its SLA. However, since the policy is acting
on two consecutive iterations, no actions are taken at these
times. Around iteration 62, the number of users of scenario 1
increases (see Figure 4.b) which causes the response time of
Scenario 1 to stays up for 2 iterations above its SLA. Using the
model, autonomic manager applies the predicted bandwidth
rates to fix the response time of Scenario 1. As can be seen in
Figure 4.c, the bandwidth rate of scenario 2 is reduced from
the default bandwidth to around 69Mbps. We can observe that
the response time of scenario 1 gets fixed at around iteration
68. Again at around iteration 74, the bandwidth of scenario 2
is lowered to around 50Mbps that resolves the SLA violation
of scenario 1.

At around iteration 105, the number of users in Scenario
1 increases further up to 119 users that breaches SLA of
scenario 1. At this time, bandwidth adaptation criteria do not
hold (i.e., response time of Scenario 2 is above CT). This
means that the current application capacity does not support
this workload and bandwidth adaptation cannot be performed.
Hence autonomic manager scales out the application to restrain



further SLA violations (the number of application workers
increases to two in Figure 4.a.) Now let’s see if the model
is still able to predict the bandwidth rates correctly after this
scaling out event. When the number of users in both scenarios
is increased from iteration 117 to 124, it breaches SLA of
Scenario 1. After the response time of scenario 1 stays up
for two back-to-back iterations in Figure 5.a. When the model
output is actuated over the load balancer interfaces, we can see
that the response time of scenario 1 gets adjusted at around
iteration 127.

Next, more users are using Scenario 2 which then violates
the response time of scenario 1 at around iteration 148. So
the bandwidth rate of scenario 2 is reduced to 80Mbps which
improves the response time of scenario 1 quickly at around
iteration 149. It can be observed from Figure 4, that all SLAs
are well maintained despite the increase in the workload up
to around iteration 189, where both scenario response times
gets violated, and the autonomic manger has no choice but
to scale out the application. Hence the application is scaled
out again (the number of web workers in Figure 4.a goes up
to 3). However, it takes around 5 iterations for the response
times of both scenarios to improve after the new VM is
added. At around iteration 212, bandwidth of scenario 2 is
adapted which then fixes the response time of Scenario 1 at
around iteration 214. The number of users in both scenarios
is increased further at around iteration 230 and onward, as we
can see the autonomic manger is able to successfully maintain
the SLAs of application scenarios which brings us to the end
of the experiment.

CPU Utilization (%)
Il
~
Web Workers

0 25 50 75 100 125 150 175 200 225 250 275

CPU Util (balancer)
CPU Util (app server)

CPU Util (data)
no-Workers

(a)

# of users
# of users

0 I L L I I I I I I I 0

0 25 50 75 100 125 150 175 200 225 250 275

(b) Scenario 1 Scenario 2

300

w
8
3

200 - -

N
S
3

3
3
T
1
3
3

Bandwidth Rate (Mbps)

Bandwidth Rate (Mbps)

0 I I I I 1 1 I 1 I I

o

0 25 50 75 100 125 150 175 200 225 250

N
]
&

©) Scenario 2

Figure 4: Using the model, bandwidth of Scenario 2 is adapted.

C. Analysis of the Results

The model-driven solution employs an on-line model and
can quickly and accurately estimate the appropriate bandwidth

Response time (ms)
Request/s

0 25 50 75 100 125 150 175 200 225 250 275

1200 200

1000 |-

800 -

600 |- - 100

Request/ s

400 -

Response time (ms)

200 -

0 25 50 75 100 125 150 175 200 225 250 275

®) RespTi 2 — SLA ----

Figure 5: Response time and arrival rates in model-based.

rates that resolves SLA violations. From the results in the two
experiments, we calculated the number of SLA violations of
Scenario 1 that includes the two iterations that the autonomic
manger waits to prevent oscillation as well. The model-based
autonomic manger reduces the number of SLA violations by
56% compared to the heuristic one. Only the model-based
satisfies the 95" percentile SLA while the heuristic one only
conforms to the 89" percentile SLA response time. Compared
with VM auto-scaling, the time to effect of bandwidth adap-
tation is much lower. Hence, we can conclude that bandwidth
adaptation is an effective and efficient mechanism to adapt the
response time of applications and using a model improves the
quality of adaptation.

IV. RELATED WORK

Igbal et al. [4] utilize polynomial regression to model the
number of servers in a tier as a function of the number of static
and dynamic requests received by the RUBiS web application.
Mirza et al. [5] apply machine learning to predict throughput
of TCP using support vector machine. Wickboldt et al. [6]
propose a design of a cloud platform that puts network on
the same level with computation (CPU) and storage (disk)
resources; this way the client applications can dynamically
provision and de-provision network as needed.

V. CONCLUSION

In this paper, we presented a model-driven application au-
tonomic manager for web applications in cloud utilizing smart
bandwidth management within application cluster. Through
experiments on AWS, we demonstrated that our adaptive
control can quickly maintain SLA response times and reduce
the SLA violations by 56% compared to the heuristic-based
approach.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Council of Canada (NSERC) CGSD.



(1]

(2]

[3]

REFERENCES

N. Beigi-Mohammadi, H. Khazaei, M. Shtern, C. Barna, and M. Litoiu,
“Adaptive service management for cloud applications using overlay
networks,” in I5th IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2017.

C. Barna, H. Ghanbari, M. Litoiu, and M. Shtern, “Hogna: A platform for
self-adaptive applications in cloud environments,” in Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), 2015 IEEE/ACM
10™ International Symposium on, May 2015, pp. 83-87.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825-2830, 2011.

(4]

(5]

(6]

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Gener. Comput. Syst., vol. 27, no. 6, pp. 871-879, Jun. 2011.

M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” in Proceedings of the 2007 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, ser. SIGMETRICS ’07. ACM, 2007, pp. 97-108.

J. A. Wickboldt, L. Z. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “Rethinking cloud platforms: Network-aware flexible re-
source allocation in iaas clouds,” in 2013 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2013). 1EEE, 2013, pp.

450-456.



